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Whereas many independent methods are used to estimate snow water equivalent
(SWE) and its spatial distribution and seasonal variability, a need exists for a
systematic characterization of inter-model differences at annual, seasonal, and
regional scales necessary to quantify the associated uncertainty in these datasets.
This study conducts a multi-scale validation and comparison, based on Airborne
SnowObservatory data, of five state-of-the-art SWE datasets in the Sierra Nevada,
California, including three SWE datasets from retrospective models: an INiTial
REConstruction model (REC-INT), an improved REConstruction model based on
the ParBal energy balance model (REC-ParBal), and a Sierra Nevada SWE
REConstruction with Data Assimilation (REC-DA), and two operational SWE
datasets from the U.S. National Weather Service, including the Snow Data
Assimilation System (SNODAS) and the National Water Model (NWM-SWE). The
results show that REC-DA and REC-ParBal provide the two most accurate
estimates of SWE in the snowmelt season, both with small positive biases.
REC-DA provides the most accurate spatial distribution of SWE (R2 = 0.87,
MAE = 66mm, PBIAS = 8.3%) at the pixel scale, while REC-ParBal has the least
basin-wide PBIAS (R2 = 0.79, MAE = 73 mm, PBIAS = 4.1%) in the snowmelt season.
Moreover, REC-DA underestimates peak SWE by −5.8%, while REC-ParBal
overestimates it by 7.5%, when compared with the measured peak SWE at
snow pillow stations across the Sierra Nevada. The two operational SWE
products—SNODAS and NWM-SWE—are less accurate. Furthermore, the inter-
model comparison reveals a certain amount of disagreement in snow water
storage across time and space between SWE datasets. This study advances our
understanding of regional SWE uncertainties and provides critical insights to
support future applications of these SWE data products and therefore has
broad implications for water resources management and hydrological process
studies.
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1 Introduction

The spatial distribution of snow is important for water resources
management, evaluation of regional climate models, biogeochemical
cycling, and Earth’s energy balance. However, estimating the spatial
distribution of snow water storage in mountainous regions, which is
often measured as snow water equivalent (SWE), is challenging due
to the heterogeneity of mountain terrain and high interannual
variability in local climate (Dozier et al., 2016). While much
effort has been made to develop feasible approaches for
accurately estimating SWE over large mountain ranges, the
performance of these methods has rarely been systematically
evaluated using accurate validation datasets over time and space
because of the difficulty in acquiring such datasets. Moreover, few
studies have assessed the spatiotemporal characteristics of inter-
model SWE differences at a fine spatial resolution (<1 km) at
mountain-range scales.

Independent approaches to SWE reconstruction models have
shown accurate SWE estimation when compared to snow courses
and snow pillows. Reconstruction methods calculate SWE
retrospectively from the time of satellite-observed snow
disappearance back to peak SWE accumulation based on
calculations of the potential snowmelt rate and depletion curve of
the snow cover (Cline et al., 1998; Molotch et al., 2005; Molotch,
2009; Guan et al., 2013; Bair et al., 2016; 2018; Rittger et al., 2016).
Early SWE reconstruction models were restricted to small
catchments due to the limited availability of meteorological
forcing data over mountainous terrain (i.e., solar and longwave
radiation, air temperature, wind speed, and vapor pressure). The
availability of large-scale, spatially-distributed forcing data (Xia
et al., 2012a; 2012b) and the development of downscaling
methods have facilitated the development of reconstruction
models for larger mountain range, such as the Rio Grande
headwaters (Molotch, 2009), California’s Sierra Nevada (Guan
et al., 2013; Rittger et al., 2016; Bair et al., 2016), and the
extratropical Andes Cordillera (Cornwell et al., 2016).

In terms of the accuracy of SWE estimates, SWE
reconstruction models often outperform “forward” snow models
because reconstruction models, unlike forward models, do not rely
on precipitation forcing data, which are notoriously uncertain over
mountainous areas (Raleigh and Lundquist, 2012; Slater et al.,
2013). However, SWE reconstruction models do have unique
limitations. For example, these models are only applicable in
hindcast and only provide SWE information from peak
accumulation through the snowmelt season. Hence, SWE
reconstruction models are generally limited to applications in
regions with distinct snow accumulation and ablation periods.
Moreover, these models are sensitive to uncertainties in input
meteorological forcing data and remotely sensed snow properties,
such as fractional snow cover (FSCA) and snow albedo. For
example, FSCA impacts the modeled energy flux calculation by
allocating the snowmelt of each pixel and by determining the snow
disappearance date (Raleigh and Lundquist, 2012). Interpolation
of FSCA between measurements (e.g., infrequent overpasses or

clouds) may propagate measurement errors into snowmelt
calculation errors. Snow albedo strongly influences net solar
radiation, the predominant energy source for snowmelt, which
means uncertainty in snow albedo causes uncertainty in total
energy available for snowmelt and therefore reconstructed SWE
estimates (Bair et al., 2019).

The underlying SWE reconstruction approach has recently been
merged with forward modeling approaches using batch-smoother
data assimilation (DA) techniques (Durand et al., 2008a; Girotto
et al., 2014a; Margulis et al., 2015). This approach accounts for the
sources of uncertainties in snow observations (e.g., snow albedo,
FSCA), and radiative andmeteorological forcings like shortwave and
longwave radiation, and precipitation. The DA approach estimates
ensemble-based state variables (e.g., SWE and FSCA) over the entire
snow accumulation and ablation seasons (Girotto et al., 2014a;
Girotto et al., 2014b; Margulis et al., 2015). In the DA
framework, a forward (reanalysis) land surface model is used to
derive prior estimates of SWE (Xue et al., 2003). The prior SWE
estimates are then updated using a particle batch-smother DA
scheme based on a full season of satellite-derived FSCA
observations (Margulis et al., 2015; 2016). The particle batch-
smother approach, unlike the more common ensemble Kalman
filter (Girotto et al., 2014a; Girotto et al., 2014b), is more appropriate
for non-linear model systems and observations with higher order
moments because it avoids the implicit assumptions that the state
variables and measurements exhibit Gaussian distributions
(Margulis et al., 2015).

In addition to the challenges to model distributed SWE at a fine
scale over whole mountain ranges, it is also difficult to provide a
comprehensive validation of the SWE datasets due to data
availability limitations. While ground-based SWE observations
from snow pillows and snow courses are widely used to validate
these models (Guan et al., 2013; Margulis et al., 2015; Margulis et al.,
2016; Schneider and Molotch, 2016), these point or transect scale
observations do not capture the spatial variability of SWE over
mountain watersheds (Molotch and Bales, 2005; 2006; Meromy
et al., 2013). Given that in situ stations are typically sparsely
distributed across the mountain range and mostly located in low
and middle elevations (Yang et al., 2022), relying solely on in situ
data for SWE evaluation does not provide a complete representation
of SWE variance across the topographic variability of the mountain
range (Molotch and Bales, 2006; Meromy et al., 2013). Furthermore,
validation methods that rely on spatial interpolation of intensive
snow surveys (Balk and Elder, 2000; Erxleben et al., 2002; Molotch
et al., 2005; Molotch, 2009; Jepsen et al., 2012; Schneider and
Molotch, 2016) are restricted to small areas and exclude steep
slopes and dense forests because of the logistical challenges of
intensive field surveys.

Recently, the Airborne Snow Observatory (ASO) has
provided a new SWE dataset of unprecedented accuracy and
spatial coverage that has likewise been seen as a good reference
for basin scale SWE validation (Bair et al., 2016; Painter et al.,
2016). Along with itres CASI 1500 visible-shortwave infrared
imaging spectrometer, ASO uses a Riegl Q1560 airborne laser
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scanner to estimate snow depth by subtracting the snow-off from
snow-on surface elevations at 3 m spatial resolution (https://
airbornesnowobservatories.com/ as of 17 April 2023). The snow
depth is then resampled to 50 m and multiplied by snow density
as estimated by an in situ constrained physically based snow
model—iSnobal (Marks et al., 1999) to generate spatially
continuous SWE maps over watershed scales at 50-m spatial
resolution. The snow depth has a low uncertainty of <2 cm at
50 m resolution when evaluated with 80 in situ observations over
a relatively flat area near Tioga Pass, California (Painter et al.,
2016). Given that most of the spatial variability in SWE is
expressed in the snow depth (Lopez-Moreno et al., 2013), the
final SWE product has achieved a high level of accuracy although
the uncertainties of ASO SWE remain sensitive to errors in the
modeled density estimation. While more thorough evaluation is
needed, the ASO SWE is increasingly used as an independent
ground “truth” validation dataset to evaluate other SWE
data products at large basin scales (Bair et al., 2016; Oaida
et al., 2019; Yang et al., 2022). It outperforms the traditional
small-scale or point-scale SWE observations by providing
spatially complete SWE estimates over large watersheds
(Painter et al., 2016; Bormann et al., 2018). The longest ASO
SWE record is available for the Tuolumne River Basin above
the Hetch Hetchy Reservoir from 2013 to present. Each
year, ASO acquires data from additional basins, and now
covers most of the Sierra Nevada, as well as expanding into
parts of the Rocky Mountains in Colorado and Wyoming, and
even parts of Europe.

