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The main purpose of this study is to analyze the main influencing factors of the
landslide in the coal mine area and, on this basis, establish the sensitivity zoning
model of the landslide. Considering the difficulty to obtain the expected results by
using machine learning under the condition of lacking data, the typical landslide is
used as the data basis, that is, the Fenxi coal mine and Xishan Bujiu coal mine are
selected as the coal mining landslide points. Various factors, such as goaf, land
subsidence, slope structure, formation lithology, and various indicators are used as
input data sources, and artificial neural network (ANN) datasets are used for training
to establish a pre-training model. Using the pre-training model, the mining landslide
sensitivity evaluation model based on transfer learning is established. In order to
demonstrate the performance of transfer learning more intuitively, the neural
network is introduced to evaluate the evaluation model. The test results show
that transfer learning can achieve a transfer effect higher than 0.95, and the
regional distributions of highest landslide sensitivity calculated based on self-
transfer learning, direct push transfer learning, and inductive transfer learning are
31.33, 35.50, and 33.75%, respectively, which further deduced that inductive transfer
learning can be used for evaluating an LSP model.
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1 Introduction

As shown in previous studies, landslide sensitivity assessment is an effective solution. Zhong
and Hu (2013) believed that spatial cognition is an essential information transformation
process. How to acquire spatial location information, recognize and reconstruct the
information, and use the information to make decisions and guide external actions is the
main work and content of spatial cognition research and is an important field of cognitive
science research. The essence of the scene is to recognize the physical world (Ghorbanzadeh
et al., 2018). The analysis of the scene of landslide disaster is to identify the scene that is not felt.
The landslide susceptibility evaluation focuses on the study of landslide influencing factors in
highly susceptible areas so as to guide disaster prevention and mitigation and various planning
methods (Piralilou et al., 2019). Landslide sensitivity analysis is a hot and difficult topic in
landslide research (Feizizadeh and Blaschke, 2014). By analyzing the relationship between
landslide influencing factors and landslide in the region, the distribution law of landslide can be
determined, and the spatial distribution and occurrence probability of the existing or potential
landslide can be analyzed qualitatively or quantitatively (Shi et al., 2005; Liu et al., 2021; Zhang
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et al., 2022a; Zhan et al., 2022). The causes of landslides are complex,
and the influencing factors include the basic factors causing landslides
(topography and landform, stratigraphic lithology, geological
structure, traffic, and water system) and the inducing factors
(rainfall, earthquake, and human engineering activities). At present,
the most commonly used landslide sensitivity analysis methods are
knowledge-driven, including the fuzzy logic method, fuzzy
comprehensive evaluation method, analytic hierarchy process, and
expert systemmethod. The second is the deterministic physical model.
The deterministic coefficient (CF) model was proposed and improved
by Shortliffe and Buchanan (1975) and Heckerman (2013). Tian et al.
(2016) evaluated the geological disaster susceptibility of Guangdong
Province based on the certainty coefficient (CF) model and LR model.
Kang et al. (2011) analyzed the application of the deterministic model
to evaluate the stability of hillslopes of loess gully areas. Montgomertry
and Dietrich (1994) established SHALSTAB in the 1990s in the paper
Application of Deterministic Models to Slope Stability Prediction in
the Loess Gully Region. The model has been used to predict the loess
area in Northwest China and the area in southeast China, where the
seasonal rainfall significantly affects the area and shallow landslides
are more developed. On the basis of the SHALSTAB model proposed
by Pack et al. (1998), we studied the hydrological distribution model of
DEM to construct a SINMAP model. The deterministic model is
mainly applicable to the case where the landslide type is relatively
simple and the basic physical properties of the study object are fairly
uniform (Ghorbanzadeh et al., 2022a). Based on physical laws, this
method can analyze the main factors, but it requires high parameters
and is limited to small-scale regions. It is a data-driven type, mainly
based on the theory of statistical analysis, including the amount of
information analysis and support vector machine (SVM), random
forests and artificial neural networks, multivariate statistical analysis
method, and other data-driven methods, ensuring the accuracy of the
calculation and analysis results through mathematical analysis and
non-linear objective characteristics, but need various global spatial
representations of good observation samples (Heleno et al., 2016). The
failure to easily excavate the disaster mechanism of landslides leads to
the problem of underfitting or overfitting of analysis results (Pham
et al., 2020; Ma et al., 2021). This is in contradiction to the current
objective situation, such as the large amount of observation data but
little spatial and temporal information, high concealability of
landslides, and incomplete collection of landslide catalog datasets.
There are many research studies on data-driven landslide sensitivity.
Influenced by the non-linear characteristics of landslides, many
problems in landslide sensitivity evaluation, such as factor
selection, parameter optimization, and model sample optimization,
have not been systematically solved. The geographic information
system and the advancement of artificial intelligence (AI)
technology will promote the development of more efficient and
accurate studies on the sensitivity of the landslide inventory, which
makes the evaluation of contributing factor system more reasonable
(Ghorbanzadeh et al., 2022b). More intelligent models are applied to
landslide susceptibility, and all kinds of machine learning methods,
including logistic, classification and regression tree (CART), SVM, and
transfer learning, have been widely used (Huo et al., 2019;
Ghorbanzadeh et al., 2022c; Shi et al., 2022; Wang et al., 2022).
C5.0 decision tree, random forest, and support vector machine are
used to partition landslide sensitivity and compare its performance in
the coal mining area. The information quantity model is a statistical
forecasting method based on information theory. It was proposed by

