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It remains unknown how stress triggering causes earthquakes in the eastern
Tibetan Plateau following the Wenchuan Earthquake in 2008. The MS

6.1 Lushan earthquake on 1 June 2022 in a seismic gap between the 2008 MW

7.9 Wenchuan earthquake and the 2013 MW 6.6 Lushan earthquake provided an
opportunity to detect stress evolution and seismic activity on the fault in this study.
We calculated the Coulomb stress change of the June 2022 Lushan–Maerkang
earthquake sequence using a Burgers viscoelastic model and, herein, discuss how
the sequence have been triggered by historical earthquakes since 1900 in the
eastern Tibetan Plateau. Our results suggest the following trends: 1) the 1955 M
7.6 Kangding and 2008 MW 7.9 Wenchuan earthquakes contributed most
significant loading effects on the 2022 MS 6.1 Lushan earthquake; however, the
2013 MW 6.6 Lushan earthquake had an unloading effect on the 2022 Lushan
earthquake. 2) The 2021MW 7.3Maduo earthquake contributed a loading effect on
the 2022 Lushan earthquake, and the 2022 Lushan earthquakemay have triggered
the subsequent Maerkang earthquake swarm on 10 June 2022. 3) Viscoelastic
relaxation of the lower crust and upper mantle contributed significantly to fault
stress level, while a fault in a late-phase earthquake cycle may have ruptured via
slight stress perturbation near a cross-border conversion between positive and
negative stress from a far-field earthquake. We also provide a seismic potential
assessment along the faults in the eastern Tibet. Notably, the MW 6.8 Luding
earthquake that ruptured the southern segment of the Xianshuihe Fault on
5 September 2022 supports the conclusions of this study.
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1 Introduction

An MS 6.1 earthquake occurred on 1 June 2022, in Lushan County, China. The
earthquake hypocenter corresponds to an epicenter of 30.37°N, 102.94°E and a depth of
17 km, according to the China Earthquake Network Center (CENC). Other institutions
provided similar, but varying, results (Table 1); for example, the United States Geological
Survey (USGS) indicated an epicenter of 30.395°N, 102.958°E, with a moment magnitude of
MW 5.8 and a source depth of 12.0 km, and the Global Centroid Moment Tensor (GCMT)
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provided an epicenter of 30.35°N, 103.08°E, with a moment
magnitude of MW 5.8 and a source depth of 21.6 km.

The Lushan MS 6.1 earthquake in 2022 occurred along the
southern segment of the Longmenshan Fault between the
Songpan–Ganzi Terrane and the Sichuan Basin (Figure 1)

(Royden et al., 1997; Royden et al., 2008; Zhang et al., 2003;
Zhang, 2013; Hubbard and Shaw, 2009; Burchfiel et al., 1995;
Clark et al., 2005; Medvedev and Beaumont, 2006; Rui and
Stamps, 2016; Densmore et al., 2007; Hu et al., 2012; Luo and
Liu, 2018; Chen et al., 2000; Deng et al., 2003). Before the 2008 MW

7.9 Wenchuan earthquake, the Longmenshan fault zone was in a
moderately inactive state due to a slow slip rate (Wang et al., 2010;
Burchfiel et al., 2008; Gan et al., 2007; Ma et al., 2005; Wang et al.,
2008). However, postseismic deformation after the Wenchuan
earthquake became relatively complicated (Huang et al., 2014;
Diao et al., 2019; Wang et al., 2021). The 2013 MW 6.6 Lushan
earthquake occurred in the southwest section of the rupture (Jiang
et al., 2014). Moreover, the 2022MS 6.1 Lushan earthquake occurred
in the seismic gap between the 2013 MW 6.6 Lushan earthquake and
the 2008 MW 7.9 Wenchuan earthquake (Chen et al., 2013; Gao
et al., 2014). Therefore, the successive occurrence of these three
earthquakes has attracted interest in the scientific community.

Previous studies have indicated that the 2013 Lushan earthquake
was located in an area where the Coulomb stress change increased
due to the 2008 Wenchuan earthquake and was triggered by that

TABLE 1 Focal mechanisms of the 2022 MS 6.1 Lushan earthquake given by
various research institutions.