The objective of this study is to provide a comprehensive
validation and inter-model comparison of five recently developed
SWE products over an 11-year period in the Sierra Nevada of
California. The following three criteria are used to select SWE
products: 1) at least a decade of data availability across the entire
Sierra Nevada; 2) spatial resolutions 1 km or finer, and 3) general
applicability to other large mountain ranges globally. Two datasets
rely on SWE reconstruction: Guan et al. (2013), which is a relatively
early SWE reconstruction model, hereafter REC-INT
(REConstruction-IniTial), and Bair et al. (2016) adapted from
Rittger et al. (2016), hereafter REC-ParBal named after the
primary energy balance model—ParBal. A third model, the Sierra
Nevada SWE reanalysis, uses Data Assimilation (Margulis et al.,
2016), hereafter REC-DA. To offer a baseline of SWE accuracy in the
current water management system, this study includes two
operational SWE datasets that rely on forward models: the Snow
Data Assimilation System (SNODAS) (Carroll et al., 2001; Barrett,
2003) and the National Water Model (NWM) (version 1.2) (Gochis
et al., 2018), hereafter NWM-SWE. These datasets rely on the most
advanced modeling and remote sensing techniques at large
mountain scale and represent some of the most accurate SWE
estimates, with a spatial resolution of 1 km or finer.

To provide a comprehensive data evaluation, this study uses
multi-scale validation datasets including spatially distributed ASO
SWE data, transect-scale snow course SWE measurements, and
point-scale snow pillow SWE observations. The latter two in situ
datasets are distributed across the entire Sierra Nevada; only the
ASO SWE data from the Tuolumne River Basin are used because the
length of record there is the longest and observations are most
frequent among the ASO acquisitions.

2 Study area

The Sierra Nevada is chosen as the study area given its abundant
SWE datasets from in situ and remotely sensed observations, and
from SWE estimation models. Snowmelt from the Sierra Nevada
provides themain water supply for the State of California, which hosts
one of the world’s largest economies and agricultural industries. This
study focuses on areas of the Sierra Nevada above 1,500 m elevation
because the snow below this elevation is ephemeral and less important
from awater resources perspective (Bales et al., 2006; Guan et al., 2013;
Rittger et al., 2016). The entire study area (Figure 1A) covers
19 Hydrologic Unit Code 8 (HUC8) snow-dominated watersheds
with a total area of 42,021 km2. The average elevation of the study area
is 2,270 m, ranging from 1,500 m to 4,410 m. The study area is
summarized by five larger HUC6 sub-regions inclusive all
HUC8 basins (Figure 1B and Table 1). The western slope of the
Sierra Nevada is divided into three sub-regions based on the drainage
areas of the Sacramento (northwest), the San Joaquin Rivers (center-
west), and the Tulare Lake Basin (southwest). The eastern Sierra
Nevada is divided into two sub-regions: northeast and southeast.

The Sierra Nevada has a Mediterranean climate with dry
summers and wet winters where 80% of the annual precipitation
occurs in the cold months from October to May in the form of snow
(Swain et al., 2016). Influenced by the prevailing westerly winds and
orographic precipitation, the western windward side of the Sierra
Nevada captures most of the moisture, while the eastern leeward side
is much drier. The distribution of vegetation in the Sierra Nevada
reflects the elevation and moisture gradients (Figure 1C). For the
western slopes, the foothill zone is dominated by broad-leaved
woodlands and evergreen shrublands. Coniferous forest covers
most of the montane and subalpine zones. Pinyon-juniper
woodlands and sagebrush communities are dominant on the east
side of the Sierra Nevada below 2,000 m elevation (Meyer et al.,
1999). In general, evergreen needle-leaf forest and shrub-lands are
the twomajor land cover types in the Sierra Nevada, withmost of the
forest cover on the western slopes, where the annual precipitation is
relatively high compared with the east side of the mountain range
(Trujillo et al., 2012; Hansen et al., 2013).

The regions within the Tuolumne River Basin where the ASO
campaign has conducted airborne snow surveys are highlighted in
Figure 1A. This section of the Tuolumne River Basin above the
Hetch Hetchy valley and reservoir (hereafter, TRB) in the central
Sierra Nevada has an area of ~1,200 km2 (Figure 1D). The average
elevation of the TRB is 2,680 m, ranging from 1,500 m to 3,970 m.
The average annual temperature and precipitation are about 4℃
and 1,260 mm, respectively, according to the PRISM (Precipitation
Reconstruction and Modeling) 30-year normal historical climate
data (Daly et al., 1994). The TRB drains into the Hetch Hetchy
Reservoir, providing the primary water resource to the City of San
Francisco and other Bay area municipalities. Evergreen needle-leaf
forests (~37%) and shrublands (~48%) are the two dominant land
cover types in the TRB (Hansen et al., 2013).

To evaluate the accuracy of SWE datasets within different land
cover types, the TRB is further classified into three main land cover
types (Figure 1D): alpine, forest, and “other” based on the National
Land Cover Data (NLCD) 2011 and the Shuttle Radar Topography
Mission 1 Arc-Second Global Digital Elevation Model downloaded
from https://earthexplorer.usgs.gov/as of 17 April 2023.
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3 Datasets and methods

3.1 SWE datasets

3.1.1 REC-INT
SWE reconstruction models are based on two premises: 1)

satellite images of snow cover provide the spatial coverage and
the date on which snow disappears from each grid cell, then 2) back-
calculations of snowmelt yield estimates of SWE back to the date
following the latest significant snowfall (Martinec & Rango, 1981).
In regions where little snowfall occurs during the melt season, this
date represents the maximum snow accumulation. Prescribing the
date of maximum snow accumulation as day 0, then the SWE on day
n can be calculated using Equation 3.1 and 3.2.

SWEn � SWE0 −∑
n

i�1
Mi (3.1)

when SWEn � 0, then SWE0 � ∑
n

i�1
Mi (3.2)

where Mj is melt on day j. SWE reconstruction methods differ in
the way they identify the date when SWE goes to zero, the algorithm
they use to measure and characterize the snow cover (either fractional
or binary), and the methods and data sources they use to estimate daily
melt. If, for example, FSCA is estimated, then the melt calculation
incorporates it by multiplying the potential melt if the grid cell were
entirely snow-covered by the FSCA, i.e., Mi � FSCAi × Mp,i.

REC-INT (Guan et al., 2013) calculates SWE for each grid cell at
500-m resolution (Table 2). Potential melt Mp,i is estimated by a

FIGURE 1
Overview of the study area. (A) The extent of the study domain represented by the elevation data. The locations of snow pillows (red stars), snow
courses (green triangles), the Tuolumne River Basin above Hetch Hetchy (TRB, delineated by the yellow polygon); the blue lines extending to lower
elevations indicate the boundary of each watershed (HUC8); and the yellow, blue, and green shaded regions represent the drainage areas of the
Sacramento, San Joaquin, and Tulare Lake Basin, which further divide the western Sierra Nevada into three sub-regions: northwest (NW), centerwest
(CW), and southwest (SW) (shown in sub-figure B). The eastern Sierra Nevada is divided into two sub-regions based on previous work (Huning and
AghaKouchak, 2018): northeast (NE) and southeast (SE) sub-figures (B). (C) Typical cross-sections of ecoregions in the Sierra Nevada (modified from
Sierra Nevada Ecoregional Plan 1999 (Meyer et al., 1999). (D) The classification of three land covers including “alpine”, “forest”, and “other”.
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snow energy and mass balance model with the radiative and
meteorological forcings downscaled from the North America
Land Data Assimilation System—Phase 2 (NLDAS-2, Xia et al.,
2012a; Xia et al., 2012b). REC-INT uses MODIS (Moderate
Resolution Imaging Spectroradiometer) Snow-Covered Area and
Grain Size (MODSCAG) (Painter et al., 2009) to determine gap-
filled FSCA for each pixel based on the interpolation of two nearest
available observations with cumulative potential snowmelt rate used
as the predictor variable [see more details in Molotch (2009)].

3.1.2 REC-ParBal
REC-ParBal (Bair et al., 2016; Bair et al., 2018; Rittger et al.,

2016) covers the entire Western United States at the nominal
MODIS spatial resolution of 463 m in the MODIS sinusoidal
projection, and data are available in near-real time (Snow Today,
2022). This model explicitly accounts for changes in snowpack cold
content and uses FSCA and grain size from MODSCAG, and an
estimate of snow darkening from dust calculated with the MODIS
Dust Radiative Forcing in Snow (MODDRFS, Painter et al., 2009).
The meteorological forcings used in REC-ParBal are derived from
the Global Land Data Assimilation System (GLDAS) at ¼ °
resolution and the radiometric forcings from NASA’s Clouds and
the Earth’s Radiant Energy System synoptic (CERES-SYN) at 1 °
resolution (Bair et al., 2018; Jennings et al., 2018). Previous REC-
ParBal reconstructions used the meteorological and radiometric
forcings from the National Land Data Assimilation System

(NLDAS) at 1/8 ° spatial resolution (Bair et al., 2016; Rittger
et al., 2016), but Global Land Data Assimilation System
(GLDAS) and CERES-SYN allow global application of this model
(Bair et al., 2018).

3.1.3 REC-DA
REC-DA is a 32-year (1985–2016) daily SWE reanalysis for

the Sierra Nevada with a spatial resolution of about 100 m
(Margulis et al., 2015; Margulis et al., 2016). REC-DA relies
on a Land Surface Model (Simplified Simple Biosphere model,
version 3; Xue et al., 2003) coupled with a Snow Depletion
Curve model (Liston, 2004) (LSM-SDC) to derive the prior SWE
and FSCA states, in which the radiative and meteorological
forcings are taken from the downscaled NLDAS-2 (Xia et al.,
2012a; Xia et al., 2012b). The particle batch smoother DA
scheme is then used to update the prior SWE states directly
based on the information extracted from FSCA observations
retrieved from Landsat imagery (i.e., Landsat 5–8) (Cortez et al.,
2014). This snow cover retrieval method doesn’t use canopy
correction, and thus is a representation of only satellite viewable
snow cover. In this respect, the DA scheme updates the
precipitation weights used to disaggregate the distribution of
precipitation based on the snow depletion data inherent in the
FSCA time series. This is conceptually similar to, although
numerically different from, the SWE reconstruction in areas
with persistent snow cover that are given greater snow mass

TABLE 1 Characteristics of the study domain above 1,500 m elevation.