Chinese scholars Yin and Zhu (2001). Based on ArcGIS spatial
analysis, seven evaluation factors, namely, elevation, slope,
lithology, slope structure, vegetation index, distance from the fault,
and distance from the road of the study area, were obtained (Wen
et al., 2022). After the information model was used to evaluate the
susceptibility of landslide and collapse disasters, ArcGIS was further
used. The statistical function of a GSI unit compares the information
value of landslide and collapse susceptibility, selects a relatively larger
information value as the final information value of the grid, and draws
the comprehensive geological disaster susceptibility map of the study
area, which is essentially the reflection of the integrated information
atlas map based on the sensitivity of landslides and various factors. It is
a relatively effective quantitative method for the regional scene
expression of landslide disasters, most of which focuses on a single
data-driven model. In recent years, the landslide sensitivity analysis
method combining data-driven and knowledge-driven models has
received a lot of attention to systematically analyze the causes and
mechanisms of landslides (Yang et al., 2019). The regional landslide
sensitivity assessment based on the deterministic coefficient
combination model has been proposed. Zhu et al. (2021) proposed
a fuzzy logic analysis method for regional landslide sensitivity
constrained by spatial characteristics of environmental factors of
landslide disaster, which is a classic example of combining
knowledge-driven and data-driven models. There are few studies
on combining data-driven and data-driven models. This paper
makes a beneficial attempt on the transfer learning of mining
landslide utilization based on the data-driven + data-driven model
combined with previous studies.

In short, the core demand of geological disasters is to find out “where
is the hidden danger” and “when is it likely to occur,” which is also the
difficult problem and bottleneck that needs to be broken for the
prevention and control of geological disasters. Despite the type of
landslide scenario, the basic conditions for landslides remain the same,
that is, slippery strata, weak structural plane, and empty surface. The
occurrence of landslide is affected by many factors, and the influence
degree of each factor is different for each landslide. It may be a key factor
in this landslide, but itmay be aminor factor in another landslide. Only by
finding out the basic law andmechanism of the landslide can a reasonable
landslide susceptibility model be established, and correct calculation and
numerical simulation can be carried out. According to the previous
research results and combined with the landslide disaster scene itself,
generally speaking, we believe that in the control factors, topography often
plays a decisive role in the formation of landslide disaster and is also a
necessary condition for the formation of landslide, and stratigraphic
lithology often provides a material basis for the formation of landslides.
Geological structure plays a controlling role in it, and the inducing factor
often causes and intensifies the occurrence of landslides. To screen out the
main leading factors from the disaster environment and inducing factors
under different regional conditions and determine the reasonable model,
this paper has carried out a study on mining landslides based on transfer
learning.

