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Seismic liquefaction has been reported in sandy soils as well as gravelly soils.
Despite sandy soils, a comprehensive case history record is still lacking for
developing empirical, semi-empirical, and soft computing models to predict
this phenomenon in gravelly soils. This work compiles documentation from
234 case histories of gravelly soil liquefaction from across the world to
generate a database, which will then be used to develop seismic gravelly soil
liquefaction potential models. The performance measures, namely, accuracy,
precision, recall, F-score, and area under the receiver operating characteristic
curve, were used to evaluate the training and testing tree-based models’
performance and highlight the capability of the logistic model tree over
reduced error pruning tree, random tree and random forest models. The
findings of this research can provide theoretical support for researchers in
selecting appropriate tree-based models and improving the predictive
performance of seismic gravelly soil liquefaction potential.
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1 Introduction

Liquefaction occurs when a saturated soil loses its strength due to a rise in pore water
pressure caused by dynamic loads. It is a condition in which earthquake shaking or other
rapid loading weakens the stiffness and strength of a soil. When soil liquefies, it loses its
strength and the ability of a soil deposit to sustain the structure above it. This phenomenon
causes destructions to environment, structures and human life. Geotechnical engineers must
examine soil liquefaction characteristics as part of their profession, in the design stage of civil
engineering project (Ghani et al., 2021). Most prior studies concentrated on developing
liquefaction evaluation models for sandy or silty soils while ignoring the potential of
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liquefaction in gravelly soils. Because gravelly soils are very
permeable and contain big particles, extra pore water pressure
cannot build up quickly during earthquake loading. Many studies
of historical liquefaction-induced risks, however, have revealed that
loose to medium density gravelly soil can also liquefy after major
earthquakes (Youd et al., 1985; Yegian et al., 1994; Sirovich, 1996;
Hatanaka et al., 1997; Lin et al., 2004; Cao et al., 2011).

Recent research on the mechanism and behavior of gravelly soil
liquefaction has revealed that the triggering conditions for gravelly soil
liquefaction differ from those for sandy or silty soil (Wang and Wang,
2017; Chen et al., 2018; Hu, 2021a). For example, a review of the
majority of the soil profile reveals a thick non-liquefiable sandy gravel
layer with high penetration resistance (potentially indicating a dense soil
deposit) that may have acted as a less-permeable capping layer,
contributing to the development of high excess pore water pressures
leading to liquefaction while also preventing sand ejecta from reaching
the ground surface and liquefaction manifestation to be observed.
Because of these differences, gravel soil liquefies differently than
sandy or silty soil. Researchers and engineers are attempting to
assess the liquefaction potential in this type of soil owing to the
widespread occurrence of seismic gravelly soil liquefaction during
major earthquakes around the world. However, there is a scarcity of
case histories of gravelly soil liquefaction created to develop capable
models (Yegian et al., 1994; Hatanaka et al., 1997).

Andrus and Stokoe (2000) proposed the first simplified approach
based on Vs and cyclic resistance ratio (CRR) to evaluate the
liquefaction of gravelly soils with fines content of less than 5% using
36 shear wave velocity test (Vs) data from the 1906 San Francisco
earthquake, 1983 Borah Peak earthquake, 1989 LomaPrieta earthquake,
1993 Hokkaido-nansei earthquake, and 1995 Hyogo-ken Nanbu
earthquake. Later, the simplified technique was adjusted to account
for the influence of void ratio andGC on the liquefaction of gravelly soil
(Chang, 2016). Following the enhancement of the data by the dynamic
penetration test (DPT) and shear wave velocity test in the
2008 Wenchuan earthquake, an increasing number of models, such
as the fundamental procedures (Cao and Yuan, 2010; Yuan and Cao,
2011), logistic regression (LR)models (Cao et al., 2011; Cao et al., 2013),
and artificial neural network (ANN) models (Kang et al., 2014) were
developed. However, the historical DPT data utilized to develop these
approaches and models came from a single earthquake (the
2008 Wenchuan earthquake), therefore the models’ generalization
abilities need to be tested further using additional historical data.
Despite their reliable and accurate results, most algorithms are
difficult to apply in reality due to their extensive training and
modeling procedures, as well as their “black box” aspects. Decision
tree algorithms have been successfully applied to numerous
geotechnical problems, such as pillar stability (Ahmad et al., 2021)
and soil liquefaction potential (Ahmad et al., 2019a). When using tree
algorithms to evaluate seismic gravelly soil liquefaction potential,
outputs should be discrete values such as “yes” or “liquefied”, “no”
or “non-liquefied.”

