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Over the next century, coastal regions are under threat from projected rising sea levels
and the potential emergence of groundwater at the land surface (groundwater
inundation). The potential economic and social damages of this largely unseen, and
oftenpoorly characterisednatural hazardare substantial. To support risk-baseddecision
making in response to this emerging hazard, we present a Bayesian modelling
framework (or workflow), which maps the spatial distribution of groundwater level
uncertainty and inundation under Intergovernmental Panel on Climate Change (IPCC)
projections of Sea Level Rise (SLR). Such probabilistic mapping assessments, which
explicitly acknowledge the spatial uncertainty of groundwater flow model predictions,
and the deep uncertainty of the IPCC-SLR projections themselves, remains challenging
for coastal groundwater systems. Our study, therefore, presents a generalisable
workflow to support decision makers, that we demonstrate for a case study of a
low-lying coastal region in Aotearoa New Zealand. Our results provide posterior
predictive distributions of groundwater levels to map susceptibility to the
groundwater inundation hazard, according to exceedance of specified model top
elevations. We also explore the value of history matching (model calibration) in the
context of reducing predictive uncertainty, and the benefits of predicting changes
(rather than absolute values) in relation to a decision threshold. The latter may have
profound implications for themany at-risk coastal communities andecosystems,which
are typically data poor. We conclude that history matching can indeed increase the
spatial confidence of posterior groundwater inundation predictions for the 2030-2050
timeframe.
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1 Introduction

Sea level observations (Jevrejeva et al., 2009; Vermeer and Rahmstorf, 2009) and
projections (Kopp et al., 2014; Hall et al., 2016; IPCC, 2021) indicate alarming decade-
to-century rises in global mean sea levels. Under high emissions scenarios, mean sea levels
could exceed 1.0 m above 2000 levels by 2100 (IPCC, 2021). Globally, it now appears that we

OPEN ACCESS

EDITED BY

Shailesh Kumar Singh,
National Institute of Water and
Atmospheric Research (NIWA),
New Zealand

REVIEWED BY

Hans Jørgen Henriksen,
Geological Survey of Denmark and
Greenland, Denmark
Jeremy Rohmer,
Bureau de Recherches Géologiques et
Minières, France

*CORRESPONDENCE

Lee A. Chambers,
l.chambers@gns.cri.nz

SPECIALTY SECTION

This article was submitted
to Hydrosphere,
a section of the journal
Frontiers in Earth Science

RECEIVED 29 November 2022
ACCEPTED 15 February 2023
PUBLISHED 17 March 2023

CITATION

Chambers LA, Hemmings B, Cox SC,
Moore C, Knowling MJ, Hayley K,
Rekker J, Mourot FM, Glassey P and
Levy R (2023), Quantifying uncertainty in
the temporal disposition of groundwater
inundation under sea level
rise projections.
Front. Earth Sci. 11:1111065.
doi: 10.3389/feart.2023.1111065

COPYRIGHT

© 2023 Chambers, Hemmings, Cox,
Moore, Knowling, Hayley, Rekker,
Mourot, Glassey and Levy. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 17 March 2023
DOI 10.3389/feart.2023.1111065

https://www.frontiersin.org/articles/10.3389/feart.2023.1111065/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1111065/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1111065/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1111065/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1111065&domain=pdf&date_stamp=2023-03-17
mailto:l.chambers@gns.cri.nz
mailto:l.chambers@gns.cri.nz
https://doi.org/10.3389/feart.2023.1111065
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1111065


are committed to 274 ± 68 mm of eustatic SLR, regardless of
mitigation measures or climate change pathway (Box et al.,
2022). Currently, mean sea levels are rising at rates of ~
3–4 mm/year (Watson et al., 2015), and continued ocean
warming, land-based ice melt (Yi et al., 2015; IPCC, 2021), and
coastal subsidence (Nicholls et al., 2021) are expected to increase
relative-SLR further.

SLR will have severe impacts on low-lying coastal regions. It is
estimated that 267 million people live on coastal land <2 m above
mean sea level (Hooijer and Verminnen, 2021). This number is
projected to increase to ~1 billion by 2050 (Befus et al., 2020;
Neumann et al., 2015). In these regions, SLR endangers coastal
communities by increasing the frequency and severity of natural
hazards, such as high-tide sea-water inundation (e.g., Cooper et al.,
2013; Paulik et al., 2019), coastal erosion (e.g., Anderson et al., 2015)
and surface water flooding (e.g., Sweet et al., 2014), whilst
contributing to the permanent loss of land (e.g., Ramm et al.,
2017; Ramm et al., 2018) and eventual displacement of
communities (e.g., Nicholls et al., 2021).

Profound and often overlooked impacts of SLR include rising
groundwater levels and the potential emergence of groundwater at
the surface (that is, groundwater inundation). As sea levels rise,
groundwater that is hydraulically connected to the sea will rise and
eventually break out at the land surface. This could lead to
groundwater inundation far inland, even before any sea-water
inundation or surface water flooding occurs, potentially
compounding such surface flooding (e.g., McCobb and Weiskel,
2003; Nicholls et al., 2007; Bjerklie et al., 2012; Goldsmith et al., 2015;
Hoover et al., 2016; Befus et al., 2020).

These rising groundwater level and inundation projections
represent additional and largely unseen natural hazards (e.g., Rotzoll
and Fletcher, 2013) that are difficult to identify (e.g., McKenzie et al.,
2010) and largely unrecognized by the general public (e.g., May, 2020).
Typical flood defences may be prohibitively expensive or inappropriate
(e.g., Yu et al., 2019), and may actually exacerbate rising groundwater
levels and inundation (e.g., Cox et al., 2020).

Potential economic and social damages are substantial and
include (but not limited to): road and property flooding (e.g.,
Abboud et al., 2018), reduced agricultural productivity (e.g.,
Barlow et al., 1996), reduced service life of roads and pavements
(e.g., Knott et al., 2017), reduced capacity of waste and stormwater
networks (e.g., Morris et al., 2018), wastewater treatment failure
(e.g., Cox et al., 2020), and increased exposure of underground civil
infrastructure (e.g., Macdonald et al., 2012), leading to foundation
failures and corrosion (e.g., Colombo et al., 2018).

Given these potential impacts, groundwater inundation
mapping will be an essential tool for supporting decisions on
how to manage and communicate the impacts of SLR on coastal
aquifer systems (e.g., Hoover et al., 2016; Merchán-Rivera et al.,
2022). However, the subsurface is highly complex, and our ability to
characterise this complexity is limited (e.g., Doherty and Moore,
2017). Furthermore, this hydrogeological uncertainty is confounded
by the inherent “deep uncertainty” attached to the IPCC-SLR
projections, themselves (e.g., IPCC, 2021). It is, therefore,
impossible to reduce the uncertainty of SLR-related predictions
to negligible levels.