Drainage Basin (HUC8) Area (km2) Elevation (m) Land Cover Classification

Forest (%) Alpine (%) Other (%)

Sacramento (NW Sierra, 22.1%) Feather 5,710 1,793 67.2 0.1 32.6

Yuba 1,397 1,922 75.5 0.4 24.1

American 2,166 1,976 66.7 5.6 27.7

San Joaquin (CW Sierra, 22.7%) Cosumnes 254 1,768 87.9 0.0 12.1

Mokelumne 847 2,140 59.1 15.0 25.9

Stanislaus 1,476 2,225 62.0 19.2 18.8

Tuolumne 2,412 2,410 49.8 31.4 18.8

Merced 1,407 2,412 64.0 25.2 10.8

Upper San Joaquin 3,159 2,589 55.8 33.0 11.2

Tulare (SW Sierra, 20.7%) Kings 3,154 2,719 50.0 42.1 7.9

Kaweah 834 2,369 70.5 22.5 7.0

Tule 374 1995 93.8 2.9 3.2

Kern 4,354 2,434 33.7 28.8 37.5

Truckee, Tahoe, and Carson (NE Sierra, 11.7%) Truckee 2017 1991 41.7 3.9 54.4

Tahoe 836 2,258 60.5 12.5 27.0

Carson 2,043 2,146 28.7 16.2 55.1

Walker, Mono, and Owens (SE Sierra, 22.8%) Walker 1,491 2,583 22.1 47.9 30.0

Mono 2,387 2,375 18.4 21.2 60.5

Owens 5,706 2,394 14.6 28.9 56.5

Entire study domain 42,021 2,273 46.1 21.1 32.8
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(Girotto et al., 2014a; 2014b), and thus we labeled this model by
“REC” to distinguish with those models can be run in real-time.

The reanalysis approach differs from reconstruction
methods in that it does not interpolate between FSCA
measurements. Instead, it “fits” the observations in a
Bayesian sense based on the postulated FSCA measurement
error and associated likelihood of a given ensemble estimate.
Because REC-DA uses a forward model of snow accumulation,
the approach provides SWE estimates during the entire snow
accumulation and ablation periods, making it more widely
applicable than SWE reconstruction models (REC-INT and
REC-ParBal that are only effective after peak snow
accumulation). A new version of the SWE reanalysis dataset
is recently available for download from the National Snow and
Ice Data Center website (https://nsidc.org/data/wus_ucla_sr/
versions/1) as of 17 April 2023. The dataset covers the entire
Western United States from 1985 to 2021, with a spatial
resolution of approximately 500 m (Fang et al., 2022).

3.1.4 SNODAS
SNODAS is a near real-time SWE modeling and data

assimilation system developed and operated by the NOAA
National Weather Service’s National Operational Hydrologic
Remote Sensing Center (NOHRSC) (Carroll et al., 2001;
Barrett, 2003). It provides daily SWE estimates at 0600 UTC
for the contiguous United States at 1,000-m spatial resolution
since water year 2004. Meteorological forcings for SNODAS are
derived from a real-time Numerical Weather Prediction model
(i.e., RUC2). The prior snow properties are derived from an
energy-and-mass-balance and blowing snow model (Pomeroy
et al., 1993) that are updated by available satellite- (e.g., GOES/
AVHRR snow cover), airborne- (e.g., NOHRSC Airborne
Gamma SWE) and ground-based (e.g., SNOTEL SWE,
Cooperative Observer SWE and snow depth) snow
observations in a data assimilation system (Carroll et al.,

2001). The assimilation procedure is a simple nudging
technique that calculates differences between estimated and
observed SWE values and spatially interpolates the residuals to
the model grid. Data are available at https://nsidc.org/data/
g02158 as of April 17, 2023.

3.1.5 NWM
The National Water Model (NWM) is an extension of the

Weather Research and Forecasting Hydrological model (WRF-
Hydro) developed by the National Center for Atmospheric
Research (Gochis et al., 2018). It relies on the Noah-MP Land
Surface Model with observed precipitation and other
meteorological inputs to simulate the land surface process
(Niu et al., 2011; Yang et al., 2011). The SWE estimates of the
NWM retrospective version 1.2 include a 25-year retrospective
simulation from 1993 to 2017 at 1,000-m resolution, covering a
large domain from latitude 19 ° N to 58 ° N that includes the
Continental United States, Canada, and Mexico. To ensure data
consistency with SNODAS, this study used NWM-SWE at
0600 UTC for the comparison. Data are available at http://edc.
occ-data.org/nwm as of 17 April 2023.

3.2 Validation of gridded SWE datasets

3.2.1 Data validation using spatially distributed SWE
data from the airborne snow observatory

Forty-six ASO flights occurred in the TRB from 2013 to 2017.
This period covers various climate conditions including the
2013–2015 drought, the driest year on record (2015), the wettest
year since 1983 (2017), and amoderate year (2016). Most of the ASO
flights were operated from the near maximum snow accumulation to
the snowmelt season, even into summer when all snow pillows
reported zero SWE and snowpacks only remained in limited high-
elevation regions. One ASO flight (8 July 2016) was removed in the

TABLE 2 Characteristics of the five SWE datasets compared in this study.

Dataset Citation Spatial-temporal coverage Spatial
resolution

Primary estimation method

REC-INT Guan et al. (2013) 2000–2014/Mar-Aug, Dailya/Sierra 500 m SWE reconstruction with NLDAS-2 forcing and
FSCA derived from MODSCAG.

REC-ParBal Rittger et al. (2016); Bair et al. (2016,
2018)

2000–2019/Dailya/Western US 463 m SWE reconstruction with GLDAS meteorological
forcings, CERES-SYN radiometric forcings, and
improved snow properties initially derived from
MODSCAG and MODDRFS; cold content is
accounted for

REC-DA Margulis et al. (2016) 1985–2016/Daily/Sierra 90 m SWE reanalysis based on an LSM-SDC model, a
particle batch-smother DA scheme and Landsat
derived FSCA

SNODAS Carroll et al. (2001); Barrett, (2003) 2004 - present/Daily/North
American

1,000 m A DA system with outputs from a physically
based snow model, updated by in situ and
remotely sensed snow observations

NWM-SWE Gochis et al. (2018) 1993–2017/Daily/contiguous U.S. 1,000 m NWM retrospective version 1.2 forced with
NLDAS and NARR (North American Regional
Reanalysis)

aREC-INT, is available daily fromMarch to August. REC-ParBal is available daily throughout the entire water year. SWE is valid only after peak SWE for each water year from these models, but

snowmelt estimation is valid from REC-ParBal for the entire water year.
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model validation given the extremely low SWE reported (6 mm
basin average SWE). Because the overlapping periods among SWE
datasets and the ASO data are different, the entire validation period
(2013–2017) has been divided into three sub-periods: 1) Period
1 from 2013 to 2014 with 17 ASO flights and all five SWE datasets; 2)
Period 2 from 2013 to 2016 with 37 flights and four SWE datasets
(REC-ParBal, REC-DA, SNODAS, and NWM-SWE); and, 3) Period
3 from 2013 to 2017 with all 45 flights but only three SWE datasets
(REC-ParBal, SNODAS, and NWM-SWE).

To compare the SWE datasets with various resolutions and
projections, all SWE datasets including ASO SWE data were first
resampled to the same spatial resolution and coordinate system
using bilinear interpolation. This study used a spatial resolution of
500 m (i.e., the median value among datasets used in this study) and
the universal Transverse Mercator (UTM) zone 11N projection,
which is the original coordinate system of ASO data in the Sierra
Nevada.

To comprehensively evaluate SWE estimates, five statistical
evaluation metrics were used: the coefficient of determination
R-squared (R2), mean absolute error (MAE), root mean squared
error (RMSE), root mean squared error normalized by basin average
SWE derived from ASO SWE data (NRMSE), and the percentage
bias (PBIAS). The first four metrics were used to represent the
accuracy of SWE datasets at the grid scale, while the last metric was
used to represent the overall accuracy of basin average SWE, with
which water managers estimate the total snow water resource in a
watershed. To reduce the impacts of geolocation errors caused by the
resampling process, the SWE estimate with the smallest error
relative to the ASO SWE inside a 3 × 3 window was used to
calculate the statistical metrics at the grid scale (Bair et al., 2016;
Margulis et al., 2016; Rittger et al., 2016), while the calculation of the
basin-wide PBIAS was based on the original resolution of each
dataset to avoid the influence of the data resampling process.

3.2.2 Data validation using ground SWE
observations across the Sierra Nevada

There are 215 snow course sites located inside the study domain
for the validation period of 2004 through 2014 (Figure 1A). Each snow
course site includes 5–15 point-scale SWE measurements using a
calibrated Federal Snow Sampler along an established transect
(DeWalle and Rango, 2008). These data offer monthly SWE
measurements near the first day of each month from January to
May or June depending on the amount of snow remaining. Because
both reconstructed SWE datasets (REC-INT and REC-ParBal) are only
valid in the snowmelt season, only the snow course observations after
peak SWE dates were used for validation. The peak SWE date was
determined by the monthly time series of snow course measurements
for each water year. Additionally, measurements with zero SWE were
excluded. Given that some sites only have measurements taken in late
winter or early spring (e.g., February, March, and April), there were
195 sites (i.e., 1861 station-years) that remained after removing
measurements for the overlapping period of 2004–2014 as described
above. These sites have an average elevation of 2,407 m, ranging from
1,478 m to 3,459 m.