Artificial intelligence (AI) techniques have been widely used to solve
real-world problems in the last 10 years, particularly in civil engineering.
AI techniques have been successfully applied to awide range of real-world
scenarios, paving theway for a number of promising opportunities in civil
engineering and other fields such as environmental (Froemelt et al.,
2018), geotechnical and geological (Momeni et al., 2014; Armaghani et al.,
2017; Mikaeil et al., 2018a; Mikaeil et al., 2018b; Ahmad et al., 2019a;

Ahmad et al., 2019b; Dormishi et al., 2019; Ahmad et al., 2020a; Ahmad
et al., 2020b; Ahmad et al., 2020c; Ahmad et al., 2020d; Noori et al., 2020;
Ahmad et al., 2021; Ahmad et al., 2022; Amjad et al., 2022; Xie et al., 2022;
Yan et al., 2022), and other sciences (Hajihassani et al., 2014; Guido et al.,
2020; Morosini et al., 2021; Asteris et al., 2022) including seismic gravelly
soil liquefaction potential evaluation (Kang et al., 2014). These studies
introduced new ideas and methods for assessing the seismic liquefaction
potential of gravelly soils. This field, however, is still being researched. The
main purpose of this research is to develop new decision tree models for
predicting seismic gravelly soil liquefaction potential. The decision tree
algorithms have the advantage of dealing with the classification problem,
making it a rational choice in classification and decision-making. The
main applications of the decision tree algorithms—C4.5, random tree
(RT), and logistic model tree (LMT)—have mostly been used in
geotechnical engineering to predict pillar stability, slope stability, and
liquefaction susceptibility (Ahmad et al., 2019a; Ahmad et al., 2021; Li
et al., 2022), but critical review of existing literature suggests that despite
the successful implementation of LMT, RT, reduced error pruning tree
(REPT), and random forest (RF) in various domains, their
implementation to predict seismic gravelly soil liquefaction potential is
scarcely explored. Furthermore, one of the main significance of the
developed decision treemodels is that in thesemodels, there is no need to
add functional parameters (such as cyclic stress ratio in the LR model
proposed by Cao et al. (2013) values affecting parameters; all parameters
can be put into the model as they are, without any normalization or
calibration.

2 Sample library and correlation
analysis

The existing soil liquefaction case histories data are collected as
supportive data for the establishment of prediction models. In this
study, the dynamic penetration test (DPT) data of gravelly soil
liquefaction to 234 from 17 historical earthquakes were ascertained
from Hu (2021a). Most of these cases have been reviewed, screened,
and corrected to result in robust database and recently referred by
Hu (2021a). The seismic gravelly soil liquefaction case history data is
shown in Table 1 (the complete database is available in
Supplementary Appendix Table SA1), where X1 indicates
moment magnitude (Mw), X2 indicates the epicentral distance
(R), X3 indicates the bracketed duration (t), X4 indicates the
peak ground acceleration (PGA), X5 indicates gravel content
(GC), X6 indicates fines content (FC), X7 indicates average
particle size (D50), X8 indicates overburden stress-corrected
dynamic penetration test blow count (N′120), X9 indicates vertical
effective overburden stress (σ′v), X10 indicates depth to the water
table (Dw), X11 indicates thickness of the impreable capping layer
(Hn), and X12 indicates thickness of the unsaturated zone between
groundwater table and capping layer (Dn). These tweleve parameters
have been widely accepted, among the researchers such as (Yuan and
Cao, 2011; Hu, 2021b) as their values are relatively easy to be
obtained and suitable set to evaluate seismic gravelly soil
liquefaction potential. The summary of descriptive statistics of
the input paramaters (i.e., Mw, R, t, PGA, GC, FC, D50, N′120, σ′v,
Dw,Hn, andDn) are given in Table 2. The mean or mode imputation
method is a simple and widely used method for replacing missing
values (Batista and Monard, 2003). This approach is used in this
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study. For each of these parameters in the considered database, the
minimum (Min) and maximum (Max) limits, standard deviation (SD),
kurtosis, and skewness values have been tabulated. A lower SD number
indicates that the results are mainly close to the mean (PGA, Mw, Dn,
Hn, Dw, FC, and N’120), while a larger SD suggests a greater spread out
(R, σ’v, t, GC, and D50) (Edjabou et al., 2017). Skewness (value might be
positive, zero, negative, or undefined) assists in evaluating the extent of
asymmetry of the probability distribution in the case of a real-valued