Number Strike (°)/dip (°)/rake (°) Data source

NPⅠ NPⅡ

1 224/53/105 20/40/71 USGS

2 217/45/103 19/46/78 GCMT

3 211/31/93 28/58/88 GFZ

4 230/62/103 24/31/67 IG

5 220/40/98 29/50/83 IG

IG: Institute of Geophysics, China Earthquake Administration.

GFZ: Helmholtz-Centre Potsdam–German Research Centre for Geosciences.

FIGURE 1
Tectonic map of the eastern Tibetan Plateau, southern Qaidam Terrane, Songpan–Ganzi Terrane, northern Chuandian Terrane, and western
Sichuan Basin, showing the topography, active faults, and earthquake epicenters. Lower hemisphere diagrams of focal spheres show fault plane solutions
from the USGS catalog from January 1904 to July 2022. The green beach balls indicate the 2022 MS 6.1 Lushan earthquake and the 2022 Maerkang
earthquake swarm; the black beach balls indicate the MW 6.0–6.9 earthquakes; and the nine red beach balls indicate the 1904 MW 7.1 Daofu
earthquake, the 1923 MW 7.0 Luhuo earthquake, the 1933 MW 7.4 Diexi earthquake, the 1947 M 7.75 Dari earthquake, the 1948 MW 7.3 Litang earthquake,
the 1955 MW 7.1 Kangding earthquake, the 1973 MW 7.4 Luhuo earthquake, the 2008 MW 7.9 Wenchuan earthquake, and the 2021 MW 7.3 Maduo
earthquake, respectively. The inset shows the tectonic setting of the Indo-Asian collision zone.
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TABLE 2 Earthquake rupture parameters.

Historical
earthquake

Mw Strike
(°)

Dip
(°)

Rake
(°)

Length
(km)

Width
(km)

Average
slip (m)

Fault starting
coordinates Lat (°N)

Lon (°E)