The 107 snow pillow stations located inside the study domain
have an average elevation of 2,464 m ranging from 1,570 m to 3,475 m.
These data provide daily point-scale SWE observations for validation of
the five SWE products. Similar to snow courses, all snow pillow

observations before the peak SWE date were removed based on the
daily time series SWE observations, and the zero SWE observations
were also excluded. After removing these data, 50,628 station-years
remained (i.e., 4,603 station-years for each water year) for data
validation. It is worth mentioning that SNODAS incorporates snow
pillow observations in the data assimilation system, and thus the
comparison between the station-observed SWE and SNODAS
modeled SWE is not strictly independent. However, we included
SNODAS in the validation with snow pillow data to maintain
consistency in the inter-model comparison. All snow pillow and
snow course data were quality controlled and downloaded from the
California Data Exchange Center (http://cdec.water.ca.gov) as of
17 April 2023.

To compare point-scale or transect-scale ground observations
with gridded SWE datasets, this study used gap-filled gridded
MODIS FSCA data (Rittger et al., 2020) (resampled to 500 m
from its native 463 m resolution using bilinear interpolation) to
scale the ground observations to the grid scale, which can improve
the representativeness of SWE measurements at the grid scale
(Schneider and Molotch, 2016). The same five statistical metrics
(i.e., R2, MAE, RMSE, NRMSE, and PBIAS) were calculated to
quantitatively evaluate gridded SWE values from SWE data
products using FSCA scaled ground SWE observations. PBIAS
for this analysis does not strictly represent the basin as these
point or transect-scale observations represent only a very small
portion of the basin. All the calculations were conducted using SWE
grids at the 500 m resolution within a 3 × 3 grid-cell analysis window
(see Section 3.2.1).

3.2.3 Synthesis of multi-scale validation
To compare the three validation results using the same criteria, we

applied the station-year method for the ASO validation in Period 1 when
allfive datasetswere available, inwhich each grid-by-grid comparisonwas
seen as one station-year (i.e., one grid is seen as one site). The statistical
results are reported in Supplementary Table S1. The ASO validation was
equivalent to 62,728 station-years of data. Then,we used the average value
of each statistical evaluation metric for the ASO, snow course, and snow
pillow validations to represent the overall accuracy of the five SWE data
products. Because the coverage, the scale, and the accuracy of the
validation datasets were different, it is likely that the average estimate
of the three validation results is not representative. Therefore, we also
included the Taylor-diagram of each validation to provide a more
intuitive comparison between different SWE datasets. The Taylor-
diagram is a graphical evaluation diagram that provides a statistical
summary of how well the predicted value (i.e., modeled SWE) matches
observations (i.e., validation datasets) in terms of the Pearson’s correlation
coefficient (r), RMSE, and standard deviation (Taylor, 2001).

3.3 Inter-comparison of SWE datasets across
the Sierra Nevada

To compare SWE datasets in terms of the spatial and temporal
variability of SWE in the Sierra Nevada, the following five estimates
across the study domain were calculated and compared: 1) Daily
time series of Sierra-wide average SWE and snow water storage
(SWS) (i.e., the volume of snowpack water as derived from the
product of basin average SWE and total basin area); 2) 1 April SWE
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and SWS. These were compared because of their importance in
water management and water supply forecasting in California; 3)
elevational distribution of SWS on the first day of each month from
April through August; 4) 11-year average SWE for the entire study
domain and the five sub-regions (NW, CW, SW, NE, and SE Sierra
with detailed information referring to Figure 1A and Table 1), and,
5) 11-year average spatial distribution of pixel-wise peak SWE,
which is the maximum SWE estimate on a grid cell basis over
the entire water year using all available daily SWE estimates. The
pixel-wise peak SWE can represent the maximum snow water
resources received by the entire mountain range throughout each
water year (Margulis et al., 2016).

4 Results

4.1 Model validation with ASO SWE data in
the TRB (2013–2017)

4.1.1 SWE product accuracy
In Period 1, when all the five datasets were available, REC-DA

(i.e., the SWE reanalysis with data assimilation) showed the best
performance of the five SWE products through grid-by-grid
comparison with ASO SWE in the TRB, closely followed by
REC-ParBal, which had an overall smaller basin-wide PBIAS
than REC-DA (Table 3). Both REC-DA and REC-ParBal
explained a very significant amount of the spatial variance of the
ASO SWE data, with mean R2 values of 0.93 and 0.85, respectively.
The other reconstruction SWE product, REC-INT, was the third
most accurate dataset in nearly all statistical comparisons (Table 3),
explaining 70% of the spatial variance of the ASO SWE data but with
a large −34% overall PBIAS.

Both operational models (SNODAS and NWM-SWE) showed
significantly lower accuracy in the comparison for most statistical
comparisons. SNODAS and NWM-SWE only explained 40% and
15% of the variance of ASO SWE on average, with an overall PBIAS
of 13.6% and −43.9%, respectively. Although SNODAS had a smaller
PBIAS than REC-INT and REC-DA, it had the largest standard
deviation, meaning the overall basin-wide bias for SNODAS had a
high variance and its performance was much less robust. Of all five
SWE datasets, NWM-SWE had the lowest accuracy.

Periods 2 and 3 results were similar to the results shown for
Period 1. In Period 2, when four SWE datasets (REC-ParBal, REC-
DA, SNODAS, and NWM-SWE) were available, the average values
of R2 and NRMSE for these four datasets were similar compared
with those in Period 1, and the values of MAE and RMSE were
slightly higher, which was reasonable given that Period 2 included
Water Year (WY) 2016 with higher snow accumulation than
2014 and 2015. Consistently, the three datasets (i.e., REC-ParBal,
SNODAS, and NWM-SWE) that were available in Period 3 also
exhibited similar accuracy compared with their performance in
Periods 1 and 2.

Figure 2 shows seasonal and interannual variability in the
accuracy of the SWE datasets. The accuracy of REC-DA and
REC-ParBal were relatively consistent interannually, regardless of
climatic conditions (i.e., wet versus dry years). REC-DA showed the
most robust performance, with nearly uniform R2 through the
season (Figure 2A). REC-DA exhibited decreases in MAE
towards the end of the snowmelt season (Figure 2E), and small
positive basin-wide PBIAS values in all years except for the
extremely dry year of 2015 when REC-DA, REC-ParBal, and
SNODAS all exhibited highly variable PBIAS. REC-ParBal’s R2

values paralleled those of REC-DA, with slightly worse
performance toward the beginning and the end of the snow

TABLE 3 Summary of the daily validation using ASO SWE data in the TRB for Period 1 (2013–2014) with 17 flights, Period 2 (2013–2016) with 37 flights, and Period 3
(2013–2017) with 45 flights.

Dataset R2 MAE (mm) RMSE (mm) NRMSE (%) PBIAS (%)

Period 1 (2013–2014), 17 ASO flights

REC-INT 0.70 ± 0.14 51 ±42 82 ± 56 68.3 ± 23.2 −34.0 ± 23.7

REC-ParBal 0.85 ± 0.05 25 ± 17 48 ± 25 42.1 ± 8.2 −6.0 ± 29.8

REC-DA 0.93 ± 0.03 18 ± 11 32 ± 17 28.3 ± 10.5 24.9 ± 14.9

SNODAS 0.40 ± 0.17 58 ± 27 100 ± 36 89.5 ± 8.2 13.6 ± 38.9

NWM-SWE 0.15 ± 0.13 70 ± 38 117 ± 50 102.6 ± 6.0 −43.9 ± 19.0

Period 2 (2013–2016), 37 ASO flights

REC-ParBal 0.84 ± 0.05 33 ± 31 62 ± 47 45.4 ± 9.8 −3.3 ± 38.4

REC-DA 0.94 ± 0.05 20 ± 14 35 ± 22 27.7 ± 12.7 19.1 ± 25.1

SNODAS 0.43 ± 0.18 73 ± 39 134 ± 77 122.9 ± 130.6 68.9 ± 207.3

NWM-SWE 0.17 ± 0.16 83 ± 62 134 ± 84 100.5 ± 8.9 −32.9 ± 24.9

Period 3 (2013–2017), 45 ASO flights

REC-ParBal 0.84 ± 0.07 44 ± 45 82 ± 70 46.1 ± 10.5 −9.9 ± 37.9

SNODAS 0.43 ± 0.20 90 ± 75 159 ± 110 115.0 ± 119.6 53.6 ± 191.3

NWM-SWE 0.19 ± 0.19 108 ± 104 175 ± 145 100.8 ± 12.6 −24.6 ± 70.1

Notes: each statistical metric is represented by themean with one standard deviation of the comparison between SWE data products and ASO SWE data with all flights in each period; the bolded

values represent the best model performance in each period.
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season. Similarly, REC-INT had an increasing trend of R2 from the
beginning to the middle of the snowmelt season, followed by a
decreasing trend, indicating REC-INT better captured SWE spatial
variance during the middle of the snowmelt season.

The two operational datasets showed similar performance in
capturing SWE variance among different water years combined
with a decreasing trend in R2 towards the end of each melt season,
indicating the performance of both models degraded for low
snow periods. The performance of SNODAS exhibited high
interannual variability: SNODAS underestimated basin average
SWE for all 10 ASO flights in WY 2016, a wet year, but
overestimated SWE for all ten flights in WY 2015, a dry year.
SNODAS had a slightly better performance than NWM-SWE for
most flights except for WY 2015, when SNODAS showed very
high positive PBIAS and higher MAE than NWM-SWE. NWM-
SWE had a relatively high R2 early in the snow season but its R2

dropped very quickly as the season progressed. NWM-SWE
exhibited a consistently negative bias throughout the
comparison period, as it underestimated basin average SWE
for 41 out of 45 ASO flights.