arbitrary parameter from the perspective of its average value (Sharma
andOjha, 2020). Furthermore, kurtosis is typically between −10 (heavy-
tailed) and +10 (light-tailed), which aids in determining the form of a
probability distribution, as explained by Brown andGreene (Brown and
Greene, 2006). The kurtosis values forMw and t are negative and range
between −0.3 and −0.1 (follow mesokurtic distribution), whereas the
rest are positive values (follow leptokurtic distribution) (Benson, 1993;
Lee and Ahn, 2019).

TABLE 1 Seismic gravelly soil liquefaction history data.

S. No. X1 X2 (km) X3 (s) X4 X5 (%) X6 (%) X7 (mm) X8 X9 (kPa) X10 (m) X11 (m) X12 (m) Liquefied?

1 7.9 96.30 40 0.21 9 9 0.5 16.01 32 1.5 1.5 0 Yes

2 7.9 94.00 40 0.24 5 53 6.15 10.79 49 0.8 0.8 0 Yes

3 7.9 95.00 40 0.24 4.9 50 5.9 20.91 46 1 1.1 0 Yes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

232 7.9 99.00 40 0.18 4.9 54.9 7.57 14.84 63 2 0.6 1.4 No

233 7.9 129.60 110 0.2 4.9 30 1.7 16.61 100 4.1 3.5 0.6 No

234 7.9 84.42 105 0.43 4.9 90 71.2 18.21 99 4 4 0 No

TABLE 2 Descriptive statistics of each parameter.

Parameter X1 X2 (km) X3 (s) X4 X5 (%) X6 (%) X7 (mm) X8 X9 (kPa) X10 (m) X11 (m) X12 (m)

Max 9.2 456.38 150 0.84 45.3 90 71.2 62.12 276.8 11.7 10.65 7

Min 6.4 9.2 3.5 0.074 0 0.4 0.15 2.36 11.8 0 0 0

Mean 7.7 89.84 48.06 0.353 8.082 45.7 8.647 14.98 80.9 2.564 2.261 0.873

SD 0.713 110.372 37.136 0.156 6.130 18.397 11.191 8.862 50.778 2.026 1.483 1.217

Kurtosis −0.334 3.677 −0.193 0.240 6.734 0.146 13.944 4.370 1.807 3.238 5.700 8.896

Skewness 0.529 2.144 0.866 0.597 2.046 −0.257 3.357 1.702 1.374 1.682 1.489 2.739

TABLE 3 Correlation coefficients between various parameters.

Parameter X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 1

X2 0.7186 1

X3 0.5599 0.3112 1

X4 −0.3044 −0.3412 −0.0137 1

X5 −0.1271 −0.1056 −0.1635 0.2267 1

X6 −0.1485 −0.2132 0.0287 −0.0408 −0.2901 1

X7 −0.0069 −0.1112 0.1591 −0.1057 −0.2208 0.7574 1

X8 0.0396 −0.0636 0.2041 −0.0631 −0.1679 0.1899 0.2619 1

X9 0.3639 0.4205 0.1964 0.0136 0.2910 −0.1501 −0.1220 −0.0683 1

X10 0.1565 0.2438 0.2219 0.1352 0.1863 −0.0161 0.0005 −0.0667 0.6871 1

X11 0.2049 0.2391 0.1566 −0.0480 0.0281 0.0413 0.0626 −0.0740 0.3325 0.0912 1

X12 −0.0571 −0.0204 −0.0375 0.1335 −0.0157 0.0959 0.0017 0.0214 0.2304 0.4763 −0.3123 1
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Pearson’s correlation coefficient (ρ) was used to measure the
strength of a linear association between two variables. Given a pair of
random variables (p, q), the following equation is used to calculate ρ:

ρ p, q( ) � cov p, q( )
σpσq

(1)

where cov denotes covariance, σp denotes the standard deviation of
p, and σq denotes the standard deviation of q. | ρ | > 0.8 represents a
strong correlation between m and n, values between 0.3 and
0.8 represents a moderate relationship, and | ρ | < 0.30 represents a
weak relationship (van Vuren, 2018). Table 3 depicts the strength of the
relationship between the various parameters in order of moderate to
weak linear correlation. The correlation coefficient has a maximum
absolute value of 0.7574, meaning there is no “strong” linear correlation.
Correlation analysis is commonly used in prediction modeling to find
potential predictors of an outcome variable. Correlation analysis can
also be used to identify potential sources of multicollinearity in our
predictor variables. When two or more predictor variables are
significantly associated with each other, multicollinearity occurs. We
can identify which variables contribute to multicollinearity by
evaluating the correlation matrix of our predictor variables.

3 Decision tree algorithms

3.1 Random tree

Random trees comprise a forest of predictor trees. Random tree
is an algorithm halfway between a simple decision tree and a random
forest. The classification mechanisms include the following: The
random tree classifier classifies the input vector of characteristic with
each tree in the forest and then outputs the class label with the most
“votes” (Witten et al., 2011).

A random tree is one that is randomly created from a set of
possible trees, each of which has K random attributes at each node.
In this context, “at random” indicates that any tree in the set has an
equal chance of being chosen for sampling. The tree distribution is
“uniform.” Rapidly constructing random trees and integrating them
with large sets of random trees typically yields accurate models. In
recent years, there has been extensive research on random trees in
the field of machine learning. This model employed the random tree
approach in order to achieve the highest level of accuracy in its
numerous classifier parameters, such asMinNum value–a minimum
number of instances, depth–maximum depth of the tree, and
seed–randomly selecting attributes, K value–number of sets
utilized for randomly chosen attributes. The Decision Tree must
be basic and compact for improved classification. Otherwise, the

level of precision will be diminished. To obtain the highest level of
precision, a random tree algorithm modifies the depth, seed, and K
value. To determine the maximum parameter value, one parameter
was held constant while the other was adjusted to determine the
parameter with the highest accuracy.

3.2 Reduced error pruning tree

The Reduced Error Pruning Tree (REPT) is a fast decision tree
learning algorithmmethod that combines Reduced Error Pruning (REP)
and the Decision Tree (DT) (Quinlan, 1987). When the output of a
decision tree is large, the DT is used to simplify the modeling process
using training dataset, and theREP is used to reduce complicity of the tree
structure (Mohamed et al., 2012). The pruning process in the REPT
algorithmaddresses the problemof backward overfitting (Quinlan, 1987).
Based on the post-pruningmethod, the REPT algorithm attempts to find
the minimal version of the most accurate sub-tree (Esposito et al., 1999;
Chen et al., 2009). Thismodel’s performance is based on information gain
from entropy or variance reduction and error pruning techniques
(Srinivasan and Mekala, 2014). The complex decision trees can lead
to overfitting and make a model less interpretable, REP helps to reduce
complexity by removing the DT structure’s leaves and branches
(Quinlan, 1987; Galathiya et al., 2012; Mohamed et al., 2012; Pham
et al., 2019).

3.3 Random forest

Breiman (2001) developed the Random Forest (RF) classifier and
may be characterized as a collection of classification trees in which each
tree votes on the class assigned to a given sample, with the most
frequently occurring answer winning the vote (Sun and Schulz, 2015).
The RF method has demonstrated its ability to handle high-
dimensional data and is relatively resistant to overfitting (Breiman,
2001). This algorithm is widely used in various domains of civil
engineering, including geotechnical engineering. Before model
training, two parameters must be selected: the number of predictors
considered at each fork of the tree and the number of random trees
constructed during model construction. This machine learning has
various advantages, including great performance with complicated
datasets utilizing tiny calibrating and the ability to handle with high
noise factors. The bagging approach is always used in a random forest to
randomly select variables from the entire dataset for model calibration.