2 Research data

2.1 Study area

The Fenxi coal mine area is about 104.4 km from east to west and
71.2 km from north to south, with a total area of 4,332.1 km2 and a
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coal-bearing area of 3,513.282 km2. The mining area has complex
geomorphic types. The study area spans the Luliang Mountains and
Huoshan Mountain from east to west and the Fenhe Valley in the
central and northern areas, with high terrain in the south and low
terrain in the north (Yang et al., 2018). This region is located in the

mid-latitude inland region, far from the ocean, less affected by water
vapor, and has a large temperature difference between the day and
night, which is a typical semi-arid continental climate (Neto et al.,
2018). The study area is rich in mineral resources. In recent years, due
to long-term excessive exploitation by humans, the balance of the

FIGURE 1
Location and distribution of geological hazard sites of the study area. (A) Location and geological hazards sites distribution of Fenxi mine area,
(B) Location and geological hazards sites distribution of Xishan mine area.
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terrain surface in this area has been seriously damaged, and a large
number of mined-out areas have been formed underground. The
landform of the Fenxi coal mine area is shown in Figure 1A, and the
left of Figure 1A shows the magnified result of the pink area of the
right of Figure 1A.

Xishan Coal Power Co., Ltd. is an important backbone subsidiary
of Shanxi Coking Coal Group Co., Ltd. The Jiukuang mining area of
Xishan Coal Power Co., Ltd. is divided into two parts: Qianshan area
and Gujiao area. The former mountain area lies in the east and is
located in Taiyuan Wanberlin District; the ancient Jiaohe area in the
northwest is located in the city of ancient Jiaohe. Qianshan mine has

five pairs of mines, namely, Baijiazhuang Mining Co., Ltd., Duerping
mine, Guandi mine, Dongqu mine, and Tunlan mine. Gujiao mine
has jurisdiction over four mines, namely, Xiqu mine, Zhencheng
bottom mine, Malan mine, and Ximing mine. Xigou mine also
belongs to Xishan Coal Power; however, it is far away from other
mines and cannot be compiled into a mining map. Therefore, only
nine mines in the Xishan mining area are studied. The geographical
coordinates of the Xishan mining area are 111°50′~112°40′ east
longitude and 37°50′~38°10′north latitude. It is 68 km long from
north to south and 36 km wide from east to west. The coal-bearing
area is 1,800 km2. The nine mines in the headquarters are Guandi

TABLE 1 Source and characteristic of Fenxi coal mine data materials.

No. Data material Source (resolution/scale) Specific purpose

i ASTER GDEM http://www.jspacesystems or jp/ersdac/GDEM/E/2.Htm (30 m) Deriving the five topographical parameters: slope, elevation, aspect,
curvature, and distance to the river

ii RS images https://earthexplorer.usgs.gov/(30 m) Calculating the factor map of land use type and NDVI

iii Geological hazards
inventory

https://www.cgs.gov.cn/(1:50,000) Obtaining the landslide inventory and calculating the ground collapse
density factor

iv Peak earthquake
acceleration

Obtaining the peak earthquake acceleration factor

v Average annual rainfall Calculating the average annual rainfall factor

vi Geological map http://www.gov.cn/fuwu/bumendifangdating/bumendating/
guotuziyuanbu/index.html (1:50,000)

Obtaining the stratum lithology and distance to the fault factor

vii Road map Calculating the distance to road factor

viii Mined area map Calculating the distance to mined area factor

TABLE 2 Xishan’s main data and data sources.

Data name Data source Type Precision

Historical landslides http://www.sxdzhj.com.cn/SXWebManage/GeoDislist Data table Point data

DEM Homemade Raster 5 m

Geological data https://www.xsmd.com.cn/?_t_t_t=0.027628016876688255 Vector 1:50,000

Land use https://www.nsfc.gov.cn/ Raster 30 m

Satellite imagery http://www.nsmc.org.cn/nsmc/cn/home/index.html Raster 0.5 m

Annual rainfall http://data.cma.cn/ Data table 30 m

Rivers https://www.xsmd.com.cn/?_t_t_t=0.027628016876688255 Vector 1:50,000

Road Vector 1:50,000

Fault Vector 1:10,000

Mining area Vector 1:10,000

Boundary of the study area Vector 1:5,000

Seismic data https://www.shxdzj.gov.cn/ Data sheet or grid 25 m

Various indices https://www.gscloud.cn/ Raster 30 m

Stratigraphic lithology https://www.xsmd.com.cn/?_t_t_t=0.027628016876688255 Vector 1:50,000