However, through using numerical modelling techniques, it is
possible to quantify spatial and temporal groundwater inundation

susceptibility/risk, and to reduce this uncertainty to the extent that
data allows. Such approaches should acknowledge the inherent
spatial and temporal uncertainty of the simulated system (e.g.,
Merchán-Rivera et al., 2022), as well as the uncertainty of the
aquifer stresses that may prevail in the future (e.g., SLR and/or
climate variability). By characterising these system property and
stresses probabilistically, we are then able to quantify the uncertainty
of predictions in groundwater level rise and inundation. This is
essential for facilitating risk-based decision-making (e.g., Freeze
et al., 1990). Although some recent examples of groundwater
inundation mapping exist (e.g., Hoover et al., 2016; Storlazzi
et al., 2018; Habel et al., 2019; Befus et al., 2020; Merchán-Rivera
et al., 2022), formal uncertainty quantification remains rare.

In this regard, Bayesian methods are considered some of the
most rigorous approaches for decision-making under uncertainty
(e.g., Caers, 2018). Industry standard tools for history matching
(PEST and PEST++) can efficiently implement inversion-based
algorithms for “highly-parametrised” models (e.g., 1000s of
adjustable parameters) within a Bayesian framework (e.g.,
Doherty, 2015; White et al., 2020). This supports enhanced
expression of uncertainty in system properties (e.g.,
heterogeneity), whilst providing greater potential for data
assimilation from historical observations, and robust assessments
of prediction uncertainty (e.g., Knowling et al., 2019).

This research adopts a Bayesian framework (or workflow),
which is applied to estimate the spatial and temporal probability
of groundwater inundation, under IPCC projections of relative-SLR.
Specifically, the predictions of interest are a description of: 1) the
transient progression of annual groundwater levels (heads) at
specified times in the future as sea level changes, and 2) the total
groundwater flux to the surface/wastewater drainage networks as sea
level changes. Uncertainty accompanies all of these predictions, and
this enables spatial mapping of the probability of groundwater
inundation (groundwater emerging at the land surface).

This approach is novel in several ways. Firstly, a highly
distributed parametrisation scheme allows the spatial detail
and uncertainty of the predictions of interest to be estimated,
and supports prediction uncertainty reduction, to the extent that
the flow of information from available data allows. To our
knowledge, the explicit application of temporal uncertainties
in SLR projections, combined with spatially explicit
uncertainty in groundwater flow model predictions, remains
unexplored in the coastal groundwater modelling literature.
Secondly, spatial and temporal estimates of drainage volumes
provide an indication of what SLR mitigation measures may be
required, for a range of SLR projections.

We demonstrate our approach for a real-world example to
support the management of a low-lying coastal region (South
Dunedin, Aotearoa New Zealand). Although local in scale, the
framework is widely applicable and can be upscaled, or further
developed for larger coastal regions where decision-support models
are needed.

The paper is organised as follows. Section 2 introduces the case
study problem, predictions of interest and the basis for the
conceptual and numerical model. Section 3 describes the
methodological detail required to implement our approach.
Section 4 presents the results and discussion with conclusions
following in Section 5. Reference is made to Supplementary
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Information (SI) throughout for further detail on the numerical
model and our workflow.

2 Case study area

South Dunedin is approximately 6 km2 and located behind sand
dunes in the isthmus between the Dunedin hills in the west and the
Otago Peninsula to the east (Figure 1). The coastal plain is
typically <3 m above mean sea level and is now one of the most
densely populated coastal urban centres in New Zealand, hosting
many assets and critical infrastructure. Because of rising sea levels,
the region is under threat from rising groundwater levels and
inundation.

2.1 The groundwater emergence hazard

A shallow unconfined coastal groundwater system underlies
South Dunedin. Groundwater levels are typically found <1 m
below the ground surface and there is evidence of some
hydraulic connection with the Pacific Ocean (Cox et al., 2020).
The expected rise in groundwater levels resulting from SLR must be
considered in future land-use and infrastructure planning in South
Dunedin.

In the near term, SLR will compound interrelated hazards
resulting from the complex interaction between shallow
groundwater, buried civil infrastructure and surface waters (e.g.,
Bell et al., 2017). In the long term, SLR is expected to lead to the
emergence of groundwater at the surface (groundwater inundation
for the purpose of our research). Hence, central and local
government, planners, engineers, and residents are amongst the
many concerned by the extent of rising groundwater levels, and the
inundation hazard (e.g., PCE, 2015).

2.2 Conceptual model

The latest geological and hydrogeological understanding of
South Dunedin is described in detail by Glassey et al. (2003) and
Cox et al. (2020) respectively. The current conceptual model of the
groundwater system was based on these descriptions.

The topographically flat area represents a valley infilled with
Quaternary sediments. The groundwater system flows within two
sediment depositional units: 1) a younger Holocene unit comprising
soft silt and clay of marine to estuarine origin, locally deposited
during the post-glacial marine transgressions resulting from
Holocene sealevel rise, overlying 2) a Pleistocene depositional
unit comprising sands, silts, and some gravels, interpreted as
alluvial deposits with hillslope deposits at the valley margins

FIGURE 1
Groundwater monitoring sites located within groundwater model extent of South Dunedin. The piezometers used in this study (coloured by
installation campaign) are shownwith interpolated piezometric surface (updated fromCox et al., 2020). The star indicates the location of the Forbury Park
“Example site,” referenced in Section 4 of this paper. The blue shaded area is the interpreted extent of a perched aquifer in the sand dunes. The Otago
Metric Datum (OMD) used in this study is equivalent to New Zealand Vertical Datum 2016 (NZVD2016) + 100.377 m.

Frontiers in Earth Science frontiersin.org03

Chambers et al. 10.3389/feart.2023.1111065

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1111065


(colluvium). These highly heterogeneous Pleistocene and Holocene
sediments have a maximum depth of approximately 60 m. The
contact between the Quaternary sediments and the underlying
bedrock is relatively flat beneath most of South Dunedin, but has
some (<40 m relief) paleo-topography (Glassey et al., 2003). Bedrock
comprises either weak marine sedimentary rock (Caversham
sandstone), or a variety of local interbedded igneous rocks
(Dunedin Volcanic Group).

The groundwater system was treated conceptually as a single
groundwater system for the purposes of this study, being bounded
by basement rocks of the Dunedin Hills and Otago Peninsula, and
the Pacific Ocean and Otago Harbour (Figure 1). The bedrock
contact was treated as a no-flow boundary because recent
investigations indicated negligible vertical hydraulic gradients
(Cox et al., 2020), and limited vertical groundwater flow at the
basin scale (Rekker, 2021).

In contrast to the underlying shallow unconfined groundwater
system, a minor perched dune aquifer system to the south (Figure 1)
demonstrates low electrical conductivity (i.e., relatively fresh
composition) and the absence of a tidal signal (Cox et al., 2020).
Unlike many other coastal areas in eastern New Zealand (e.g.,
Christchurch), there is no evidence to date which suggests any
compartmentalisation by distinct inter-glacial aquitards, and the
groundwater system lacks any deep groundwater at artesian
pressures (e.g., Cox et al., 2021). Our conceptual model therefore
assumes minimal “cross-boundary” interaction with other aquifers
(e.g., the minor perched dune system to the south) and limited
surface inflows from the surrounding catchments.