3.4 Logistic model tree

Logistic Model Tree combines the C4.5 algorithm
(Quinlan, 1992) and Logistic Regression (LR) functions. The
information gain ratio technique is utilized to divide the tree
into nodes and leaves, and the LogitBoost algorithm
(Landwehr et al., 2005) is used to fit the logistic regression
functions at each node of the tree. Because it is the quickest
approach for giving dependable classification accuracy, the
C4.5 algorithm employs the entropy methodology for feature
selection (Lim et al., 2000). The CART technique, which
prunes the tree for modeling the training dataset,

TABLE 4 Confusion matrix of binary problem.

Actual Predicted

Yes No

Yes TP FN

No FP TN

TP,true positive; TN, true negative; FP, false positive; FN, false negative.
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overcomes the overfitting problem, which is a significant
challenge in LMT modeling (Shahabi et al., 2013). The IGR
can be expressed as follows:

Gain ratio a( ) � gain a( )
split info a( ) (2)

where gain (a) is the information obtained after attribute an is
chosen as a test for training sample classification and split info (a) is
the information obtained after categorizing x training samples into n
subsets (Quinlan, 1993).

The LogitBoost algorithm then conducts additive Logistic
Regression with least-squares fit for each class Ci (yes or no)
using the equation below (Doetsch et al., 2009):

Lc x( ) � ∑
CF

i�1
αixi + α0 (3)

where Lc(x) is the least-squares fit, and CF, αi are, respectively,
the number of liquefaction potential conditioning factors and
the coefficient of the ith element of vector x. The
posteriori probabilities in the leaves of the LMT are
calculated using the linear Logistic Regression model
(Landwehr et al., 2005):

p c x|( ) � exp Lc x( )( )
∑
c

c′�1
exp Lc′ x( )( )

(4)

where c is the number of liquefaction classes and Lc (x), the least-

squares fit, is transformed in such a way that ∑
c

c′�1
Lc(x) � 0

4 Performance measures

The accuracy (Acc), Matthews correlation coefficient (Mcc),
precision (Prec), recall (Rec), F-score, and area under the receiver
operator characteristic (ROC) curve (AUC) were used to evaluate the
model’s performance. The performance metrics, together with their

formulations and definitions, based on the confusion matrix
(Table 4) described in Table 5.

5 Results and discussion

The manner in which data is divided into training and test sets
has a significant impact on the results of data mining techniques
(Javadi et al., 2006). The optimal parameter configuration is used to
fit the prediction model to the training set, and the test set is used to
evaluate model performance based on overall prediction outcomes
and prediction ability for each class. Finally, the best model is chosen
by comparing the overall performance of various models. If the
model’s prediction performance is satisfactory, it can be used for
deployment. The methodological framework of tree-based classifier
for predicting seismic gravelly soil liquefaction potential models is
shown in Figure 1.

The entire calculation process is performed in Waikato
Environment for Knowledge Analysis (WEKA) software (Version
3.9.6), a java-based and open-source application, trained the decision
tree models. It contains tools for data preparation, classification,
regression, clustering, association rules mining, and visualization. The
details of the different parameters of classifiers used for the
implementation of developed models in WEKA framework are
summarized in Table 6. First, the search range of different
parameters values is specified. In particular, for different algorithms,
the search range of the same parameters is kept consistent. Further on,
according to themaximum average accuracy, the optimal values for each
set of parameters are obtained, which are indicated in Table 6. Based on
the same dataset, these algorithms with optimal hyperparameters were
then used to predict seismic gravelly soil liquefaction potential. Several
performance measures based on a confusion matrix are made using
training and testing datasets for gravelly soil liquefaction potential were
used in order to quantify the performance measures of the proposed
models. The performance results of the proposed models were obtained
and compared with each other based on the same training and testing
datasets. Subsequently, the confusion matrix of each model was
determined, as shown in Table 7.

TABLE 5 Definition and formulation of performance measures.