Groundwater level Vector 1:50,000

Water-bearing rock formation Vector 1:50,000
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mine, Baijiazhuang mine, Duerping mine, Ximing mine, Malan
mine, Xiqu mine, Zhencheng bottom mine, Dongqu mine, and
Tunlan mine. Based on high-precision satellite and aerial image

remote sensing and field investigation, the location, type, and basic
geometric characteristics of 146 landslides in Jiujiu mine and the
headquarters of the Xishan coal field were obtained. The landslide

FIGURE 2
Landslide condition factors of the Fenxi coal mine. (A) Elevation, (B) Slope angle, (C) Slope aspect, (D) Plan curvature, (E) Profile curvature, (F) Stratum
lithology, (G) Distance to fault, (H) The seismic peak acceleration, (I) Distance to river, (J) Rainfall, (K) Land-use type, (L) NDVI, (M) Distance to road, (N)
Distance to mined area, (O) Ground collapse density.
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historical catalog database was established using GIS software. The
landform of the Xishan coal mine area is shown in Figure 1B, and the
left of Figure 1B is the magnified result of the dull-red area of the
right of Figure 1B.

2.2 Data sources

Landslide geospatial datasets are the basis of landslide sensitivity
analysis. The integrity and quality of the datasets directly affect the

FIGURE 3
(Continued).
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accurate reliability of landslide sensitivity assessment results.
According to the classification and evaluation purpose, landslide
susceptibility assessment geospatial datasets can be divided into

historical landslide catalog and geographical environment,
geological environment and disaster environment, ecological
environment, and several aspects, including historical landslide

FIGURE 3
(Continued). Landslide condition factors of the Xishan coal mine. (A) Slope aspect, (B) Distance to fault, (C) Slope angle, (D) Elevation, (E) Seismic peak
acceleration, (F) Distance to road, (G) Profile curvature, (H) Plan curvature, (I) NDVI, (J) Land use, (K) Distance to river, (L) Distance to goaf, (M) Rainfall, (N)
Lithology, (O) Collaspe, (P) Mining distance.
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catalog set by remote sensing and geological disasters, usually
ZaiHaiDian landslide spatial distribution of the environmental
monitoring center for data. The data include geological
topographic map, road and water network data, and vegetation
cover data as shown in Tables 1, 2.

2.3 Condition factors

Geological disasters destroy the ecological environment, and
their occurrence is affected by various internal and external
dynamics. On the basis of geological, topographic, and survey
data from the study district, as well as existing expert
experience (Chau et al., 2004; Peart et al., 2005; Domínguez-
Cuesta et al., 2007; Xiang et al., 2010), selected influencing
factors such as topography, geology, hydrology, land cover, and

human engineering activities (Youssef and Pourghasemi, 2021)
were used to explore the mechanism and characteristics of
landslide disasters. Topographic factors are represented by
elevation, slope, aspect, and curvature (plane and profile
curvature). Geological structure factors include stratum
lithology, distance from the fault, and peak acceleration.
Hydrological factors include annual average rainfall and
distance from rivers; land cover factors include land use types
and NDVI; and human engineering activity factors include
distance from roads, distance from mining areas, and ground
collapse density. Through the comprehensive analysis of
influencing factors and ArcGIS software, the relationship
between landslide disaster and geography, geology, and
ecological environment was studied, and its sensitivity was
classified and evaluated. The overall condition factors of the
study district landslide are shown in Figures 2, 3.