A streamline no-flow boundary was added along the northern
boundary, separating the South Dunedin groundwater system from
that of Harbourside, along a catchment and stormwater runoff
boundary across the coastal plain (Figure 1). This assumption
was justified because groundwater appears to flow approximately
parallel to the boundary within coastal sediments.

2.2.1 Groundwater mass flow balance
As is typical of urban centres, surface hydrology is heavily

modified and groundwater recharge is highly variable. The
impervious land surface within the region causes
approximately 60% of precipitation to be captured and routed
via the stormwater network, mainly discharging to the Otago
Harbour via the pumping station (Goldsmith and Hornblow,
2016). The remainder is available for groundwater recharge via
pervious surfaces.

Potential groundwater recharge is relatively well constrained. A
weather station within the modelled domain indicates an annual-
average precipitation rate of 674 mm/yr between 1997 and 2021. The
available stormwater pumping and precipitation data, combined
with the imperviousness index for South Dunedin, indirectly leads to
a recharge estimate of ~4,000 m3/day.

Some of this groundwater then exits the system via infiltration to
the ageing waste and stormwater networks, which is estimated at
2,000 m3/day (Opus and URS, 2011a; Opus and URS, 2011b; Rekker,
2012; Fordyce, 2013; Cox et al., 2020). The spatial and temporal
distribution of groundwater infiltration to the networks remains
highly uncertain (Cox et al., 2020). The remainder leaves the system
as submarine groundwater discharge. Offshore groundwater
discharge and the geology which controls it, remains largely

unknown. However, it is constrained by the difference in these
mass balance recharge and drainage network estimates.

2.3 Groundwater level monitoring

There is a recent and extensive record of piezometric levels
across South Dunedin (Figure 1). Automated meters currently
record groundwater levels in 28 piezometers every 15 min within
the modelled domain. These were installed over various field
campaigns from 2010 to 2021 (see Cox et al., 2020 for a detailed
description of the groundwater monitoring network and data
coverage).

The interpolated median groundwater piezometric contours
suggest that groundwater flows to the Pacific Ocean and Otago
Harbour, as shown in Figure 1 (updated from Cox et al., 2020).
Median groundwater levels are on average above mean sea-level,
with the highest levels occurring in the north-western corner of the
system.

Fluctuations in groundwater levels are nearly all restricted
to <1 m in range, and dominated by short term variability linked
to frontal rain systems, with some cyclicity at a 90–100 day period
that reflects cumulative rainfall and recharge caused by the
frequency of cyclonic storms (Cox et al., 2020). Any seasonal
(e.g., summer vs. winter, or autumn vs. spring) cyclicity, or
interannual variability over the decadal period of monitoring to
date has been limited, making it relatively robust to use average
levels for the steady-state approximation used for history matching
(see Section 3).

The tidal range at the harbour/coast is approximately 1.7 m (see
Supplementary Figure S1-1). Tidal fluctuations are recorded at some
monitoring locations. For example, the groundwater level time series
for piezometer I44/0007 (location shown in Figure 1) demonstrates
a characteristic diminished amplitude and delayed arrival of the tidal
signal (see Supplementary Figure S1-1). The groundwater time
series at I44/0007 demonstrates a tidal range of approximately
0.3 m (a difference of 1.4 m at a distance of 120 m from the
coast) with a lag in the peak of the tidal cycle of 131 min. This
site is one of a few with a relatively strong tidal signal (Cox et al.,
2020), but elsewhere hydraulic connection with the Pacific Ocean is
still evident >1 km from the shore (see hydrographs for I44/
0007 and CE17/0105 in Supplementary Figure S1-1, these
piezometer locations are shown in Figure 1). Groundwater
electrical conductivity and geochemistry suggest most of the
groundwater is fresh and there is limited saline intrusion (<10%
at 1 km from the shoreline, see Cox et al., 2020; Rekker, 2021).

2.4 Groundwater model

2.4.1 Model structure
The original numerical groundwater flow model was

constructed by Rekker (2012) and modified for the purpose of
this research (as described below). MODFLOW-NWT
(Niswonger et al., 2011) was used to simulate constant-density
groundwater flow under both steady-state and transient
conditions. The finite-difference grid is a single-layer
(representing Holocene and Pleistocene sediments) comprising
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90 rows and 80 columns of uniform 40 × 40 m horizontal
discretization. The boundary conditions and recharge array for
the model are depicted in Figure 2.

The distribution of hydraulic properties was informed by
Glassey et al. (2003). The model surface elevations were based on
a digital elevation model informed by LiDAR data (1 m digital
surface model pixels at specified vertical accuracy <0.2 m, 95%
confidence) for South Dunedin (LINZ, 2021). We resampled the
LiDAR data to obtain a regridded 40 × 40 m average for the model
top elevation of the MODFLOWmodel domain. The original model
bottom elevations estimated by Rekker (2012) from geophysical
data, were maintained.

Recharge to the saturated zone is simulated using the
MODFLOW recharge (RCH) package. The Otago Harbour and
Pacific Ocean were simulated via the General-Head Boundary
(GHB) package, and groundwater interaction with the
stormwater and wastewater networks is simulated via the
MODFLOW Drain (DRN) package (both head-dependent flux
packages). The model bottom and other lateral boundaries are
“no-flow” boundaries.

Hence, groundwater leaves the model domain as storm/
wastewater flow (DRN package), or as submarine groundwater
discharge (GHB package). The locations and invert elevations of
the stormwater and wastewater networks was informed by city
council GIS records. The stormwater network overlies the
wastewater network. The surveyed sump elevations for the

stormwater network were used in preference over the wastewater
network to generate a network of drain locations and elevations
within the model domain. That is, the storm and wastewater
networks are not separated in our modelling approach. This
representation of the storm and wastewater networks is adopted
to account for the uncertainty in the conductance and elevation of
both drainage networks in our modelling approach (see Section 3).

2.4.2 Temporal discretization
Simulations are divided into a steady-state “history” matching

period, with stresses represented by long term average conditions for
the period 2010–2020, and a transient “projection” period which
simulates system response to IPCC-SLR projections for the period
January 2010–January 2110. The density-corrected GHB stage for
the history period is specified according to time-averaged tidal data
for Port Otago obtained from the New Zealand Hydrographic
Authority (Land Information New Zealand, LINZ).

Initial conditions for the transient projection period are
established by the steady-state history matching period. The 100-
year projection period that follows is discretised into annual stress-
periods, and both simulation periods use the same time-invariant
(static) properties of hydraulic conductivity, storage, GHB
conductance, DRN conductance and DRN elevation. Time-
variant properties of recharge and GHB stage are expressed for
the projection period. Our approach then focuses on predicting
groundwater levels and drain flows under changing GHB (rising sea

FIGURE 2
South Dunedin model extent showing model grid, boundary conditions and inactive model cells.
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levels) and recharge (climate variability) model boundary
conditions, defined for the projection period.

3 Methodology

This section describes the methodological detail required to
implement our approach, including the prediction specification,
the development of the parameterisation scheme, history
matching and uncertainty quantification. The scripted
workflow is provided as a Jupyter Notebook to ensure
transparency and reproducibility of the decision-support
modelling described herein (Kluyver et al., 2016).