Parameter Definition Formulation

Acc Rate of correctly classified instances from total instances Acc � TP+TN
TP+TN+FP+FN

Prec Rate of correct predictions Prec � TP
TP+FP or TN

TN+FN

Rec True positive rate Rec � TP
TP+FN or TN

TN+FP

F-score Used to measure the accuracy of the experiment F − score � 2 × Prec × Rec
Prec+Rec

Mcc measure the difference between the predicted classes and actual classes Mcc � TP × TN−FN × FP������������������������
(TP+FP)(TN+FP)(TN+FN)(TP+FN)

√

AUC The capacity of a classifier to discriminate between classes and is used to
summarise the ROC curve

-

Accmay represent how many samples are correctly identified, but it cannot demonstrate how many liquefied sites are correctly detected. Therefore, additional performance measures, such as

Prec and Rec, are necessary to further evaluate the performance of a model. Prec and Rec is a pair of contradictory measures. Generally, Prec is large while Rec is not large, or vice versa. Therefore,

a compromised index, F-score, is used to balance them.Mcc takes values in the interval [−1, 1], with “1” showing a complete agreement, “−1” a complete disagreement, and “0” presenting that

the prediction was uncorrelated with the ground truth. TheMcc value is regarded to be the best evaluation measure for the overall performance of a classifier method (Baldi et al., 2000). F-score

combines precision and recall values to attain a harmonic mean. F-score has ranged from 0 (worst value) to 1 (best value). The AUC, is employed to summarize the ROC, curve; ROC, curve gives

five degrees of rating (Bradley, 1997): excellent (0.9–1), good (0.8–0.9), fair (0.7–0.8), poor (0.6–0.7), and not discriminating (0.5–0.6). Concisely, model having good Acc, larger AUC, high

F–score, and high Mcc concurrently depicting ideal model as class imbalance are not simply eluded in soil liquefaction study.
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The values on the main diagonal indicated the number of cases
correctly predicted. The Acc, Prec, Rec, F-score, Mcc, and AUC were
calculated, which were listed in Table 6. To make a fair comparison, all
the models are developed by applying them to the same seismic gravelly
soil liquefaction case history training and testing data sets.

Figure 2, displays the bar plot of the yes and the no classes of the
seismic gravelly soil liquefaction for the training and test phases. The
analysis of the Acc together with Rec, Prec, F-score,Mcc, andAUC for the
seismic gravelly soil liquefaction potential data set demonstrates that the
LMT achieved a better prediction performance in training set succeeded

FIGURE 1
Methodological framework of Tree-based classifier for predicting seismic gravelly soil liquefaction potential.

TABLE 6 Classifiers’ parameters.

LMT RT REPT RF

Parameter Value Parameter Value Parameter Value Parameter Value

fastRegression True KValue 0 initialCount 0 bagSizePercent 9

minNumistances 15 allowUnclassifiedInstances False maxDepth −1 maxDepth 1

numBoostingIterations −1 maxDepth 0 minNum 2 numExcutionSlots 1

splitOnResiduals False minNum 1 numFolds 4 numFeatures 0

useAIC False numFolds 2 seed 4 numIterations 1,000

weightTrimBeta 0 seed 5 spreadIntialCount False seed 1

TABLE 7 Confusion matrices results for training and testing datasets.

Dataset Model

LMT RT REPT RF

Actual Predicted

Yes No Yes No Yes No Yes No

Training Yes 89 5 86 8 87 7 88 6

No 12 56 14 54 12 56 24 44

Testing Yes 39 3 38 4 34 8 39 3

No 9 21 8 22 5 25 11 19
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by the REPTmodel, RTmodel and theRFmodel. Similarly, in test set, the
LMT also achieved better prediction succeeded by the REPT model, RT
model, and the RF model (see Figure 2). It can be seen that most of the
cases, i.e., 145 were accurately classified using the LMT in the training
dataset whereas the performance of the LMT and RT models are at par,
i.e., 60 cases in the test set. Decision trees algorithms, i.e., RT and REPT
are quite transparent, and are white box models that are more intuitive
and interpretable than ones with other model, i.e., logistic regression and
ANN models for seismic gravelly soil liquefaction potential proposed in
the literature. Due to tree-like structures, the proposed models can not
only obtain accurate classification results, but can also show the internal
mechanism for classification results. Figure 3 shows the results of
implementing RT. The size of this tree is 29 with the number of
nodes being 14 and 15 leaves. The leaves of the tree represent the