FIGURE 4
Pearson’s correlation coefficient plot for the 16 factors. (A) Elevation, (B) Slope, (C) Aspect, (D) Plane curvature, (E) NDVI, (F) LUCC, (G) Mining
disturbances, (H) Lithology, (I) Earthquake peaks, (M) River distance, (O) Precipitation, (P) Collapse.
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3 The selection of influencing factors

The occurrence of geological disasters is affected by various
internal and external dynamics. It will not only destroy the

ecological environment but also cause loss to people’s life and
property. The selection of impact factors for landslides in mining
areas is the primary task and the most important step for landslide
susceptibility assessment. It can be said that the correct selection of

TABLE 3 Correlation between 16 condition factors.

Elev Slop Aspe Pl-c Pr-c Ndvi Lucc MDis Lith Peak Mine Faul Rive Road Pre Coll

Elev 1

Slop 0.25 1

Aspe 0.03 0.01 1

Pl-c −0.04 −0.03 0.02 1

Pr-c −0.07 0.01 0.02 −0.54 1

Ndvi 0.30 0.31 −0.03 0.08 −0.06 1

Lucc 0.04 0.08 0.11 −0.09 0.02 0.00 1

MDis 0.00 0.22 0.02 0.01 −0.01 0.06 −0.02 1

Lith −0.17 −0.07 −0.01 −0.09 0.02 −0.24 0.04 0.17 1

Peak −0.29 −0.04 −0.04 −0.04 −0.05 −0.27 0.02 0.22 0.33 1

Mine 0.04 −0.20 −0.03 0.01 0.01 0.02 0.01 −0.78 −0.27 −0.41 1

Faul 0.03 −0.21 −0.05 −0.07 0.00 −0.13 −0.06 −0.77 −0.09 −0.13 0.60 1

Rive 0.13 −0.09 0.07 −0.06 0.04 0.06 0.03 −0.16 −0.04 −0.16 0.20 0.09 1

Road −0.04 0.06 0.01 −0.01 −0.04 −0.13 −0.12 0.03 0.06 0.11 0.00 0.02 −0.10 1

Pre 0.08 0.23 0.14 0.11 0.06 0.43 0.06 −0.02 −0.31 −0.32 −0.02 −0.14 0.02 −0.05 1

Coll −0.06 0.19 0.03 0.02 0.06 0.11 0.16 0.14 0.07 −0.05 −0.28 −0.24 −0.02 −0.02 0.21 1

FIGURE 5
Importance of the influencing factors.
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impact factors directly determines the prediction accuracy of the final
assessment model. According to the study of the geological,
topographic, and survey data of the Fenxi mining area, the
influencing factors can be divided into five categories: mining area
factor, topographic factor, geological factor, environmental factor, and
historical factor. This paper mainly adheres to the following two
principles: 1) the relevant experience of the influencing factors selected
in the previous study and 2) availability of data. Combining the
aforementioned two principles, the topographic factors were finally
obtained in this study: elevation, slope, aspect, and curvature (plane
and profile curvature). Geological structural factors include stratum
lithology, fault distance, and seismic peak acceleration; environmental
factors include annual precipitation, normalized vegetation index,
land use, road distance, and river distance; mining factors include
goaf distance, mining disturbance, ground collapse density, and other
factors; and historical factors include historical landslide point.

4 The mining landslide sensitivity
evaluation model based on transfer
learning

4.1 Transfer learning model

Transfer learning (TL) refers to applying the knowledge learned in
auxiliary fields similar to but different target fields for learning
according to the similarity between tasks, so as to effectively
improve the learning efficiency of new tasks.

4.2 The mining landslide sensitivity evaluation
model

First, the comprehensive selection of influencing factors is carried
out through the obtained data, satellite images, and DEM data. In
order to ensure the independence of the evaluation index, the first step
is to use Pearson’s correlation coefficient to analyze the correlation of
16 indicators and eliminate the factors with high correlation. The
results for profile curvature and mined-out disturbance factors were
removed. The impact factor correlation is shown in Figure 4.

In Table 3, the correlation between 16 landslide condition factors
(elevation, slope, aspect, plane curvature, profile curvature, lithology,
distance to fault, peak earthquake acceleration, distance to river,
precipitation, land use type, NDVI, distance to road, distance to
mined area, LUCC, and ground collapse density) are given and
represented by Elev, Slop, Aspe, Pl-c, Pr-c, Lith, Faul, Peak, Rive,
Pre, Land, NDVI, Road, Mine, Lucc, and Coll, respectively.