The workflow involves four main components: 1) early
uncertainty quantification to assess prior parameter uncertainty
and corresponding prediction uncertainty, to identify and resolve
inadequacies in the conceptual model or numerical
implementation, 2) history matching to condition model
parameters that are pertinent to the predictions of interest, 3)

Monte Carlo sampling of climate change and SLR parameters in
the projection period to explore history matching informed
predictive distributions of groundwater levels and, 4) the
production of maps assessing the susceptibility to groundwater
inundation, and quantification of drain flows under different SLR
scenarios. We now describe our approach in detail.

3.1 Model parameterization

Model parameters were defined for both the history and the
projection periods. During history matching the following
parameters were adjusted: horizontal hydraulic conductivity,
history period recharge, GHB conductance, drain conductance,
and drain elevation. The additional parameters defined for the
projection period comprised: specific yield, specific storage,
temporal GHB stage, and temporal recharge (Table 1).
Parameters added to the projection period remained
unconditioned.

TABLE 1 Parameters and their distribution bounds. “Initial model value” refers to the native model parameter value (units also provided) to which the multiplier
(or additive) parameter is applied.

Unit Parameterisation Count Style Transform Initial model Lower bound Upper bound

Method Value

Steady-state “history” matching period

Horizontal K m/day Grid-based 3,610 mult log aZonal 0.01 100

Horizontal K m/day Global 1 mult log aZonal 0.01 100

Recharge m/day Grid-based 3,610 mult log 1.47 × 10−3 0.5 2

Recharge m/day Global 1 mult log 1.47 × 10−3 0.5 2

GHB cond. (South coast) m2/day Grid-based 110 mult log 800 0.01 100

GHB cond. (Harbourside) m2/day Grid-based mult log 800 0.001 1,000

GHB cond m2/day Global 1 mult log 800 0.01 100

Drain elevation m Grid-based 1,259 add none b100.18 −0.5 0.5

Drain elevation m Global 1 add none b100.18 −0.5 0.5

Drain conductance m2/day Grid-based 1,259 mult log 2.6 0.1 10

Drain conductance m2/day Global 1 mult log 2.6 0.1 10

Transient “projection” period

Specific yield — Grid-based 3,610 mult log 1.46 × 10−1 0.5 2

Specific yield — Global 1 mult log 1.46 × 10-a 0.5 2

Specific storage — Grid-based 3,610 mult log 1 × 10−3 0.01 100

Specific storage — Global 1 mult log 1 × 10−3 0.01 100

GHB stage m Global 1 mult log cScenario 0.41 2.47

Temporal GHB m Global 100 mult log cScenario 0.925 1.075

Temporal Recharge m/day Global 100 mult log 1.47 × 10−3 0.8 1.25

aHydraulic conductivity is separated into four zones according to the identified lithology (Glassey et al., 2003).
bDrain invert elevations vary within the model domain. The estimated average invert elevation for the entire network is presented.
cTemporal GHB stage is dependent on the IPCC-SSP scenario.
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3.1.1 History matching parameters
The distribution of groundwater model hydraulic parameters,

flux and head boundary conditions and recharge stresses are
expressed through 9855 adjustable parameters for the steady-state
history matching period (Table 1). Parameters are generally
implemented as multi-scale multipliers which act upon initial
model parameter values. Drain elevation parameters are
represented as additive, rather than multiplier, parameters. For
these, the parameters are applied as an addition or subtraction to
the model drain invert elevation estimate.

Parameter operating scales reflect the expected scales of
heterogeneity and uncertainty of model input values and are
applied at the scale of geological model (global-scale) and the
model cell (grid-scale) (e.g., White et al., 2020; Hemmings et al.,
2020; McKenna et al., 2020). Initial parameter values, and the mean
of their prior distributions, are one and zero, for multiplier and
addition parameters, respectively (Table 1).

The prior parameter covariance matrix, from which the prior
parameter realisations are drawn, is defined as a block-diagonal
matrix. Diagonal elements of the prior parameter covariance matrix
represent individual parameter variances, informed by prior, or
“expert” knowledge of these model inputs (Table 1). Off-diagonal
elements of the covariance matrix, were defined by geostructures
built on exponential variograms with sills proportional to the prior
parameter variances.

Upper and lower parameter bounds represent a six standard
deviation envelope (±3 σ) around the mean of the distributions,
equating to approximately a 99% confidence interval. An
exponential variogram range of 1,200 m (range a = 400 m) was
defined for spatially distributed parameters. However, to account for
the anticipated high spatial variance in the (wastewater and
stormwater) drainage infrastructure, the exponential variogram
range for drain parameters (DRN package invert elevation and
conductance) were reduced to 300 m (a = 100 m). Additionally,
conservative prior uncertainties were assigned to abstract
parameters representing boundary conditions of the structurally
simple model (i.e., DRN and GHB conductance). This strategy was
employed for uninformed prior uncertainties to avoid under-
estimation of predictive uncertainty (e.g., Hugman and Doherty,
2022).

3.1.2 Projection period parameters
An additional 7,423 adjustable parameters were defined for the

transient projection period (i.e., 17,276 parameters in total) to
represent IPCC projection uncertainty (Table 1). IPCC
projections for South Dunedin indicate minimal changes to
annual average rainfall rates (e.g., Mourot et al., 2022). However,
to represent interannual recharge variability and its uncertainty over
the projection period, additional, independent (i.e., no temporal
covariance) annual recharge multipliers were included in the
analysis.

The initial model input recharge parameter values were
estimated from long-term, annual average conditions for the
steady-state history period (i.e., a 10-year timeframe). Upper and
lower bounds for the temporal recharge multiplier (projection
period) were informed by the variance of the 10-year moving
average of historic annual rainfall rates. This was based on local
long-term New Zealand MetService data for the period 1960–2021

(Table 1). As a consequence, the model is focussed towards
predicting the transient progression of long-term annual
conditions of groundwater levels, but not short-term (events-
based) fluctuations that may be important for managing
individual rain-event flood risk.

In contrast to groundwater recharge, projected rises in sea levels
are significant, but also highly uncertain during the 21st century and
beyond. The modelling workflow uses improved, location specific
SLR projections provided by the NZ SeaRise: Te Tai Pari O Aotearoa
Endeavour programme. These projections, which can be accessed
through https://searise.takiwa.co/, include the effects of vertical land
movement for every 2 km of the coast of Aotearoa New Zealand to
the year 2,300. Here, to follow coastal planning recommendations
specific to New Zealand (MfE, 2017), we focus on SLR projections
associated with the IPCC Shared Socioeconomic Pathway (SSP)
medium confidence, high emmissions scenario SSP5-8.5. However,
the workflow is rapid and easily adaptable to explore any of the SLR
scenarios, so we present an additional scenario in the Supplementary
Information.