Coseismic ΔCFS(Pa) on
2022 Lushan earthquake

Postseismic ΔCFS(Pa) on
2022 Lushan earthquake

Data
source

1904-8-
30 Daofu M7.0

7.1 130 90 0 55 18 1.86 31.73 100.82 −2.05× 102 −9.25× 102 1, 2

1923-3-
24 Luohuo M7.3

7.0 130 90 0 60 14 1.6 31.343 100.659 −6.99× 102 −3.14× 103 1, 2

1933-8-25 Diexi M7.5 7.4 175 45 0 90 20 1.98 31.9 103.4 −2.18× 103 1.77× 103 3

1947-3-17 Dari
M7.75

7.7 135 90 0 252 19 3.1 33.92 98.99 1.88× 102 2.74× 103 1, 4

1948-5-
25 Litang M7½

7.0 315 90 0 41 20 1.8 29.55 100.52 −1.4× 102 3.51× 101 1, 5

1955-4-
14 Kangding M7.6

7.1 155 90 0 120 18 2.6781 30.03 101.84 2.21× 103 7.04× 103 1, 2

1973-2-
06 Luhuo M7.9

7.4 128 87 0 104 17 2.7 31.73 100.19 −1.13× 103 −2.93× 103 1, 6

1976-8-
16 Songpan M7.2

6.7 165 40 0 30 12 1.3 32.75 104.9 −3.5 −1.2× 102 3

1976-8-
22 Songpan M6.7

6.4 215 90 0 12 8 1.6 32.4 104.5 0.22 5.93 3

1976-8-
23 Songpan M7.2

6.7 165 40 0 22 11 1.3 32.5 104.1 −1.95× 101 −6.1× 101 3

1981-1-
24 Daofu M6.9

6.8 319 73 −4 44 20 0.8 30.7 101.2 −8.22× 102 −2.77× 103 1, 7

2008-5-
12 Wenchuan M8.0

7.9 229 — — 315 40 — 32.5224 105.426 2.36× 104 3.45× 104 8

2010-4-
14 Yushu M7.1

6.9 119 83 11 80 20 0.669 33.209 96.486 −6.28 −4.42× 101 1, 9

2013-4-2
0 Lushan M7.0

6.6 214 38 — 66.5 42 — 30.4374 103.289 −4× 104 −4.53× 103 10

2017-8-8 Jiuzhaigou
MW6.5

6.5 155 81 350 40 30 0.18 33.56 103.71 4.57 −3.8 1, 3

2021-5-22 Maduo
MW7.3

7.3 106 76 — 182 31.5 — 34.8176 97.3406 9.26× 101 1.3× 102 8

2022-6-
1 Lushan M6.1

6.0 230 37 109 11.5 7.1 0.51 30.395 102.958 — — 8
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earthquake (Toda et al., 2008; Lei et al., 2013; Jia K et al., 2014; Liu
et al., 2014; Wang et al., 2014; Xie et al., 2014; Zhu and Miao, 2015;
Zhu, 2016; Lin et al., 2019). If a triggering correlation exists, it is
unclear why the 2022 Lushan earthquake occurred 9 years later. The
potential seismogenic trend of faults around the Longmenshan fault
system is also in question. The Lushan earthquake and Maerkang
earthquake swarm that occurred in June 2022 provided a significant
opportunity to study the correlation of earthquake triggering.
Therefore, we studied the stress triggering of the 2022 Lushan
earthquake and the three subsequent Maerkang earthquakes from
the events shown in Table 2. Herein, we discuss the subsequent
seismic trend of surrounding faults and the triggering pattern of the
Lushan–Maerkang earthquake sequence via historical earthquakes.

2 Data and method

2.1 Stratified viscoelastic model

We used a stratified viscoelastic model to simulate the
Songpan–Ganzi Terrane, where earthquakes mainly occur along
the Longmenshan Fault. The wave velocity and density structure of
the crust and upper mantle were taken from Jia S et al. (2014) and Xu
et al. (2010). We assumed that the thickness of the elastic layer of the
crust was 30 km, and that the viscoelastic material was below that
depth. The viscosity coefficient mainly refers to the rheological
structural parameters of the lithosphere in eastern Tibet obtained
by Wang et al. (2021) based on deformation simulation after the
2008 MW 7.9 Wenchuan earthquake, as shown in Table 3.

The Maxwell body and Kelvin body in rheological structures
have defects in fitting short-term and long-term deformation,
respectively. Therefore, we chose the Burgers body, which is
suitable for simulating transient elastic response, short-term
exponential decay response, and long-term linear increase
response (Pollitz and Wicks, 2001; Pollitz and Sacks, 2002; Shao
et al., 2007). The constitutive relation (Malkin and Isayev, 2022) is as
follows:

σ + η2
k1

+ η1
k1

+ η2
k2

( ) _σ + η1η2
k1k2

€σ � η2 _ε +
η1η2
k1

€ε (1)

where σ is the stress, ε is the strain, and k1 and k2 are the stiffness
coefficients of the Kelvin model and Maxwell model, respectively. η1
and η2 are the Kelvin model viscosity (short-term viscosity) and
Maxwell model viscosity (long-term viscosity), respectively. k2, the
effective stiffness coefficient, is obtained from the S-wave velocity
and density of the medium, and the incomplete relaxation stiffness
coefficient is k1 � αk2/(1 − α), in which α is set to 0.67, according to
Ryder et al. (2011). Unless otherwise specified, the Coulomb stress
change mentioned in this paper is the sum of coseismic and
postseismic viscoelastic relaxation.

2.2 Method

The formula for calculating the Coulomb failure stress change
on the fault plane is as follows (King et al., 1994; Harris, 1998):

ΔCFS � Δτ + μ′Δσn (2)TA
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where Δτ is the shear stress change on the fault plane (taking the
fault sliding direction as positive), Δσn is the normal stress change on
the fault plane (the tension is positive), and μ′ is the effective friction
coefficient of the fault. The effective friction coefficient is 0.4 (King
et al., 1994). We used the PSGRN/PSCMP program for this work
(Wang et al., 2006).

2.3 Coseismic slip model

The stress field induced by an earthquake can be calculated using
fault dislocation theory and the source fault slip model. The Coulomb
stress change on the receiving fault plane can be obtained using Formula
(1). In our study, we used two methods to obtain the slip model of the
source fault: one method used the existing accurate slip distribution
model of an earthquake, such as that of the 2021 MW 7.3 Maduo
earthquake released by the USGS; in the second method, the empirical
formula of the relationship between the fault length andmagnitude was
obtained using statistics (Wells and Coppersmith, 1994), the scalar
seismic distance formula, and the moment magnitude definition
formula (Knopoff, 1958; Hanks and Kanamori, 1979):