The second step is to use the random forest model to score the
importance of the input data and delete the factors with low impact on
the landslide in the study area. We removed ground motion
acceleration. The importance of the influencing factors is shown in
Figure 5.

The third step is to calculate the KL divergence. In order to
establish the evaluation model, it is necessary to analyze the similarity
between the input factors of the two study areas. The values of the
corresponding factors in the two study areas should be as similar as
possible to achieve a better migration effect. Therefore, the KL
difference was selected as the criterion to judge the similarity of
infusion factors. KL divergence is often used to measure theTA
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numerical similarity of the corresponding influencing factors in two
research areas. The full form of KL divergence is Kullback–Leibler
divergence, which is mainly used to measure the similarity of
probability distribution between two data. The KL divergence can
be calculated by the following formula:

KL P‖Q( ) � ∫P x( )log P x( )
Q x( ) dx. (1)

In the formula, P (x) and Q (x) represent the probability
distribution of the two data, where KL (P‖Q) ≥ 0, and if and only
if P = Q, KL (P‖Q) = 0. It can be concluded from the formula that the
closer the value of KL divergence is to 0, the higher the degree of
similarity between the two numbers. When the KL divergence is 0, it
means that the two data are completely consistent. Based on the
datasets of the Fenxi mining area and the ninth mine of the Xishan
coal field, the KL divergence, an evaluation index, can be used to
calculate the value of the KL divergence of the corresponding
influencing factors of the two research areas. The table shows that
the KL divergence of the data of each group in the two study areas

reaches the highest with 0.67 (ground collapse density) and the lowest
with 0.17 (lithology). After data similarity analysis, the number of
neurons in the input layer of the neural network model is determined.
The number of neurons in the input layer is determined as 13:
elevation, slope, aspect, plane curvature, fracture distance, river
distance, land use, highway distance, precipitation, normalized
vegetation index (NDVI), lithology, lithological mining distance,
and ground collapse density. The impact factor KL divergence is
shown in Table 4.

The entire flow chart is shown in Figure 6. First, image acquisition
is carried out with the help of a satellite to obtain DEM data and
geographic data, and then the spatial database is generated; the spatial
database is divided into the sensitivity dataset of the Fenxi mining area
and Xishan mining area; influencing factors are selected based on two
datasets; the importance of influencing factors are ranked using
random forests; based on the calculation of KL divergence, it is
determined that the two datasets are similar; the basic model is
built based on the Fenxi mining area; the model is transferred to
No. 9 coal mine in Xishan Headquarters; and the comparison of

FIGURE 6
Entire flow chart.

Frontiers in Earth Science frontiersin.org11

Zhang et al. 10.3389/feart.2023.1105985

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1105985


sensitivity evaluation performance is performed by changing the
transfer learning mode.

5 Evaluation results

5.1 AUC value and ROC curve analysis

In Figure 7, model 1, model 2, and model 3 represent direct push,
self-transfer, and inductive transfer learning, respectively. The
training set of each model adopts single-factor binary logistic
regression analysis and selects 15 variables related to coal mine
landslide (p<0.05); the collinearity analysis of each variable shows
that the corresponding tolerance is less than 1 and greater than 0.1,
and the variance expansion factor (VIF) is less than 4; the test results
show that there is no multiple collinearity among the variables
included in the logistic regression. The ROC curve of LSP and its
corresponding AUC value are shown in Figure 7. From the obtained
AUC, we conclude that direct push transfer learning is a mechanical
model transfer process, and the model to be transferred without
training is difficult to meet the landslide prediction effect, so the
value of AUC is relatively low, but the AUC value higher
than 0.5 indicates that this model has a certain transfer effect.
The AUC values of the other two models are both higher
than 0.95 and the difference is almost the same, which means
that both self-transfer and inductive transfer can better fit the
problems in this study. However, from the perspective of an
accuracy value, inductive transfer learning shows excellent
evaluation efficiency in this area.