SLR projection uncertainty was propagated through the
groundwater model to the predictions of interest according to the
defined uncertainty interval for the IPCC-SSP scenario (SSP5-
8.5 medium confidence; inferred from Table 2, where p17-p83 is
assumed to encompass 2 σ). This SLR scenario uncertainty is
represented through the variance on a global (spatially and
temporally constant) multiplier, which acts on the median SLR
projection timeseries (implemented through the GHB stage) applied
across all stress periods. For SSP5-8.5 (Table 2), the variance of this
global multiplier, with a mean of 1.0, was defined as 0.12 (standard
deviation of 0.34). Also note, the potential range of the forcing
applied to the GHB stage increases into the future as the uncertainty
of the SLR scenario increases (i.e., heteroscedasticity). The resulting
sampled projection period realisations of SLR for the SSP5-8.5
(medium confidence) scenario are illustrated in Figure 3.

Inter-annual variability and uncertainty for each individual SLR
realization is defined through annual multipliers sampled within
a ±3 σ range of 0.925–1.075, and covariance defined through a
temporal exponential variogram with a range of 15 years (range a =
5 years). This choice was informed by a variogram analysis of the
detrended annual average sea level recorded at the Green Island tide
gauge (Bell et al., 2022).

Appending SLR parameters to the model parameter covariances
supports drawing realisations for the projection period, thus
allowing the ensemble of realisations to characterise the
embedded deep uncertainty of future SLR projections (e.g., Kopp

TABLE 2 Relative-SLR projections for South Dunedin (https://searise.takiwa.co/)
showing median (p50), 17th percentile (p17) and 83rd percentile projections for
the SSP-8.5 (medium confidence) scenario. The realized ensemble of SLR
projections drawn from this scenario are shown in Figure 3.

Scenario Year p17 (m) p50 (m) p83 (m)

SSP5-8.5 (medium confidence) 2030 0.08 0.11 0.14

SSP5-8.5 (medium confidence) 2050 0.20 0.25 0.32

SSP5-8.5 (medium confidence) 2070 0.34 0.43 0.56

SSP5-8.5 (medium confidence) 2100 0.64 0.81 1.06
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et al., 2019), and their impact on the decision-critical prediction. To
the best of the authors’ knowledge, the explicit application of IPCC-
SSP SLR scenario uncertainty to probabilistic groundwater flow
model predictions, remains unexplored.

3.2 History matching, uncertainty
quantification, and predictions

A prior-based Monte-Carlo uncertainty analysis was used to
assess the credibility of the model structure and the prior parameter
probability distributions, via observations of prior-data conflict (e.g.,
Egidi et al., 2022). History matching was then used to derive the
posterior parameter ensemble, based on observations from the
“history” period, using the iterative Ensemble Smoother (iES) in
PEST++ (White, 2018). We then analysed the extent to which
history matching (to the available data) was able to refine the
distributions of parameter values, their combinations, and the
corresponding predictions of interest.

Predictive scenarios, which include additional SLR and recharge
uncertainty in the 2010–2110 projection period, were then simulated.
This was achieved by combining the posterior parameter ensemble
(for the history period) with additional unconditioned parameters
relating only to the 100-year projection period (i.e., temporal GHB
stage and recharge parameters, see Table 1). The resulting history
matching informed parameter ensemble represents the conditioned
uncertainty of groundwater levels in response to IPCC-SSP scenarios.
These spatially distributed groundwater level predictions can
then be used to map the potential SLR-driven groundwater
inundation hazard in South Dunedin, supporting risk-based
decision making.

3.2.1 Geostatistical draws, observations, and
weights

An ensemble of 300 parameter realisations, providing a
representation of prior parameter uncertainty, were drawn by
Monte-Carlo multi-variate Gaussian sampling of the prior
parameter covariance matrix, and then conditioned through
history matching. These 300 parameter realizations were
ultimately propagated through to the SLR scenario projection
period.

The choice of the number of realisations (to propagate through
the analysis) is a trade-off between minimising computational
burden of the history matching process, whilst endeavouring to
sufficiently capture prediction uncertainty, and accommodate the
dimensionality of the solution space (e.g., Knowling et al., 2019;
White et al., 2020; Hunt et al., 2021). To ensure that 300 realisations
appropriately captured the prediction uncertainty, we preformed a
convergence analysis, focussing on four prediciton locations of
interest. The results of this convergence analysis are shown in
Supplementary Figure S3-5. The converenge analysis indicates
that 300 realisations effectively captures the prior prediction

FIGURE 3
Realizations of sea level rise attached to the GHB stage of the 100-year projection model (2010–2110). The plot shows 300 realizations of sea level
rise for the IPCC SSP5-8.5 (medium confidence) scenario.

TABLE 3 Measurement error (standard deviation, σm).

Observation group Count σm
Less-than inequality constraints 3,525 0.4

Waste/stormwater exchange flux 1 500

Groundwater levels Long-term measurements (>2 years) 16 0.15

Short-term measurements (<2 years) 12 0.25
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distribution behaviour (ensemble mean, standard deviation and
95th percentile) represented by 1,000 realisations.

The history matching dataset comprised of long-term averages
of system observations. Groundwater level observations were
separated into two groups relating to the duration of the
piezometer dataset (Table 3). An additional estimate of the
annual average total groundwater-waste/stormwater exchange
flux of 2,000 m3/day was included as a target observation for
history matching (Opus and URS, 2011a; Opus and URS, 2011b;
Rekker, 2012; Fordyce, 2014).

Given the spatial sparsity of groundwater level
measurements, it was beneficial to include observations which
represent physically “realistic” constraints on simulated
groundwater levels for the history matching period. This was
implemented through the “less-than” inequality constraint
(White, 2018). Less-than inequality observations contribute to
the objective function only when the simulated value exceeds the
observation value.

For our purposes, less-than observations were defined for
simulated heads in every model cell. The observation value was
set according to the model top elevation in the corresponding cell.
This effectively implements a history matching constraint, which
enforces the condition that long-term average groundwater levels
should fall below the model top elevation (e.g., White, 2018; White
et al., 2019; Fienen et al., 2021).

Initial observation weights were defined to reflect the estimated
observation error. Weights were then re-adjusted to direct
parameter upgrades towards objective function components that
were considered most relevant to the decision-support objective
(e.g., Doherty and Welter, 2010; Fienen et al., 2022). In particular,
because groundwater level observations used for history matching
are well “aligned” with the decision-critical prediction, these were
assigned a greater weight (e.g., Dausman et al., 2010; Knowling et al.,
2019; Fienen et al., 2020). This was achieved by scaling the inequality
and groundwater-waste/stormwater flux observation group weights
by 1 × 10−1.

4 Results and discussion

The main outputs of this research are hazard informed maps
for decision support. We therefore begin our examination of the
results with this aspect of the study. We then discuss projected
drainage volumes. This is followed by examining the value of
history matching (e.g., Doherty and Moore, 2017), and the use of
‘difference from a baseline,’ or comparative outcomes of model
predictions as an alternative approach, when investigating the
SLR-driven groundwater hazard (e.g., Sepúlveda and Doherty,
2015).

The IPCC AR6 report introduced the SSP scenarios, which
are representative of a broad range of plausible societal and
climatic futures (IPCC, 2021). As detailed above, the focus of
this research is the presented framework/workflow, so we mainly
discuss results for the recommended SSP5-8.5 (medium
confidence) high emissions scenario (MfE, 2017; see Table 2;
Figure 3). However, we also briefly discuss and compare results
for the SSP2-4.5 (medium confidence) scenario, which is
included in the Supplementary Information.