The thrust earthquake equations are as follows (coefficients are
the average values):

logRLD � 0.58Mw − 2.42 4.8<Mw< 7.6( ) (3)
logRW � 0.41Mw − 1.61 4.8<Mw< 7.6( ) (4)

The strike–slip earthquake equations are as follows (coefficients
are the average values):

logRLD � 0.62Mw − 2.57 4.8<Mw< 8( ) (5)
logRW � 0.27Mw − 0.76 4.8<Mw< 7.6( ) (6)

M0 � μ · RLD · RW · �D (7)
MW � 2

3
logM0 − 9.1( ) (8)

where RLD is the length of the fault along the strike direction, RW is the
width of the fault along the dip direction, MW is the magnitude of the
moment,M0 is the scalar seismicmoment, μ is the shearmodulus of the
medium, and �D is the average dislocation of the fault. According to the
existing seismic fault parameters, the length, width, and average
dislocation of the fault can be calculated using Formulas 3ormulas
–Formulas 8. See Table 2 for the specific seismic fault rupture
parameters.

Afterslip on historical earthquake faults can affect some
simulation results (Nur and Mavko, 1974). However, we did not

consider the afterslip effect in the calculation; compared with the
main earthquake, the contribution of afterslip is concentrated in the
near field, and the stress change it causes is much smaller than the
effect of the coseismic slip model (Shen et al., 2009; 2011; Wang
et al., 2011).

3 Results

3.1 Triggering effect on Coulomb stress
change in the 2022 Lushan earthquake

We calculated the coseismic and postseismic viscoelastic
Coulomb stress change effects of historical earthquakes on the
2022 Lushan earthquake using the seismic rupture parameters, as
shown in Table 2. We show the Coulomb stress change at a depth of
12 km, which is also the result of waveform fitting, and from the
USGS. The focal mechanism parameter of the receiving fault is the
result from the USGS in Table 1.

The postseismic shear stress change (Δτ) at the hypocenter of the
2022 Lushan earthquake (30.395°N, 102.958°E) was positive
(consistent with the direction of fault slip), which contributed to
fault rupture (Figure 2A). The normal stress change (Δσn) at the
hypocenter was in the negative shadow zone (Figure 2B), indicating
that the 2008 Wenchuan earthquake caused a significant extrusion
change in the fault normal direction, which was not prone to fault
instability. The Coulomb stress change (ΔCFS) at the hypocenter
was in the positive shadow zone (Figure 2C), so the 2008Wenchuan
earthquake had a very obvious loading effect on the 2022 Lushan
earthquake. According to Table 2, the coseismic ΔCFS of the
2008 Wenchuan earthquake on the 2022 Lushan earthquake was
2.36 × 104 Pa, and the ΔCFS at the time of the 2022 Lushan
earthquake occurrence was 3.45×104 Pa, indicating that the
loading effect of the 2008 Wenchuan earthquake on the
2022 Lushan earthquake increased with ongoing loading of the
viscoelastic lower crust and upper mantle.

The hypocenter of the 2022 Lushan earthquake was near the
cross-border conversion between positive and negative Δτ, but had
positive values (Figure 2G). The hypocenter of the 2022 Lushan
earthquake was near the Δσn cross-border conversion between
positive and negative, but had negative values (Figure 2H). The
hypocenter of the 2022 Lushan earthquake was in the negative
shadow zone of ΔCFS (Figure 2I), so the 2013 Lushan earthquake
had an unloading effect on the 2022 Lushan earthquake. The
coseismic ΔCFS of the 2013 Lushan on the 2022 Lushan

TABLE 3 Parameters of the crust and upper mantle.

Number Layer
name

Thickness (km) (from Wang
et al., 2021)

Vp/(km/s) VS(km/s) ρ/(kg · cm−3)
η1/ P

a
· s⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ η2/ P

a
· s⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 Upper crust 0–10 6.05 3.2 2,500 ∞ ∞