4.1.2 Spatial distribution of SWE errors
Figure 3 shows the spatial distribution of average differences

between each data product and ASO SWE data for the TRB in

Period 1. The statistical evaluation results are summarized for
alpine, forest, and other land cover types in Table 4. Compared to
the other models, REC-DA had the lowest SWE errors indicated by
the low MAE and RMSE in Table 4 for all three land cover types,
and the lighter red (negative) and blue (positive) SWE errors in
Figure 3, though it had an obvious overestimation for some alpine
and forest regions. REC-DA had an overall PBIAS of 20.3%, 36.8%,
and 2.7% for alpine, forest, and other (i.e., not forest or alpine) land
cover classifications. Within these three land cover classes, REC-
DA explained 0.88, 0.80, and 0.90 of the ASO SWE spatial variance,
respectively.

Both REC-ParBal and REC-INT exhibited positive and/or
negative errors that were notably higher than REC-DA, though
the magnitude of the SWE residuals for REC-ParBal was smaller
than REC-INT overall (Figure 3 and Table 4). Within the three
different land cover types, REC-ParBal exhibited relatively
consistent accuracies as revealed by the relative evaluation
metrics R2, NRMSE, and overall basin-wide PBIAS, while the
performance of REC-INT varied considerably. REC-INT and
REC-ParBal showed the best performance in alpine regions.
REC-ParBal showed similar accuracy in forested and “other” land
cover classes, though the magnitude of residuals was higher in
forested regions. REC-ParBal had the smallest PBIAS relative to
other models in alpine and forested regions with values of −1.9% and

FIGURE 2
The variability of SWE data accuracy verified against ASO SWE data in the TRB for all three periods. (A, E, I) represent R2, mean absolute error, and
PBIAS, respectively, while the boxplots in the right panel (B–H, J–L) summarize the overall validation results for each period.
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9.8%, respectively. REC-ParBal, however, exhibited a slightly higher
PBIAS (−5.4%) compared to REC-DA (i.e., PBIAS = 2.7%) in the
“other” land cover type.

The two operational datasets (i.e., SNODAS and NWM-SWE)
exhibited relatively large SWE errors in forested and alpine regions
(Figure 3). While SNODAS had a positive PBIAS for all three land
cover classes (4.3% for alpine, 59.5% for forest, and 70.7% for other),
it still underestimated SWE in many places (red pixels in Figure 3).
Overall, SNODAS showed its best performance in alpine regions and
had similar accuracy over forested and “other” land cover classes.
NWM-SWE exhibited significant SWE underestimation in alpine
(PBIAS = −66.6%) and “other” (PBIAS = −12.1%) regions, but it
overestimated SWE in forested regions (PBIAS = 12.6%). Generally,
NWM-SWE exhibited comparable accuracy over forested and
“other” land cover classes and was the least accurate in alpine
regions.

4.2Model validationwith ground data across
the Sierra Nevada (2004–2014)

Validation of the five SWE datasets with ground measurements
(i.e., snow course and snow pillow) covers the entire study domain of
the Sierra Nevada shown in Figure 1A for an 11-year period
(2004–2014). Like the validation results in the TRB with ASO
SWE data, REC-DA and REC-ParBal performed better than the
other models compared to snow course data (Figure 4) and snow

pillow data (Figure 5). On average, REC-DA explained 89% and 87%
of the variance in snow course and snow pillow SWE measurements
with a 1.3% and −0.4% PBIAS, respectively while REC-ParBal
explained 85% and 87% of the variance in snow course and snow
pillow SWE measurements with 8.5% and 5.5% PBIAS. The MAE
and RMSE for REC-DA were slightly higher in the validation with
snow pillows than snow courses, but the NRMSE (30.0%) was
the same.

REC-INT performed very consistently when compared to
snow course data and snow pillow data, explaining 69% and
70% of the variance respectively. RMSE for REC-INT was
237 mm and 245 mm respectively at the snow course and
snow pillow sites. REC-INT had a 27.8% PBIAS and NRMSE
of 56.8% at snow course sites, and −27.1% PBIAS and NRMSE of
53.8% at snow pillow sites.

The two operational SWE datasets, SNODAS and NWM-SWE,
had comparable performance to REC-INT, explaining 64% and 67%
of the variance of snow course SWE, with 0.9% and −14.5% PBIAS,
respectively. The MAE and NRMSE were 142 mm and 57.0% for
SNODAS, and 144 mm and 52.5% for NWM-SWE, respectively.
The dispersed distribution of SNODAS SWE in Figure 4 indicates
considerable variation in SWE errors, particularly for the lower SWE
observations, while NWM illustrated a consistent small
underestimation, which was also true in the comparison with
snow pillow data (Figure 5). On average, NWM-SWE performed
slightly poorer at snow pillow locations than at snow courses.
Because SNODAS ingested snow pillow observations in the data

FIGURE 3
Spatial distribution of average SWE residuals derived from the five SWE datasets in Period 1 with 17 ASO SWE flights.
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TABLE 4 Summary of SWE validation across alpine, forest, and “other” land cover types using ASO SWE data in Period 1. For the 17 ASO flights in Period 1, the
validation pairs between each SWE data product and ASO data at 500 m resolution are equivalent to 62,728 station-years. The bold values represent the best
performance of the five datasets.

Land cover Dataset R2 MAE (mm) RMSE (mm) NRMSE (%) PBIAS (%)

Alpine
(43%)

REC-INT 0.52 118 165 77.3 −6.3

REC-ParBal 0.64 74 108 50.6 −1.9

REC-DA 0.88 61 89 41.4 20.3

SNODAS 0.45 113 157 73.6 4.3

NWM-SWE 0.14 162 214 100.2 −66.6

Forest
(39%)

REC-INT 0.19 95 160 139.1 −70.6

REC-ParBal 0.56 65 109 94.7 9.8

REC-DA 0.80 57 85 73.8 36.8

SNODAS 0.48 106 163 142 59.5

NWM-SWE 0.31 87 129 112.2 12.6

Other
(18%)

REC-INT 0.31 45 92 161.4 −68.1

REC-ParBal 0.60 33 64 112.7 −5.4

REC-DA 0.90 16 32 55.8 2.7

SNODAS 0.41 71 127 221.7 70.7

NWM-SWE 0.30 50 90 158.3 −12.1

FIGURE 4
The comparison of gridded SWE extracted from SWE datasets against snow course SWE (scaled by fractional snow-covered area). A total number of
1861 station-years were compared. The black line represents the locations where FSCA-scaled snow course SWE equals to SWE datasets (1:1 line); the red
line represents the best linear-fit; the gray contour represents the density of points in the scatter plots (i.e., the number of points per unit area).
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assimilation, its comparison with snow pillow SWE measurements
does not provide an independent assessment. It is noticed that
SNODAS was still less accurate than REC-DA at snow pillow sites
(Figure 5).

4.3 Synthesis of SWE validations

To summarize the multi-scale validation results presented
above, we synthesized the validations with ASO SWE (refer to
Supplementary Table S1 for the station-year metrics), snow

course, and snow pillow and used the average value of each
statistical evaluation metric to represent the overall accuracy of
the five SWE data products (Table 5) and their performance over
different land cover types (Table 6). The individual validation was
summarized by Taylor-diagrams in Figure 6.

REC-DA consistently had the highest correlation and lowest
RMSE compared with three validation datasets, followed by REC-
ParBal (Figure 6). The variability of ASO SWE data was much
lower than that of snow course SWE and snow pillow SWE, as
indicated by the lower standard deviation of observed ASO data
in Figure 6. Among the five datasets, only NWM-SWE

FIGURE 5
The comparison of gridded SWE extracted from SWE datasets against snow pillow SWE (scaled by fractional snow-covered area). A total of
50,628 station-years was compared. The black line represents the locations where FSCA-scaled snow pillow SWE observations are equal to SWE datasets
(1:1 line); the red line represents the best linear fit; the gray contour represents the density of points in the scatter plots (i.e., the number of points per unit
area). Because SNODAS assimilated snow pillow observations in the SWE estimation model, it had a much better performance when validated with
snow pillow SWE observations comparedwith using other independent validation datasets (i.e., ASO SWE data and snow course SWEmeasurements). The
validation for SNODAS here is not strictly independent.

TABLE 5 Summary of the validation results of five SWE data products using multi-scale validation datasets including ASO SWE, snow course SWE, and snow pillow
SWE. Each statistical metric is represented by the average value of the three validations, including 62,728 station-years of ASO flights in period one, 1861 station-
years of snow course data, and 50,628 station-years of snow pillow data.

Dataset R2 MAE (mm) RMSE (mm) NRMSE (%) PBIAS (%)

REC-INT 0.61 131 212 71.4 −28.3

REC-ParBal 0.79 73 138 47.0 4.1

REC-DA 0.87 66 114 38.0 8.3

aSNODAS 0.65 106 182 65.2 9.3

NWM-SWE 0.49 142 212 73.6 −25.2

aNote: the real performance of SNODAS, is poorer than the estimated values shown given that it used snow pillow observations in the data assimilation.

The bolded values represent the best model performance among datasets.
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underestimated the variability of ASO SWE. SWE products
showed consistent accuracy when validated with snow course
SWE and snow pillow SWE, with the exception of SNODAS
(green cross in Figures 6B, C), which ingested snow pillow
observations into its data assimilation. REC-ParBal and
SNODAS showed higher variability than snow pillow and
snow course SWE on average, as indicated by the higher
standard deviation than observed in Figures 6B, C, while the
SWE values of the other three datasets showed lower variability.

REC-DA, the model run at the highest spatial resolution,
showed the highest accuracy among the five SWE products in
the pixel-by-pixel comparison, but it had an overall positive
basin-wide PBIAS (8.3%). It explained 87% of the variance in
observed SWE from the validation datasets, ranging from 89% in
snow course SWE to 86% in ASO SWE, with 66 mm MAE, and
38.0% NRMSE (Table 5). Among three land cover types, REC-DA
performed best within the “other” land cover types and the worst in
forested regions (Table 6).