4.1 Projected probability of groundwater
inundation

To explore predictive uncertainty under IPCC projections of
SLR, the estimated probability (and thus susceptibility) to
groundwater inundation was based on a history matched
(posterior) parameter ensemble. This posterior was derived using
a Monte-Carlo representation of parameter uncertainty, that was
propagated to the SLR projection period. The resulting probability of
groundwater inundation was estimated from the posterior
groundwater level distributions at every model cell, and collating
the number of occasions that groundwater levels exceeded the model
top elevation (i.e., exceedance probability, Figure 5). For the
purposes of our research, susceptibility to inundation and
probability are on the same general scale: highly susceptible areas
correspond to the highest probabilities of groundwater levels
exceeding the model top, and vice versa.

Using the SSP5-8.5 projection, the model simulated
groundwater levels prior to 2030, indicate that the simulated
probability of groundwater inundation is generally low across the
South Dunedin model domain. This is likely associated with the low
to moderate SLR projection and relatively constrained SLR
uncertainty for this timeframe (Figure 3). By 2030, regions of
higher groundwater inundation probability begin to emerge
(Figure 4A). These regions become more defined by 2050
(Figure 4B) and are broadly constrained to three zones, in low-
lying areas, surrounding the example site, I44/0006 and I44/1113
(Figure 1). This is consistent with reports of depths to groundwater
of <0.5 m below the ground surface in these areas (Cox et al., 2020).
It is not surprising, therefore, that these low-lying regions would be
susceptible to inundation for low to moderate rises in sea level.

Under increasing (and accelerating) SLR for the
2070–2100 timeframe, the spatial extent of the more susceptible
areas continues to increase (Figures 4C, D). As expected, the regions
with the highest inundation probabilities are dominated by the same
low-lying open areas, especially where there is an absence of
drainage in the model (e.g., in the region of I44/0006, Figure 4).
However, many additional zones do appear susceptible to the
inundation hazard, despite being >1 m above sea level and a
considerable distance inshore (e.g., in the region of I44/0005,
Figure 4).

These same broad trends are apparent for the SSP2-4.5 (medium
confidence) scenario. Although, the simulated probability and
spatial extent of groundwater inundation is slightly diminished
for the 2070–2100 timeframe (see Supplementary Figure S4-1).
We attribute this reduction in susceptibility to the lower SLR
projection attached to the model boundary condition for the
SSP2-4.5 (medium confidence) scenario (see Supplementary
Figure S4-2). Importantly, the lower likelihood high SLR
realisations captured by our modelling approach leads to elevated
probabilities of groundwater inundation for this timeframe. Our
results suggest that even for the more optimistic SSP2-4.5 emissions
pathway, significant susceptibility to the groundwater indundation
hazard remains.

The zones most prone to groundwater inundation are not
correlated with the distance from the Pacific Ocean or Otago
Harbour boundary conditions (Figure 4). We hypothesize that
this may be related to the increased hydraulic conductivity of the
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sediments and low topographic relief of these areas. Our results
imply that groundwater emergence at a considerable distance
inshore may occur before, or even compound overland flooding
(e.g., Befus et al., 2020; Plane et al., 2019). This has implications for
adaptation strategies that focus solely on overland flooding. Ignoring
the effects of SLR-driven groundwater level rises may significantly
underestimate the spatial extent and timing of surface water flooding
(e.g., Anderson et al., 2018).

The presented inundation probabilities are all relative to the
model top elevation (Figure 4), estimated from a mean aggregation
of the LiDAR data (Section 2). It is acknowledged that the
uncertainty of the LiDAR data, and how it is aggregated to the
model top, has not been explicitly addressed in this study. A strong
correlation is likely to exist between model surface elevation and
simulated water levels. We believe that our framing of water level
predictions as relative to the model top will help mitigate potential
elevation and aggregation errors. However, caution should be
exercised when attempting to assess inundation probabilities at
scales less than the model grid resolution. Small-scale
topographic features within a model cell may be characterised by

higher (or lower) inundation probabilities than those predicted, at
the model grid scale relative to the model top. The impact of
elevation and aggregation uncertainty on predictions of
groundwater inundation at a finer scale could be addressed in
future work.

4.2 Simulated drain flows

The projected SLR-driven probability and spatial extent of
inundation (Figure 4) is mitigated by the interaction between
rising groundwater levels and the waste/stormwater drainage
networks. This mitigating effect is controlled by the relative
elevation of groundwater levels as sea levels rise, and also the
spatial conductance of the drainage networks (an abstract
numerical representation of the complex interaction between
groundwater and the drainage networks, Table 1).

This effect is demonstrated by the total flux of groundwater
discharging to the drainage networks represented in the model of
South Dunedin, which is projected to increase substantially

FIGURE 4
The projected SLR-driven probability of groundwater inundation for 2030, 2050, 2070 and 2100 based on the IPCC SSP5-8.5 (medium confidence)
scenario (see Figure 3 for realizations of relative-SLR attached to GHB stage in the model). The model top elevation is based on a Digital Elevation Model
(DEM) informed by recent LiDAR data (LINZ, 2021).
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(Figure 5). As with the groundwater level predictions, the
uncertainty of the total drain flux prediction also increases over
the duration of the projection scenario (Figure 5). For example, in
2030, the mean and standard deviation of drainage flows are
2,150 and 494 m3/day, respectively. In 2100, this increases to
2,835 and 718 m3/day, respectively (a 32% increase in projected
mean drainage flows).

Drain conductance and elevation are expressed as (nested)
uncertain parameters in the numerical modelling workflow
presented herein, but the history matching results indicate
that the available data provides little information for
condition of these parameters, especially in a spatial sense (see
Supplementary Figure S3-7). Significant uncertainty persists for
these posterior predictions. Additional monitoring, data
collection and refinement of the estimated spatial (and
temporal) fluxes to the existing drainage network may help
reduce the uncertainty of these (and other) parameters, and
thereby help to reduce the uncertainty of both drain flux and
groundwater inundation predictions.

Notwithstanding the large uncertainty of these predictions, our
results are consistent with other recent studies (e.g., Habel et al.,
2017; Befus et al., 2020), which suggest that drainage may offset the
impacts of SLR and emergent groundwaters. However, the planned
renewal of the waste and stormwater networks in the
2020–2050 timeframe (Goldsmith and Hornblow, 2016) may
limit, or even reduce the capacity of the drainage networks to
accept infiltrating groundwater.

This has profound implications for decision-makers in South
Dunedin, since our approach conservatively assumes that the
drainage system will be available to accommodate SLR-driven
groundwater level rises (Figure 5). This tenuous (linear)
assumption may significantly overestimate the hydraulic response
of the waste/stormwater networks for conditions that may prevail in
the future. Decision-makers should therefore consider potential
future limitations, or reductions of drainage flows in future
management scenarios, to avoid underestimation of the potential
groundwater inundation hazard.