2 Middle crust 10–30 6.2 3.5 2,850 ∞ ∞

3 Lower crust 30–55 6.55 3.6 2,950 5×1017 5×1018

4 Upper mantle 55–500 7.9 3.9 3,280 5×1018 1×1019
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FIGURE 2
Contour map of Coulomb stress change in the 2022 Lushan earthquake. The red beach balls are the source events, the green beach balls are the
receiving events, and the black beach balls are events between the source and receiving events. (A–C) Effects of postseismic shear stress change, normal
stress change, and Coulomb stress change of the 2008 Wenchuan earthquake on the 2022 Lushan earthquake, respectively. (D–F) Same display
(coseismic) as for effects of the 2013 Lushan earthquake on the 2022 Lushan earthquake. (G–I) Same display (postseismic) as for effects of the 2013
Lushan earthquake on the 2022 Lushan earthquake. (J–L) Same display (postseismic) as for effects of the 2021 Maduo earthquake on the 2022 Lushan
earthquake. (M–O) Same display (postseismic) as for effects of historical earthquakes on the 2022 Lushan earthquake.
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earthquake was −4×104 Pa, and this negative value then decreased
to −4.53×103 Pa. These data are consistent with the coseismic and
postseismic stress change evolution of the 2013 Lushan earthquake
(Figures 2D–I). The viscoelastic lower crust and upper mantle
contributed to the occurrence of the 2022 Lushan earthquake.

The postseismic Δτ, Δσn, and ΔCFS contour maps show that the
2021 Maduo earthquake had loading effects on the 2022 Lushan
earthquake that were similar to those of the Wenchuan earthquake,
as shown in Figures 2J–L. The coseismic ΔCFS of the Maduo
earthquake on the 2022 Lushan earthquake was 9.26×101 Pa, and
the postseismic ΔCFS increased to 1.3×102 Pa at the time of the
2022 Lushan earthquake.

Under the combined effects of historical earthquakes, the Δτ
at the hypocenter of the 2022 Lushan earthquake was positive,
and the Δσn was negative. Due to their combined effects, all of
which were near the cross-border conversion between positive
and negative stress change of the three, ΔCFS was positive
(Figures 2M–O). The overall ΔCFS value was high, and the
accumulated seismic moment was at a high level. Therefore,
under the influence of the 2021 Maduo earthquake, the
2022 Lushan earthquake occurred along the southwest section
of the Longmenshan Fault.

Figure 3C shows the evolution of ΔCFS of historical earthquakes
on the 2022 Lushan earthquake alone. As shown by the solid blue

FIGURE 3
Trend of the viscoelastic ΔCFS over time. (A) ΔCFS trend at the epicenter of the 2022 Lushan earthquake for different depths and viscosities. (B) ΔCFS
trend at the epicenter of the 2022 Lushan earthquake with different focal mechanism solutions. (C) ΔCFS trend at the epicenter of the 2022 Lushan
earthquake from each historical earthquake. (D) ΔCFS trend at the epicenters of the three 2022 Maerkang earthquakes.
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FIGURE 4
Contour map of Coulomb stress change in the 2022 Maerkang earthquakes. The red beach balls are source events, the green beach balls are
receiving events, and the black beach balls are events between the source and receiving events. (A–C) Effects of the postseismic shear stress change,
normal stress change, and Coulomb stress change of the 2008 Wenchuan earthquake on the 2022 Maerkang earthquakes. (D–F) Same display as for
effects of the 2013 Lushan earthquake on the 2022 Maerkang earthquakes. (G–I): Same display as for effects of the 2021 Maduo earthquake on the
2022 Maerkang earthquakes. (J–L) Same display as for effects of the 2022 Lushan earthquake on the 2022 Maerkang earthquakes.
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line (12 km) in (A) and (C), the ΔCFS remained at a small positive
value due to the great distance from the previous historical
earthquakes. However, after the 2008 Wenchuan earthquake, the
ΔCFS rapidly increased to exceed the threshold value of 0.1 bar
(King et al., 1994; Harris, 1998); the coseismic effect of the
2013 Lushan earthquake then caused it to decrease to a negative
value. Under the continuous viscoelastic relaxation of the lower
crust and upper mantle, the ΔCFS went from negative to positive,
resulting in the MS 6.1 earthquake that occurred on 1 June 2022.
This patternmay also explain why theMS 6.1 earthquake gap did not
rupture when the 2013 Lushan earthquake occurred. In summary,
Table 2 and Figure 3 show that the loading effect of the
2008 Wenchuan earthquake on the 2022 Lushan earthquake was
dominant in these historical earthquakes, while the unloading effect
was dominant in the 2013 Lushan earthquake.