REC-ParBal exhibited the second-best performance with the
lowest PBIAS overall. It explained 79% of the variance in the
validation datasets, ranging from 64% in ASO SWE to 87% in
the snow pillow SWE, with 73 mm MAE, 47.0% NRMSE, and a
small 4.1% PBIAS (Table 5). Among three land cover types, REC-
ParBal indicated the best performance in alpine regions (Table 6),
with 35.0% NRMSE (31% lower than average), and showed
comparable performance within forested and “other” land cover
types. Additionally, REC-ParBal showed better performance than
REC-DA in alpine regions.

REC-INT was the third-best dataset that explained 61% of
the variance in the validation datasets, ranging from 45% in
ASO SWE to 70% in snow pillow SWE, with 131 mm MAE,
71.4% NRMSE, and a −28.3% PBIAS overall (Table 5). Similar
to REC-ParBal, REC-INT also had the best performance over
alpine regions among three land cover types, with 58.4%
NRMSE (13% lower than average). REC-INT showed the
worst performance in forested regions, with a relatively large
negative PBIAS (i.e., −43.3%) overall.

SNODAS was less accurate than the above three models and was
the fourth-best in this study. It explained 65% of the variance in
observed SWE from the validation datasets, ranging from 47% in
ASO SWE to 85% in snow pillow SWE. However, the high variance
explained in snow pillow SWE by SNODAS was very likely
overestimated, as SNODAS used snow pillow data in its data
assimilation. It had 106 mm MAE, 65.2% NRMSE, and 9.3%
PBIAS overall. SNODAS also had a better performance than
NWM-SWE over alpine regions, with 57.3% NRMSE (7.9% lower
than average) (Table 5). SNODAS showed the worst performance in
the “other” land cover type, with a large positive 29.5% PBIAS
overall.

NWM-SWE showed the least accuracy that explained only
49% of the variance in all three validation datasets, ranging from
15% in ASO SWE to 67% in snow course SWE, with 142 mm
MAE, 73.6% NRMSE, and −25.2% PBIAS overall (Table 5).
Although it showed a quite similar accuracy to REC-INT and
SNODAS at snow pillow and snow course sites, its comparison
with ASO data illustrated that NWM-SWE failed to capture the

TABLE 6 Summary of SWE dataset validation across the three land cover classifications including alpine, forest, and “other” (i.e., not forest nor alpine). Each
statistical metric is represented by the average value of the three validations, including 62,728 station-years of ASO flights in period one (Table 4), 1861 station-
years of snow course data, and 50,628 station-years of snow pillow data. The number and proportion of validation pairs for each land cover classification are
labeled in the table.

Land cover Dataset R2 MAE (mm) RMSE (mm) NRMSE (%) PBIAS (%)

Alpine
(34.5%)

REC-INT 0.67 123 197 58.4 −17.4

REC-ParBal 0.82 67 117 35.0 −3.4

REC-DA 0.88 70 122 35.0 12.6

*SNODAS 0.64 116 192 57.3 4.7

NWM-SWE 0.51 149 217 66.4 −29.4

Forest
(49.2%)

REC-INT 0.50 141 227 84.9 −43.3

REC-ParBal 0.75 80 151 56.9 9.6

REC-DA 0.84 71 120 45.0 11.4

*SNODAS 0.66 106 183 75.9 18.7

NWM-SWE 0.53 140 208 73.9 −9.3

Other
(16.3%)

REC-INT 0.63 93 156 87.8 −39.4

REC-ParBal 0.81 51 101 59.2 4.5

REC-DA 0.94 38 66 33.5 −1.8

*SNODAS 0.66 88 155 104.8 29.5

NWM-SWE 0.58 104 166 89.6 −17.8

Note: the real performance of SNODAS, is likely poorer than the estimated values shown in the table given that it used snow pillow observations in the data assimilation.

The bolded values represent the best model performance among datasets.
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spatial variance in ASO SWE. NWM-SWE exhibited the lowest
accuracy in alpine regions, with a large negative bias (−29.4%),
and it showed comparable accuracy within forested and “other”
land cover types.

4.4 SWE dataset inter-comparison

4.4.1 Sierra-wide average SWE and 1 April SWE
Sierra-wide average SWE exhibited significant interannual

variability over the 11-year record (2004–2014) with the greatest
snow accumulation in WY2011 and the lowest in WY 2014
(Figure 7). Overall, the daily Sierra-wide average SWE for all five
datasets showed good agreement, particularly in the period after

1 May toward the end of snow season. We only included SWE
estimates from 1 April to the end of snowmelt season for REC-INT
and REC-ParBal given that the SWE estimates of these two datasets
were not valid for the snow accumulation period. 1 April was used as
a reasonable early bound on the peak SWE date to include the two
reconstruction SWE products in the comparison, although the peak
SWE dates vary spatially.

The average SWE values for REC-DA, SNODAS, and NWM-
SWE were similar in the early winter, and the differences between
the SWE products began to increase approaching the timing of
maximum SWE. REC-DA and SNODAS had comparable annual
peak SWE values, both of which were much higher than NWM-
SWE. Once SWE began to decrease, the basin-wide average SWE for
REC-INT and REC-ParBal tended to drop earlier than the other

FIGURE 6
Taylor diagrams of the five SWE datasets in the validations with ASO SWE, (A) snow course SWE (B) and snow pillow SWE (C). Three statistical metrics
including the R, RMSE, and standard deviation were used to quantify the agreement between the modeled (i.e., five SWE datasets) and observed
(i.e., validation datasets) SWE estimates. The SWE datasets are represented by different shapes and colors, while the validation SWE data is displayed by the
purple circle labeled “observed”. The real performance of SNODAS is likely poorer than the estimated values shown in the table given that it used
snow pillow observations in the data assimilation.

FIGURE 7
Time series of Sierra-wide average SWE and total snowwater storage (SWS) for the 11-year overlapping period of 2004–2014. SWS is the product of
the average SWE and the total area of the study domain, representing the snow water availability in the mountain range. Because REC-INT and REC-
ParBal are only valid from peak SWE timing onward, we used 1 April as a reasonable early bound on the peak SWE date to exclude their SWE estimates
before 1 April.
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three datasets. This was particularly notable in WY2011 whereby it
can be observed that the other three datasets were still accumulating
snow whereas REC-INT and REC-ParBal exhibited a rapid SWE
decline.

Of the five datasets, NWM-SWE and REC-INT typically had
the lowest average SWE. REC-ParBal showed the greatest Sierra-
wide average SWE in April to early May, and the values were
significantly higher than the other SWE products. This result is
somewhat counter-intuitive in that the aforementioned product
validation results indicated that REC-DA had a larger PBIAS
than REC-ParBal. One reason for this discrepancy is that we only
validated SWE products after peak SWE so the majority of the
validation data were acquired from May to the end of the snow
season when REC-DA actually had the greatest SWE (Figure 7).
We compared the maximum SWE values at snow pillow stations
with the peak SWE estimates from REC-DA and REC-ParBal
(Supplementary Figure S1). The results showed that REC-DA
underestimated peak SWE by −5.8%, while REC-ParBal
overestimated it by 7.5% (Supplementary Figure S1),
suggesting that the true Sierra-wide maximum SWE values
probably lie somewhere between the SWE estimates from
REC-ParBal and REC-DA.

REC-ParBal had the highest 1 April SWE for 8 out of 11 years
among all five datasets (Figure 8). On average, the 1 April SWE for
REC-ParBal was 43% higher than NWM-SWE, which had the
lowest value in 7 out of 11 years. Moreover, 1 April SWE for REC-
INT, REC-DA, and SNODAS was 27%, 22%, and 29% lower than
that of REC-ParBal, respectively. Section 4.4.3 describes in detail
the regional SWE that led to these differences. The 11-year 1 April
SWE for the five SWE data products exhibited high interannual
variability. For the driest year (WY 2014), the average SWE value
was 107 mm, ranging from 64 mm to 173 mm derived from REC-
INT and REC-ParBal, respectively. For the wettest year (WY
2011), the average SWE value was 685 mm, ranging from
505 mm to 896 mm derived from REC-INT and REC-ParBal,
respectively.

4.4.2 Elevational distribution of snow water
storage

The distribution of snow water storage (SWS) across the Sierra
Nevada varies at different elevations among various SWE data
products between 1 April and 1 August (Figure 9). On 1 April,
REC-DA, SNODAS, and NWM-SWE estimated maximum SWS in
the elevation band of 2,500–2,600 m, while REC-INT and REC-
ParBal estimated maximum SWS at lower elevations around
2,000–2,100 m. REC-DA estimated similar SWS to SNODAS for
elevations below 2,900 m, but slightly greater SWS at elevations
around 2,900–3,800 m. NWM-SWE estimated much lower SWS
than REC-DA and SNODAS throughout all elevation bands. REC-
INT and REC-ParBal exhibited significantly different distributions
compared with the above three datasets. REC-ParBal estimated
notably high SWS at elevations between 1,600 and 2,600 m which
are primarily forested regions in the western Sierra Nevada
(Figure 1C), but less so in the eastern Sierra Nevada. These
elevations are where most of the area of the Sierra Nevada lies
(Figure 9). REC-INT also estimated higher SWS than the other three
datasets (REC-DA, SNODAS, and NWM-SWE) in these elevations.
Additionally, REC-INT exhibited much lower SWS for elevations
between 2,200 and 3,000 m than the other four datasets.

This elevational pattern of SWS changed from 1 April to
1 May, with the greatest SWS decreases observed at middle to
low elevations around 2,000 m–2,500 m. REC-DA, SNODAS, and
NWM-SWE still exhibited similar distributions, and NWM-SWE
estimated a relatively lower SWS, particularly at elevations below
3,000 m. Consistent with the pattern on 1 April, REC-ParBal
estimated high SWS at elevations below 2,300 m where the
largest areas in the Sierra Nevada occurs (Figure 9), while REC-
INT estimated the lowest SWS around 2,200–3,000 m among all
datasets.