The projected SLR-driven increase in the base flux to the waste/
stormwater networks (Figure 5) will also be an important
consideration. Increased “dry condition” flows to the drainage
networks might limit their capacity for their primary function
(removal of wastewater and stormwater, e.g., Morris et al., 2018).
This has significant implications for managing event flows, since
increases in the base flux may compound rises in groundwater levels
in response to these events. Where the flows to these networks
requires treatment and pumping to discharge, as is the case in South
Dunedin, treatment facilities will likely receive higher loads at
significant extra cost with ramifications for facility downtime and
failure (e.g., Cox et al., 2020).

4.3 The value of history matching

The simulated outputs from the prior-based Monte Carlo
uncertainty quantification displayed minimal prior-data conflict
(PDC) in relation to the predictions of interest (groundwater
levels; see Supplementary Figure S3-9). That is, prior simulated
output distributions generally encompass the values of system
observations. However, the prior uncertainty of simulated
outputs was significant and contributed to predictions of
relatively high probability of inundation (during the history
period), across the model domain (Supplementary Figure S3-1).
This high uncertainty in simulated outputs of management interest,
the availability of aligned observations, and the general lack of PDC
provided a defensible basis for undertaking history matching.

Six iterations using the iES algorithm were used to history match
simulated outputs to historical observations (Section 3.2). This
required a total of 3,240 model runs. The match to long-term
average groundwater levels and total drain flux improved
significantly in the first two iterations and levelled off following
the fourth (Supplementary Table S3-1). After history matching, the
posterior simulated groundwater level distributions generally
encompass their respective observation within the defined
observation error. The prior and posterior Probability Density

FIGURE 5
Plots showing (A) time-series of individual realizations of total drain fluxes, and (B) Probability Density Functions (PDFs) of projected total drain fluxes
as groundwater levels change [IPCC SSP5-8.5 (medium confidence) scenario]. These plots show the estimated total groundwater flux to the waste/
stormwater networks represented in the model of South Dunedin.
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Functions (PDFs) for three observation locations, and an additional
example site, are provided in Figure 6 (distributions for all
observations are shown in Supplementary Figure S3-9).

As expected, history matching to several thousand observations
(groundwater levels, inequality constraints and total groundwater
flux) significantly reduced the uncertainty of simulated groundwater

FIGURE 6
Histograms (PDFs) for selected observations showing prior Monte Carlo, posterior and observation plus noise iES distributions. Blue histograms
show the distribution of model outputs and red histograms show the realizations of the observation value, which is based on the observed long-term
(mean) groundwater level and supplied standard deviation (i.e., σm). Note, the unweighted example site for which no observation exists (Example Site).
Note also, the x-range is truncated to focus on the posterior model outputs (history period).

FIGURE 7
Percent uncertainty change for posterior versus prior distributions of groundwater level predictions for (A) 2030, (B) 2050, (C) 2070 and (D) 2100.
Observation locations used for history matching are also shown (i.e., non-zero weighted groundwater level observations).
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level predictions, as indicated by the widths of the respective prior
and posteriors PDFs in Figure 6 and Supplementary Figure S3-9.
Through history matching, the simulated probability of
groundwater inundation for the history period, was reduced to
0% across most of the model domain (see Supplementary Figure
S3-8). We mainly attribute this improvement to the conditioning of
horizontal hydraulic conductivity and drain conductance
parameters through the assimilation of the information contained
within the observation dataset (Supplementary Figure S3-4).

The history matching process outcome, i.e., the posterior
parameter ensemble, can be considered to be effective, since the
parameter ensemble was updated by the assimilation of information
from observation data. It can also be concluded that these data were
suitable for reducing the uncertainty of parameters to which the
predictions were sensitive (Supplementary Figure S3-6).

However, results from both the history and projection periods,
depict a high spatial and temporal variation in the uncertainty
reduction of the groundwater level simulated output that results
from history matching (Figure 7 and Supplementary Figure S3-6).
The spatial distribution of observation data, the updated impervious
surface recharge model (Supplementary Figure S2-1), and simulated
drainage clearly plays an important role in the spatial distribution of
uncertainty reduction. For example, generally, the largest
uncertainty reductions occur over pervious surfaces where the
observation density is high, and where there is absence of
drainage in the model (e.g., to the southwest of the model domain).

Uncertainty reductions are generally high (>60%) for the history
period (Supplementary Figure S3-6) and for the projected
2030–2050 timeframe (Figures 7A, B). As discussed, the
conditioning of parameters to historical observations propagated
this uncertainty reduction to the projection period groundwater
level predictions. Before 2050, our results suggest that steady-state
only history matching can indeed reduce the uncertainty of
groundwater level predictions, despite the intractable nature of
the uncertainty inherited from the IPCC projections of SLR (e.g.,
Kopp et al., 2019).

Generally, however, posterior prediction uncertainty increases
substantially for the 2070–2100 timeframe (Figures 7C, D). Spatially,
the history matching constrained uncertainty increases are mainly
isolated to locations where drainage is represented in the model, and
to the northeast of the model domain where groundwater level
observation data is sparse (i.e., near the harbour boundary
condition). For the groundwater level prediction, we mainly
attribute this loss in spatial confidence to the large uncertainty of
the drainage parameters, and the uncertainty inherited from the
IPCC-SLR projection, which increases precipitously for the
2070–2100 timeframe (see, e.g., Figure 3).

In this context, groundwater inundation assessments
typically rely on the use of a single deterministic realisation of
SLR (e.g., median or p83 scenario, see Table 2). Unfortunately,
these approaches eschew the deep uncertainty attached to the
IPCC-SLR projections themselves (e.g., Kopp et al., 2019), and do
not allow expert knowledge to be considered through weighting
the likelihood of SLR over the full range of scenario projections
(e.g., Purvis et al., 2008). We have therefore presented a
consistent methodology to explore the full range of SLR
projections and their impact on the decision-critical
predictions (see, e.g., Figure 7).

4.4 Predictions of relative change
(i.e., differences)

The availability of appropriate groundwater monitoring
datasets, particularly at the spatial density and duration of the
results presented herein, is relatively rare, especially compared to
the global number of at-risk, coastal communities and ecosytems
(e.g., Neumann et al., 2015; Hooijer and Verminnen, 2021). For
predictions of absolute groundwater levels and inundation, a lack of
monitoring data may limit the potential for history matching to
condition (and reduce) model parameter and corresponding
prediction uncertainty. Our results suggest that the prior
uncertainty of these absolute predictions may be too high to
provide any meaningful information in terms of robust decision-
support (see Supplementary Figure S4-2).

A considered reframing of the projection simulations, to predict
the relative changes of model predictions (i.e., differences in
projected groundwater levels, Figure 8) may, in practice, be a
better approach for communities that do not have dense
monitoring networks. Such an approach should reduce the
impact of model structural errors on predictive uncertainty, and
may also help to mitigate the contribution to uncertainty inherited
from the prior parameter distributions and structural defects of the
groundwater model (e.g., Sepúlveda and Doherty, 2015).

The results presented in Figure 4 display the distribution of
changes in groundwater levels relative to an arbitrary “decision
threshold” (e.g., Knowling et al., 2019; White et al., 2019), which in
this instance is emergence over the model top (or land surface)
estimated from LiDAR data. Clearly, for relative-type predictions,
such a decision threshold is not available. An alternative is to define a
threshold based on an anticipated impactful change in groundwater
levels. For example, Figure 8 uses a decision threshold of a 0.25 m
increase in groundwater levels (for the same sites presented in
Figure 6). Probabilistic mapping of simulated outputs against this
(or multiple) relative decision thresholds is also possible.