3.2 Triggering effect on Coulomb stress
change in the Maerkang earthquakes

After the Lushan MS 6.1 earthquake on 1 June 2022, the MW 5.6
(MEK1), MW 5.9 (MEK2), and MW 4.9 (MEK3) earthquakes
occurred within a few hours on 10 June 2022 in Maerkang
County. The three successive earthquakes were very close in time
and space. We studied the triggering effect on Coulomb stress
change using the earthquake rupture parameters in Table 2.

We considered a stress change at a depth of 10 km, consistent
with the hypocenter depth given by the USGS. The focal
mechanism solutions of the three earthquakes in Maerkang
were equivalent and similar, and these solutions can be
regarded as a single event (MEK1) under the action of historical
earthquakes.

The Δτ and ΔCFS at the MEK1 hypocenter was negative, which
was not conducive to fault slip (Figures 4A, C). The Δσn was positive,
indicating that the normal stress change of the Maerkang
earthquakes caused by the Wenchuan earthquake changed
significantly (Figure 4B), which contributed to the instability of
the fault.

The hypocenter of MEK1 was near the cross-border conversion
between positive and negative Δτ, and its value was positive
(Figure 4D). The hypocenter of MEK1 was also near the cross-
border conversion between positive and negative Δσn, and its value
was negative (Figure 4E). The hypocenter of MEK1 was in the ΔCFS
positive shadow area (Figure 4F), so the 2013 Lushan earthquake
may have triggered the 2022 Maerkang earthquake. Remarkably, the
focal mechanism solutions of the 2021 Maduo earthquake and the
2017 Jiuzhaigou earthquake, similar to that of the Maerkang
earthquake, were also located near the positive and negative
cross-border conversion of shear stress change and normal stress
change caused by the 2013 Lushan earthquake. This finding
indicates that the 2013 Lushan earthquake might also have
triggered the 2017 Jiuzhaigou earthquake and the 2021 Maduo
earthquake.

The triggering effect of the 2022 Lushan earthquake was similar
as shown in Figures 4J–L, the Δτ and Δσn at the hypocenter of the
2022 Maerkang earthquake included one positive and one negative
value, but the ΔCFS was entirely in the positive shadow area.
Therefore, the 2021 Maduo earthquake also had a certain loading
effect on the 2022 Maerkang earthquakes to that of the 2013 Lushan
earthquake Figures 4G-I.

According to Figure 5, the MEK2 was located in the ΔCFS
positive shadow area caused by the MEK1, which triggered the
MEK2, and the MEK3 was located near the cross-border conversion
between positive and negative ΔCFS caused by the MEK1 and

FIGURE 5
Contour map of the Coulomb stress change in the three successive Maerkang earthquakes in 2022. (A)Coseismic Coulomb stress change in the MW

5.6 Maerkang earthquake resulting from the MW 5.9 Maerkang earthquake. (B) Coseismic Coulomb stress change of the MW 4.9 Maerkang earthquake
resulting from the MW 5.6 and MW 5.9 Maerkang earthquakes.
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MEK2, indicating that the MEK1 and MEK2 may have jointly
triggered the MEK3.

The hypocenter of the Lushan-Maerkang earthquake sequence
seems to have been near the cross-border conversion between
positive and negative stress change. It appears that the stress
change at the hypocenter experienced a transform from negative
to positive when the hypocenter finally became a starting point of
rupture and the earthquake occurred. This phenomenon has been
confirmed by Freed (2005), whose work showed that the hypocenter
of the 1999 Hector Mine earthquake was very close to the border
between positive and negative Coulomb stress change caused by the
1992 Landers earthquake. In addition, Xie et al. (2022) found that
the hypocenter of the 2011 MS 9.0 Tokyo earthquake was located
near the border between positive and negative normal stress change.
We assumed that the positive and negative changes in stress were

more likely to cause the rock at the hypocenter to plastically fail and
thereby cause an earthquake.