5.2 Susceptibility map analysis

According to the classification standard of landslide sensitivity in
the coal mine area of Jiukuang mine, Xishan Headquarters, three

landslide sensitivity maps were obtained and converted into a grid
format. The three LSPmaps drawn by using the three models are shown
in Figure 8. Figure 8 shows that there is a big difference between direct
push transfer learning and self-transfer and inductive transfer partition

FIGURE 7
ROC and AUC for the three landslide susceptibility models.

FIGURE 8
Landslide susceptibilitymapsusing the threemodels. (A) Self -transfer
learning, (B) Direct push transfer learning, (C) Inductive transfer learning.
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in the beginning of the three algorithms, indicating that the effect of
direct push transfer learning is not ideal. In fact, inductive transfer
learning and self-transfer show quite good performance and maintain a
high degree of consistency with the distribution of geological hazards in
the study area.

In order to compare the two spatial LSP indices, the characteristics of
landslide distribution and their area percentage under each susceptibility
range are shown in Table 5.

Table 5 shows that the region with the highest landslide
sensitivity has 139, 77, and 144 landslide points based on self-
transfer learning, direct push transfer learning, and inductive
transfer learning, respectively. The regional distributions of
highest landslide sensitivity based on self-transfer learning,
direct push transfer learning, and inductive transfer learning are
31.33%, 35.50%, and 33.75%, respectively. The landslide disaster
sites with the low-sensitivity level are very low in all the surveys
(Gokceoglu et al., 2005; Su et al., 2017a). Therefore, inductive
transfer learning is considered one of the best models of LSP
algorithm.

6 Analysis of model building

Through the aforementioned analysis, it is found that the
distribution of a coal mine landslide was controlled by mining-
related factors. The results show that the incident is not caused by
coal mining, but the mining factors play a major role in promoting the
coal mine landslide. In general, the landform is the
necessary condition of forming a geological hazard, stratigraphic
lithology of a geological disaster form provides the material
foundation, and the deformation and destruction of a
geological structure upon geological disasters have a direct or
indirect control effect; rainfall is the main triggering factor of
geological disasters, and mining disturbance, roads, and other
human engineering activities have intensified the formation of
geological hazards.

The greatest contribution of distance to road is probably the fact that
road construction changes the slope, creates a steep slope, and causes
instability of the slope. In terms of mechanical properties, profile
curvature and ground collapse density are also relatively important
factors. The curvature factor represents the inhomogeneity of the
surface. The greater the unevenness, the more uneven the force on
the slope is, and the greater the possibility of geological disasters (Chen
and Li, 2020). Theoretically, ground collapse density plays an important
role in the occurrence of geological disasters (Hait and Head-Gordon,
2020; Zhang et al., 2022b; Zhou et al., 2022). The ground collapse

significantly affects the surface stability of the mining area. A large
amount of ground collapse damages the surface morphology and
stability.

The transfer learning model has been widely used in many
research studies, which can well reflect the basic characteristics of
its corresponding model type (Huang et al., 2020; Guo et al., 2021; Li
et al., 2022; Zhuo et al., 2022). Compared to other deep learning
algorithms, transfer learning has fewer restrictions on variables and
has the advantages of high computational efficiency, high accuracy,
and low debugging cost (Su et al., 2017b; Huang et al., 2018; Liao et al.,
2021). It can make up for the problem of insufficient data in the target
region, has strong generalization ability, and does not need a large
amount of data in the process of model migration, so it becomes a
relatively better algorithm.

7 Conclusion

In this study, the Fenxi coal mine area is taken as the study area,
265 landslides and 16 condition factors are recorded, and a
sensitive basic model is established. The model is transferred to
the coal mine area of No. 9 coal mine in Xishan coal field,
and different transfer learning methods are introduced; the
results of AUC accuracy and landslide distribution
characteristics show that inductive transfer learning is more
suitable for landslide sensitivity evaluation in the Jiujiu coal
mine area of Xishan coal field. The identification of landslide
sensitivity in the mining area facilitates to accurately determine
the factors causing landslide in mining areas. The zoning
performance comparison of the sensitivity of a coal mine
landslide based on the migration learning methods can better
evaluate the impact of landslide on different mines so as to
better prevent geological disasters in mines.
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