predictive rules of the tree. The process time of building this tree is 0.02 s.
Similarly, the size of REPT is 11 with the number of nodes being 5 and
6 leaves is shown in Figure 4. The process time of building REPT is 0.01 s.
The overall accuracy of LMT model based on the training and test sets
were found better than the RTmodel. By comprehensively analyzing the
Acc together with Rec, Prec, F-score, Mcc, and AUC, the rank of overall
prediction performance was LMT>REPT>RT>RF. According to the Rec,
Prec, F-score of each yes and no levels, the prediction performance for yes
level was better than that for no level. The graphical output of the RT and
REPT models are presented in Figures 3, 4 respectively. The numbers in
parentheses at each leaf node, represent the total number of instances and
the number of incorrectly classified cases. It is clear that some instances
are misclassified in some leaves. The number of misclassified instances is
specified after a slash. In order to create the most accurate RT and REPT

FIGURE 2
Comparison of results of developed DT models.

FIGURE 3
RT model.
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models, the optimal values for theminimumnumber of instances per leaf
in WEKA were obtained through trial and error. The developed RT and
REPT models, Figures 3, 4 can be used by geotechnical engineering
professionals with the help of a spreadsheet to evaluate the gravelly soil
liquefaction potential for a future seismic event without going into
complexities of model development.

Furthermore, Figure 5 shows that the LMT was able to achieve
excellent results with the lowest number of unmatched cases. For LMT,
REPT, RT, and RFmodels, the matched and unmatched numbers were
205 and 29, 202 and 32, 200, and 34, and 190 and 44, respectively,
indicating the LMT model’s superiority over the other models used in
this study. The error rate throughout the testing phase was low,
illustrating the LMT model’s high performance. It was determined

that the model with the best performance for seismic gravelly soil
liquefaction was the LMT, and that it could be utilized in this field for
the same purpose of minimizing the associated risk.

Although the proposed models produce desired predictions, it
has some limitations, such as a limited and class imbalanced dataset.
In general, a limited dataset will have an impact on model
generalization and reliability. While the generated models
perform well with limited data sets, with Acc greater than 80%,
prediction performance on a larger dataset should be improved.
Furthermore, the dataset is class imbalanced because yes (liquefied)
instances outnumber no (non-liquefied) cases. As a result, it is
critical to make a larger and more balanced seismic gravelly soil
liquefaction database.

FIGURE 4
REPT model.

FIGURE 5
Comparison of results obtained from different models.
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For determining the effectiveness of developed models and
comparing their robustness, rank analysis method is used. The
statistical parameters are used to assign the score value in this
study, with their ideal values serving as the benchmark. It
depends on how many models are used. The greatest score is
given to the best performing results model, and vice versa. The
ranking ratings for two models with the same outcomes may be
the same. The score attained by LMT is the highest in the training
phase (12), followed by REPT (9) and RT (6) and RF (3) as
presented in Table 8.

6 Conclusion

In this paper, prediction models were developed by using
decision tree models such as LMT, REPT, RT, and RF for the
seismic gravelly soil liquefaction potential and compared the
model performances. Totally 234 case history data were used for
the study with twelve different input parameters for seismic
gravelly soil liquefaction potential were selected as the input
variables: Mw, R, t, PGA, GC, FC, D50, N′120, σ′v, Dw, Hn, and Dn.
The predictive performance of the proposed models is verified
and compared. In this study, the LMT model successfully
achieved a high level of modeling prediction efficiency to
REPT model, RT model and RF model in the training and test
sets. Because all models were developed using the same methods
(with the same training and test data sets), the LMT model
performed the best and highest in this aspect. By
comprehensively analyzing the Acc, Prec, Rec, F-score, Mcc,
and AUC for yes and no classes, the LMT performed better
than REPT, RT, and RF models in the training and test sets.
However, in this study, the RF was deemed the lowest-
performing model. For LMT, REPT, RT, and RF models, the
matched and unmatched numbers were 205 and 29, 202 and 32,
200 and 34, and 190 and 44, respectively, indicating the LMT
model’s superiority over the other models used in this study.
Furthermore, rank values of LMT, REPT, RT and RF are 12, 9, 6,
and 3, respectively and the error rate throughout the testing
phase was low, illustrating the LMT model’s high performance. It

is believed that the limitation on achieving more successful
results is due to the limited number of data (234 case history
data) and it is thought that the success rates of different decision
tree models will increase if the data set is expanded in the future.
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