4 Discussion

4.1 Effect of model viscosity parameters on
the results

The viscosity of the lower crust and upper mantle in the Tibetan
Plateau and its surrounding areas has been studied over the past two
decades. Clark and Royden (2000) used the topographic gradient
method to estimate the viscosity beneath the lower crust around the
Tibetan Plateau and obtained approximate results of 1016~1021 Pa s.
Shao et al. (2011) considered the viscoelastic relaxation effect of the

FIGURE 6
Impact of the viscosity coefficient, with low viscosity, normal viscosity, and high viscosity, on the Coulomb stress change contour map of the
2022 Lushan earthquake due to historical earthquakes. (A) Contour map of Coulomb stress change at low viscosity. (B) Contour map of Coulomb stress
change at normal viscosity. (C) Contour map of Coulomb stress change at high viscosity.
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lower crust and upper mantle after the 2008 Wenchuan earthquake.
They found that the best long-term viscosity coefficient of the lower
crust and upper mantle in the Songpan–Ganzi Terrane was
5×1017 Pa s. Huang et al. (2014) used GPS and InSAR data to
constrain the 1.5-year postseismic deformation of the
2008 Wenchuan earthquake and found that the long-term
viscosity coefficient of the upper mantle of the Songpan–Ganzi
Terrane was 1×1018 Pa s. Zhao et al. (2021) determined that the
transient viscosity and steady viscosity of the lower crust and upper
mantle in Tibet were 5×1018 Pa s and 4×1019 Pa s, respectively,
through crustal deformation simulation after the 2001 Kekexili
earthquake. Wei et al. (2020) estimated the viscosity range
beneath the lower crust in the West Qinling–Songpan Terrane
and its surrounding areas by a geomorphological analysis method
and channel flow model, and the result was 1018 ~ 1020 Pa s. Wang
et al. (2021) strictly constrained the long-term viscosity of the lower

crust and upper mantle in the Songpan–Ganzi Terrane to
(4.3–5.7)×1018 Pa s and (1–1.6)×1018 Pa s according to the GPS
data after the Wenchuan earthquake. Currently, the viscosity
value of the lower crust and upper mantle in the eastern Tibetan
Plateau remains controversial, as the viscosity at different time scales
changes, but it is concentrated in the range of 1018 ~ 1020 Pa s.
Therefore, testing of different viscosity coefficients is necessary.

We used the latest results fromWang et al. (2021) and tested the
influence of two groups of viscosities (one order of magnitude lower
and one order of magnitude higher) on the Coulomb stress change
calculation results, as shown in Figures 6A–C. The ΔCFS evolution
at the hypocenter of the 2022 Lushan earthquake using the three
groups of viscosities is shown in Figure 3A. Variation in viscosity can
induce different Coulomb stress changes, but it has little influence
on the distribution range and evolution trend of ΔCFS. Therefore,
the viscosity conditions considered in our study were appropriate.

FIGURE 7
Impact of effective friction coefficients of 0.2, 0.4, 0.6, and 0.8 on the Coulomb stress change contour map of the Lushan earthquake in 2022 by
historical earthquakes. (A–D) Contour maps of Coulomb stress change with effective friction coefficients of 0.2, 0.4, 0.6, and 0.8, respectively.
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4.2 Effect of the effective friction coefficient

The effective friction coefficient in Formula (2), involving the
pore fluid and medium of the fault plane, is an uncertain parameter
in Coulomb stress change calculations (King et al., 1994; Harris,
1998; Tang et al., 2023), and it is important to discuss the influence
of its sensitivity on the results. King et al. (1994) proposed that the
effective friction coefficients are generally 0.2–0.8. Shen (2003)
showed that the effective friction coefficient of most faults can
change only the relative magnitude of ΔCFS, but cannot affect
the polarity of ΔCFS.

To ensure the reliability of our results, we calculated the
influence of the four groups of effective friction coefficients,
i.e., 0.2, 0.4, 0.6, and 0.8, on the Coulomb stress change. As the
effective friction coefficient increased from 0.2 to 0.8, the

distribution range of Coulomb stress change in the 2022 Lushan
earthquake area showed little variation (Figure 7). The ΔCFS at the
hypocenter of the 2022 Lushan earthquake was still near the border
between positive and negative stress change, but the value was
positive. This result shows that the ΔCFS changes with the
effective friction coefficient. However, the change in the effective
friction coefficient in our study does not alter our conclusion.