On 1 June, REC-DA, SNODAS, and NWM-SWE exhibited
similar distributions, with SWS for REC-DA primarily centered at
2,700–3,000 m. Consistently, REC-DA had the highest SWS,
followed by SNODAS, while NWM-SWE estimated the lowest

FIGURE 8
1 April SWE and snow water storage (SWS) for the study domain derived from the five SWE datasets for an 11-year overlapping period.
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SWS of the three datasets. The SWS for REC-ParBal at elevations
below 3,000 m corresponding to all elevations in the NW
(i.e., Sacramento basins) decreased from 1 May to 1 June,
indicating a much faster snowmelt rate estimated by REC-
ParBal for this elevation range than other datasets. The
maximum SWS for REC-INT shifted dramatically from low
elevations (2,000–2,100 m) to high elevations (3,000–3,100 m)
during this month.

Towards the end of snowmelt season (1 July and 1 August), the
centroid of SWS for all five datasets moved to higher elevations,
although their elevational distributions were still diverse. REC-DA
estimated much higher SWS than the other four datasets and had
the highest SWS at middle elevations around 2,700 m. Although
the distribution of SWS for SNODAS and NWM-SWE was similar
to that for REC-DA, their SWS estimates were much smaller. For
these 2 months, REC-INT and REC-ParBal centered at higher
elevations around 3,400–3,500 m with very similar SWS
distributions.

4.4.3 Regional variation of snow water storage
The daily 11-year average SWE from 1 April through 31 August

varies for the entire study domain and five sub-regions: southeast (SE),
northeast (NE), southwest (SW), central-west (CW), and northwest
(NW) Sierra (Figure 10). REC-DA had the greatest SWS across the
Sierra between May 1 through the end of August. It had the highest
SWS estimates for the sub-regions of CW (most dates), SW, and
particularly the SE Sierra where the overall elevation is high, and the

forest cover is low (Table 1, Figure 1C). REC-INT had the lowest SWS
in the CW and SW where the average elevation is high, and it had a
relatively high SWS from 1 April to 1 May in the NW. REC-ParBal
generally estimated greater SWS than REC-INT, with significantly
greater SWS in April for the northern Sierra (NE and NW). During
the month of April, which is particularly important from a water
resource management perspective, REC-ParBal SWS estimates were
notably greater than the other four SWE products.

SNODAS had similar SWS to REC-DA in the northern Sierra
(NE and NW) throughout the snowmelt season, but significantly
lower SWS than REC-DA in the SE and CW. NWM-SWE had the
lowest SWS in the northern Sierra (NE and NW) but exhibited
moderate SWS values for the central and southern Sierra (CW, SW,
and SE). In terms of the time series of total SWS across the entire
Sierra (Figure 10), NWM-SWE exhibited the lowest SWS from
1 April to 1 May, while REC-INT was the lowest from mid-May
towards the end of the snowmelt season.

The spatial distributions of the 11-year average pixel-wise peak
SWE (hereafter maximum SWE) (Figure 11) were consistent with
the findings described above (Figure 9 and Figure 10). REC-DA,
SNODAS, and NWM-SWE showed a very similar spatial
distribution of maximum SWE and the patterns of the
interannual variability in maximum SWS while the magnitude of
maximum SWE for these three datasets was different (Figures 11).
REC-DA usually had the highest estimates (18.2 ± 8.5 Gt) while
NWM-SWE usually was the lowest (13.6 ± 6.9 Gt) among these
three datasets.

FIGURE 9
The monthly elevational distribution of the 11-year average seasonal variability of total snow water storage (SWS) on the first day of April through
August. The interval of each elevation band is 100 m, ranging from 1,500 m to 4,300 m. The integration of each line represents the total SWS for the study
domain.
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FIGURE 11
The spatial distribution of the 11-year average pixel-wise maximum SWE for the five SWE datasets in comparison across the study domain. The 11-
year average and one standard deviation of maximum SWS are labeled at the bottom left for each dataset with the elevational distribution represented by
the boxplot. Gt stands for gigaton, equivalent to 1 km3 of water.

FIGURE 10
Time series of the 11-year average total snow water storage (SWS) for the entire study domain and five sub-regions. NE, SE, NW, CW, and SW
represent the northeast, southeast, northwest, central-west, and southeast Sierra, respectively. The dashed gray lines represent the first day of each
month from April through August. 1 Gt (gigaton) is equivalent to 109 m3 of water.

Frontiers in Earth Science frontiersin.org17

Yang et al. 10.3389/feart.2023.1106621

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1106621


The spatial distributions of maximum SWE for the two
reconstructed SWE datasets (i.e., REC-INT and REC-ParBal) also
exhibited similarity. Both datasets showed high maximum SWE in
the NW and low maximum SWE for most other regions. However,
the overall maximum SWS for REC-ParBal was much higher than
REC-INT. REC-ParBal had the highest 11-year average maximum
SWE, reporting 24.5 ± 9.8 Gt maximum SWS, while REC-INT had a
small SWS (14.3 ± 8.3 Gt). Additionally, REC-ParBal estimated
greater maximum SWE at elevations below 2,400 m where most
of the area is, particularly for the western Sierra.

5 Discussion

This study provided a comprehensive evaluation and inter-
comparison of five SWE datasets at annual, seasonal, and
regional scales using multiple independent validation datasets in
the Sierra Nevada, California. Through the validation, this study
indicated that REC-DA exhibited the highest accuracy among all five
SWE data products, followed by REC-ParBal. REC-INT and
SNODAS showed comparable accuracy, and NWM-SWE was the
least accurate of the five datasets. The major findings of this study
will guide to the use of these SWE datasets as well as contribute to
future improvement of SWE estimation approaches. Below we
provide a thorough discussion regarding 1) the impacts of forest
canopies on retrospective SWE estimation approaches, 2) the
applications of real-time SWE datasets, and 3) the utility of
retrospective SWE in improving real-time SWE modeling.

5.1 Influence of canopy cover adjustment

Uncertainty in SWE estimation approaches can be introduced
via many factors, such as the radiative and turbulent flux
calculations in physically based models, detection of snow
disappearance date from satellite observations, model
parameterizations, and model structural assumptions, and for
forward-type models, precipitation forcings. Identifying the
dominant sources of uncertainty for each of the models
compared herein is challenging and is outside the scope of this
study. However, the pronounced differences in model results in
forested regions indicate that a discussion about the influence of
canopy cover adjustment on the performance of the three
reconstructed SWE datasets in forested regions is warranted.

Estimating SWE under forest canopies is more challenging
than estimating SWE in open areas (Rutter et al., 2009). These
challenges were evident in the REC-DA, REC-INT, and REC-
ParBal results whereby relatively poor performance was evident in
forested regions among three land cover types (Tables 4, 6) given
the difficulties in observing under canopy snow cover from satellite
(Raleigh et al., 2013; Rittger et al., 2020) and complications
associated with the impact of snow-vegetation interactions on
model calculations of snow-atmosphere energy exchange,
especially solar (Musselman et al., 2013) and longwave
radiation (Musselman and Pomeroy, 2017). Efforts have been
made to improve SWE modeling by improving snow cover
estimation in forested regions (Liu et al., 2004; Arslan et al.,
2017; Wang X. et al., 2018; De Gregorio et al., 2019; Rittger

et al., 2020; Tong et al., 2020). Because the under-canopy snow
cover cannot be observed directly by optical satellite imagery,
REC- INT used a viewable gap fraction approach to estimate under
canopy snow cover, in which the fractional snow-covered area
(FSCA) value for each pixel is equivalent to the observed FSCA
divided by the fraction of the pixel that does not contain vegetation
(Guan et al., 2013). In the comparison between canopy-adjusted
MODIS-derived FSCA and ground-based FSCA, Raleigh et al.
(2013) showed that MODIS FSCA underestimation may range
from 9% to 22% at meadow sites, and from 9% to 37% at forested
sites during the snowmelt season. The underestimation of FSCA
may potentially lead to a significant underestimation of SWE
within the REC-INT model given the crude representation of
viewable gap fraction in REC-INT versus REC-ParBal.

REC-ParBal used a viewing zenith angle dependent canopy
adjustment approach to estimate under canopy snow cover, which
accounts for off-nadir effects of wide-swath satellites (Rittger et al.,
2020). In addition to the viewable gap fraction adjustment in
forested regions, the viewing angle of satellite observations has
significant impacts on the estimations of viewable FSCA and
canopy density and thus significantly influences canopy
adjustments to FSCA estimates (Liu et al., 2004; Rittger et al.,
2020). For example, the viewing zenith angles for wide-swath
sensors such as MODIS, used both in REC-INT and REC-
ParBal, increase with off-nadir overpasses resulting in stretched
pixels and obscured observations (Liu et al., 2004; Margulis et al.,
2019; Rittger et al., 2020). In this context, Rittger et al. (2020)
developed a viewing zenith angle dependent canopy adjustment
approach to reduce the influence of oblique viewing angles on
MODIS FSCA estimates; FSCA biases in forested regions
decreased by 20% (Rittger et al., 2020). This adjustment could
be one reason that REC-ParBal showed much better performance
than REC-INT in forested regions in the TRB. We compared this
snow cover adjustment method to another spectral mixture
approach called SPIReS (Snow Property Inversion From Remote
Sensing, Bair et al., 2019) that uses the Geometric Optical model
(Liu et al., 2004) and it showed similar snow cover in forested
regions. Furthermore, recent validation work with ASO-based 3-m
resolution snow cover estimates show relatively stable RMSE and
bias with increasing canopy fraction (Stillinger et al., 2023).
However, the viewing zenith angle dependent canopy
adjustment approach is likely to have over-adjusted FSCA in
very dense forested regions, such as the NE Sierra where REC-
ParBal estimated much higher April SWE than all other SWE
datasets.