For predictions of relative change, the projected prior versus
posterior probability of groundwater levels exceeding the decision
threshold appears relatively low for the 2030–2050 timeframe
(Figure 8). Similar to the predictions of absolute values, there is
then a marked increase in the probability of groundwater levels
exceeding the difference threshold for the 2070–2100 timeframe.

However, in contrast to predictions of absolute values, there is a
surprising lack of discrepancy between the prior and posterior
difference projections (Figure 8). This is consistent with the
accepted logic that models are more suitable predictors of relative
change, rather than absolutes (e.g., Sepúlveda and Doherty, 2015),
which also aligns with conclusions drawn from a number of other
recent studies (e.g., Knowling et al., 2019; White et al., 2020).

Our results indicate that the workflow deployed here for South
Dunedin could be modified and deployed with reasonable utility,
even in settings with limited (or unreliable data), by curtailing, or
forgoing the history matching step, and exploring predictions in a
relative sense. It may then be possible to delineate areas that are
more susceptible to SLR-driven groundwater level rises, or
demonstrate the merits of one management strategy versus
another. This has implications for the way in which a numerical
model is used for decision-support, and the type of information that
decision makers may wish to obtain from numerical models.
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4.5 Further considerations and
recommendations

The history matching informed predictive distributions of
groundwater levels presented herein supports quantification of
the uncertainties in groundwater level rise and inundation, for
stresses that may prevail in the future. It is acknowledged that
the modelling workflow does not capture all of the potential
contributing sources to predictive uncertainty. We therefore
adopted a highly parameterised approach and defined broad
prior parameter uncertainties to provide some protection against
prediction uncertainty underestimation. Although, some

uncertainties relating to error in model structure and
conceptualisation (e.g., Wagener et al., 2021) may persist,
unaccounted for.

Consequently, caution should be exercised in the application of
these results. As discussed in Section 4.1, it may be inappropriate to
apply these results at spatial scales finer than the model grid
resolution. Similarly, for temporal scales, the model projections
represent the long-term progression of annual conditions to
estimate a general “annual” exposure to a hazard, or change in
exposure to a hazard. Detailed hazard, vulnerability and damage
thresholds also commonly encompass short-term fluctuations and
events (e.g., Paulik et al., 2019). The direct application of these

FIGURE 8
Prior (grey) versus posterior (blue) distributions for the projected change in groundwater levels (m) at the selected sites for the SSP5-8.5 (medium
confidence) scenario. An arbitrary decision threshold of 0.25 m is also illustrated (red dashed line). The projected change in groundwater levels is
calculated from the difference between year 0 and the given year of the projection model (for each individual realization).

Frontiers in Earth Science frontiersin.org14

Chambers et al. 10.3389/feart.2023.1111065

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1111065


results to temporal scales that are finer than the model temporal
resolution is also likely to be inappropriate. Nevertheless, the
modelling workflow and results presented herein may serve as a
basis for making downscaled (both temporally and spatially)
predicitions.

A real strength is the scripted nature of our workflow, which
facilitates such (follow up) investigations, whilst supporting the
incorporation of model revisions and exploration of alternative
management (e.g., SSP or drainage) scenarios, in a way that is
rapid, reproducible and transparent. The workflow could easily be
extended to implement dataworth analyses to establish the value of
existing and yet to be collected monitoring data. Or, for example, the
cost of exploring (or foregoing) transient history matching in terms
of reducing predictive uncertainty at finer temporal scale, in an
events based models (e.g., Moore and Doherty, 2005).

In this context, it is recommended that future research should
explore predictions of an episodic nature, such as improving model-
based predictions of groundwater levels in response to individual
storm-surge or rainfall events (e.g., a rainfall event with a return
period of 10 years). It would then be possible to begin to address the
fundamental question of how these events interact with rising sea
levels and a changing climate.

5 Conclusion

The potential for a spatial and temporal detailed map of
groundwater inundation probabilities, and corresponding drainage
volumes that may be required tomitigate SLR, was investigated in this
study. While the mapping of groundwater inundation is discussed in
Morris et al. (2018) and others, projecting this mapping into a risk
framework has been missing from the literature. The distributed
properties that support the risk maps of groundwater inundation
in response to SLR extends the recent work of Merchán-Rivera et al.
(2022), which also applied a Bayesian framework to the creation of
risk maps, but used spatially lumped hydraulic properties. The
spatially distributed hydraulic properties adopted in this work
enabled a detailed delineation of areas that is not possible using a
spatially lumped parameterisation scheme. The Bayesian
methodology adopted supports a regional scale delineation of the
distribution of groundwater inundation projections.

Our approach has attempted to equip decision-makers with all
the necessary information to distinguish where the probability for
groundwater inundation is relatively high, and where it is relatively
low. This approach also includes providing a level of confidence that
a proposed decision threshold will be exceeded, which may
necessitate the implementation of a (potentially costly)
management strategy. However, knowledge of actual thresholds
for damage, and therefore asset vulnerability, appears to be
missing from the literature. In this regard, the tolerable
probability of groundwater inundation, and how this translates
more broadly into risk, remains for decision-makers to determine.

Previous studies on groundwater responses to SLR have focussed
on groundwater flooding areas, or the movement of the fresh-salt
water interface. However, the mitigation of groundwater flooding, at
least initially, is likely to involve consideration of the additional flows
that drainage networks may be required to accomodate. This study
extends previous work by explicitly focussing on the likelihood of

relative increases in drainage flows, given its importance as a
management consideration.

The uncertainty of the SLR projections represents a small
contribution to the uncertainty of the groundwater flooding
probabilities for predictions within the next few decades. As the
projections extend further into the future, however, the SLR
uncertainty begins to dominate the uncertainty of the
groundwater flooding predictions. This highlights the necessity of
exploring model uncertainty in the context of the prediction being
made (Doherty, 2015). For near-time predictions, history matching
appears to reduce the uncertainty of groundwater level rises, whereas
the same cannot be said for predictions in the distant future.

Also demonstrated was the relative value of history matching
when formulating predictions as a difference from a baseline, rather
than the absolute value of a prediction. For the specific predictions and
history matching dataset combination explored, the worth of history
matching was doubtful when casting the prediction as a difference
from a baseline. Whereas history matching was useful if the absolute
magnitude of the groundwater level was of concern. This issue was
also explored in different contexts in Knowling et al. (2019),
Hemmings et al. (2021), Moore and Doherty (2005) and others.

Finally, we note that the analysis described in this paper was
supported by a scripted workflow (e.g., White et al., 2020). The
combination of a spatially and temporally distributed
parameterisation scheme, history matching and uncertainty
quantification over a regional scale is complex. This scripted
workflow provides a transparent record of the many (unavoidable
subjective) decisions made during our modelling process, whilst
supporting similar analyses that could easily extend the scripted
workflow provided in the Supplementary Information.
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