The viewable gap fraction and viewing zenith angle dependent
canopy adjustment methods mentioned above both assume that the
viewable FSCA under forest canopies is proportional to FSCA in
open areas (Liu et al., 2004; Durand et al., 2008b; Molotch &
Margulis, 2008; Rittger et al., 2020). This assumption is, however,
not always true given the complexities of snow-vegetation
interactions. For example, during the snow accumulation period,
snowfall interception by tree canopies decreases snow accumulation
under the canopy (Pomeroy et al., 1993). During the snowmelt
period, canopy cover has a significant influence on the snow energy
balance by changing both radiative and turbulent fluxes (Dozier,
1980; Rutter et al., 2009). Importantly, REC-DA did not use the
viewable gap fraction or viewing zenith angle approach to estimate
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under-canopy snow cover. Instead, the particle batch smoother
method used in REC-DA only updated the prior FSCA
predictions for open (canopy-free) fractions of a pixel. Updates
to the precipitation estimates within the REC-DA framework,
therefore, were applied over open areas, with canopy adjustments
then applied to predict SWE for the canopy-covered fraction of a
pixel (Girotto et al., 2014a). Unlike REC-INT and REC-ParBal
which treated FSCA as error free, this updating process also
accounted for the uncertainties in FSCA observations. While
many other improvements in REC-DA have been documented in
earlier studies (Girotto et al., 2014a; 2014b; Margulis et al., 2015;
2016), the advantage of the canopy adjustment scheme and
accounting for FSCA uncertainties are two potential reasons that
REC-DA performed better than REC-INT and REC-ParBal in
forested regions (Girotto et al., 2014b).

5.2 Real-time SWE estimation

Among five SWE datasets compared in the study, only SNODAS
and NWM are capable to provide real-time SWE estimates, though
they showed much lower accuracy than the other three
reconstructed SWE datasets. While SNODAS has been used in
several water balance (e.g., Santner et al., 2003; Wang J. et al.,
2018; Cao et al., 2019) and hydrological modeling studies (Barlage
et al., 2010; Boyle et al., 2013; Massmann, 2019), a well-documented
evaluation of SNODAS model performance is largely absent in the
literature. Clow et al. (2012) compared snow depth and SWE
estimates from SNODAS with ground snow survey
measurements in Colorado and found that SNODAS SWE
estimates only explained 30% of the variance in SWE in alpine
environments but performed much better in forested regions,
explaining 77% of the variance in observed SWE. Hedrick et al.
(2015) showed that SNODAS underestimated snow depth over
dense coniferous forested regions. Bair et al. (2016) also
compared SNODAS SWE with ASO SWE data but found a
consistent SWE underestimation, possibly because of the shorter
period used in their study (i.e., 3-years were compared from 2013 to
2015) but also possibly because some mountain regions lack nearby
snow pillows.

By comparing with multi-source validation datasets covering a
wide range of climatic conditions and topographic characteristics, this
study found the performance of SNODAS SWE estimates varied
spatially and temporally, and thus are consistent with the diverse
findings in previous studies (Clow et al., 2012; Hedrick et al., 2015;
Bair et al., 2016). We also showed that SNODAS overestimated SWE
in forested regions but underestimated SWE for a few isolated alpine
areas, which corresponds with the Lv and Pomeroy (2020) evaluation
in the Marmot Creek Research Basin in the Front Range of the
Canadian Rockies. They also found SNODAS overestimated SWE in
needle-leaf forested regions and showed that the lack of detail in
snow-forest interactions within the SNODAS model reduced model
accuracy in sub-canopy environments.

The NWM-SWE relies on a land surface model (Noah-MP) to
estimate SWE (Niu et al., 2011; Yang et al., 2011). The NWM has a
three-layer snow model with improved representations of ground
heat flux, retention, percolation, and refreezing and melted liquid
water within the multilayer snowpack (Yang et al., 2011).

Interestingly, NWM-SWE’s performance in forested regions
showed a 12.6% positive bias, which may be related to the
separation of the vegetation canopy from the snow surface
regarding model calculations of energy and water fluxes (Niu
et al., 2011; Yang et al., 2011). However, just like many other
large-scale SWE datasets (Wrzesien et al., 2019), NWM-SWE
exhibited significant SWE underestimation, particularly at high
elevations.

5.3 Application of retrospective SWE
estimates

We show that the retrospective approaches (REC-INT,
REC-ParBal, and REC-DA) could yield SWE estimates with
accuracy levels much higher than the real-time SWE estimates other
than ASO, perhaps not a surprising result given the additional
information available to retrospective models. Because the spatial
patterns of SWE show high similarity from year to year due to the
relatively constant environmental control factors over time (e.g.,
topography, vegetation, and weather) (Sturm and Wagner, 2010),
one important application of retrospective SWE datasets is to
inform real-time SWE estimation approaches with more accurate
historical SWE patterns. Early studies have explored the
performance of integrating SWE patterns from reconstruction
models into real-time snowpack estimation models (Schneider and
Molotch, 2016; Bair et al., 2018; Zheng et al., 2018; Yang et al., 2022).
Schneider and Molotch, (2016) showed a significant model
improvement with a 97% (24.7%) decrease in PBIAS, and an 8%
(20 mm) decrease in RMSE by integrating historical SWE patterns from
REC-INT into a real-time SWE estimation model over the upper
Colorado River Basin, which has been further improved by ingesting
REC-DA (Yang et al., 2022). Notably, the use of real-time snow cover
estimates in National Weather Service-like forecasts along with snow
pillow SWE result in an 80% average improvement in forecast skill
(Micheletty et al., 2021). Zheng et al. (2018) used historical SWE
estimates (i.e., REC-INT) to aid in the interpolation of SWE
measurements using a k-nearest neighbors algorithm and found that
the spatial accuracy of the historical data is more important than the
amount of data within the archive. Bair et al. (2016) used machine
learning techniques to integrate historical SWE patterns from
REC-ParBal to estimate SWE over the Hindu Kush, Afghanistan
and found the approach provided reasonable SWE estimates with
0%–14% bias and 46–48 mm RMSE overall. Hence, given the
previous supportive findings (Schneider & Molotch, 2016; Bair et al.,
2018; Zheng et al., 2018), as well as the significantly better performance
of the SWE reanalysis (REC-DA) and SWE reconstruction models
(REC-ParBal and REC-INT) compared with the operational data
products (SNODAS and NWM-SWE), this study highlights the
potential applications for applying the SWE patterns from SWE
reanalysis or SWE reconstructions in a variety of Earth Science
applications.

5.4 Limitations of SWE validation

To include the two reconstruction SWE datasets (REC-INT and
REC-ParBal), we limited our evaluation to the snow melt season,
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which is one of the limitations of our study, and thus the conclusions
may not represent model accuracy for other parts of the snow
seasons such as the fall and winter snow accumulation period.
Future work is needed to provide a more thorough evaluation of
the three SWE datasets (REC-DA, SNODAS, and NWM-SWE) that
are available for the entire snow season. Additionally, although
we included both in situ and ASO SWE in the data evaluation,
neither dataset offers ground-truth SWE at a 500 m grid cell scale.
For example, the ASO SWE uncertainty is non-negligible and
requires further quantification, while the in situ observations
likely lack representativeness when scaled to grid cells. Lastly,
given that ASO data are only recently available and limited to a
few basins, the validation may not adequately capture all snow
conditions and locations. Nevertheless, the study provides the
most comprehensive intercomparison of these datasets to date
and provides useful first-order estimates on their likely SWE
errors.

6 Summary and conclusion

This study uses three independent validation datasets to
systematically evaluate the five state-of-the-art SWE data
products in the Sierra Nevada, California at annual, seasonal,
and regional scales, and discusses the SWE data accuracy in
forests, alpine, and other open areas. The SWE datasets include
two reconstruction SWE products (REC-INT, REC-ParBal), a
Bayesian reanalysis product (REC-DA), and two operational
SWE products (SNODAS and NWM-SWE). The results show
that REC-DA consistently exhibits the best performance in
capturing the spatial distribution of SWE at the pixel scale
(R2 = 0.87, MAE = 66 mm, PBIAS = 8.3%), while REC-Parbal
has the least overall PBIAS (R2 = 0.79, MAE = 73 mm, PBIAS =
4.1%) in the snowmelt season. When comparing maximum SWE
at snow pillow stations across the Sierra Nevada, REC-DA
underestimated peak SWE by −5.8%, while REC-ParBal
overestimated it by 7.5%. The other SWE products—SNODAS,
REC-INT, and NWM-SWE—are less accurate. The inter-model
comparison suggested a certain amount of disagreement of snow
water resources between SWE datasets across time and space in
the Sierra Nevada. From the 11-year record, REC-ParBal overall
had the highest 1 April SWE bolstered by large volumes at
moderate elevations with large areas, which is 27%, 22%, 29%,
and 43% greater than REC-INT, REC-DA, SNODAS, and NWM-
SWE, respectively. REC-INT and REC-ParBal exhibited higher
amounts of 1 April SWS than the other three datasets at lower
elevations where there is more forest. The average maximum
snow water storage (SWS) for the study domain was 17.6 Gt,
ranging from 13.6 Gt estimated by NWM-SWE to 24.5 Gt
estimated by REC-ParBal. This critical validation and inter-
model comparison of different SWE datasets across a large
mountainous region helps to improve our understanding of
SWE estimation uncertainties. Given the importance of these
mountainous regions for sustaining water supplies, the results of
this study have broad implications for water resource
management and for process-based hydrological studies.
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