4.3 Effect of depth on the results

Previous studies focused on the triggering effect of Coulomb
stress change between earthquakes with stress fields at the depth of
the hypocenter (Freed and Lin, 2001; Cheng, 2018; Li et al., 2022; Stein,
1999). However, hypocenter depth is difficult to estimate. The USGS

FIGURE 8
Impacts of historical earthquakes, at depths of 12 km, 16 km, and 20 km, on the Coulomb stress change contour map of the Lushan earthquake in
2022. (A) Contour map of Coulomb stress change at a depth of 12 km. (B) Contour map of Coulomb stress change at a depth of 16 km. (C) Contour map
of Coulomb stress change at a depth of 20 km.
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suggested two hypocenter depths of 12 km and 19.5 km for the
2022 MS 6.1 Lushan earthquake, and the GFZ and the CENC
suggested hypocenter depths of 10 km and 17 km. respectively.
For strike–slip faults, the change in the Coulomb stress field with
depth is small (Wan et al., 2007), but the Longmenshan Fault is
under oblique-strike motion. Thus, the contribution of the Coulomb
stress change on fault planes with different depths is discussed in
further detail here.

As shown in Figure 8, the ΔCFS at the epicenter of the
2022 Lushan earthquake was calculated for depths of 12 km,
16 km, and 20 km. The ΔCFS distribution range of the
Longmenshan area varies significantly with depth. The
2022 Lushan earthquake occurred near the cross-border
conversion between positive and negative stress change, but the
ΔCFS value changed from positive to negative as the depth
increased. Combined with Figure 3A, the ΔCFS evolution curves
of the 2022 Lushan earthquake epicenter at different depths were
consistent and coincided before 2013. However, the 2013 Lushan
earthquake caused great differences at different depths. On the fault
of the 2022 Lushan earthquake, the historical earthquakes had a
strong unloading effect at a depth of 20 km, but a slight unloading
effect at depths of 16 km and 12 km. Therefore, ΔCFS may vary at
different depths on the fault plane. Thus, the influence of different
hypocenter depths requires further study.

4.4 Effect of the focalmechanism solution of
the receiving fault on the results

We evaluated focal mechanism solutions from theUSGS. As shown
in Figure 3B, the fluctuations in the curves of different focal mechanism
solutions were similar. However, the effects of the 2013 Lushan
earthquake on the 2022 Lushan earthquake using the GFZ solution
were quite different from those of the other four groups. The large
uncertainties in the strike and dip angle in the GFZ inversion results
may be the source of the discrepancy. Therefore, the collection of focal
mechanism solutions considered in our study greatly influenced the
calculated results. We suggest that, when a similar calculation of fault
stress change is carried out to study the interactionmechanism between
strong earthquakes, focal mechanism solutions as similar as possible to
actual earthquakes should be considered.

4.5 Influence of the Lushan–Maerkang
earthquake sequence and historical
earthquakes on the faults around the
Songpan–Ganzi Terrane

We calculated the Coulomb stress change along the faults
around the Songpan–Ganzi Terrane after the Lushan–Maerkang

FIGURE 9
Contour map of the Coulomb stress change along faults around the Songpan–Ganzi Terrane effected by historical earthquakes. Abbreviations of
major faults: East Kunlun Fault (EKF), Tazan Fault (TZF), Wancang Fault (AWCF), Dari Fault (DRF), Longba Fault (LRBF), Wudaoliang–Qumalai Fault (WDL-
QMLF), Wudaoliang–Changshagongma Fault (WDL-CSGMF), Bayankalazhufeng Fault (BYKLZFF), Ganzi–Yushu Fault (GZ-YSF), Miyaluo Fault (MYLF),
Songpan–Ganzi Fault (SGF), Jinshajiang Fault (JSJF), Yuke Fault (YKF), Xianshuihe Fault (XSHF), Longmenshan Fault (LMSF), Sichuan‒Tibet railway
(Chuan-Zang railway).
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earthquake sequence in 2022. The fault slip data were from previous
publications (Deng, 2007; Xu et al., 2016, https://www.activefault-
datacenter.cn/map).

Figure 9 shows the Coulomb stress change induced by historical
earthquakes on the faults in the Songpan–Ganzi Terrane at a depth
of 10 km. The eastern section of the East Kunlun fault zone and the
central section of the Longriba fault zone are in a continuous zone of
high Coulomb stress change, which is consistent with the results of
Cheng (1983) and Wang and Xu (2017). The western section of the
Songgang Fault lies along an area in which ΔCFS changes sign,
which corresponds to the occurrence of the Maerkang earthquake
swarm in 2022. Additionally, the southern section of the Xianshuihe
Fault has a higher ΔCFS value, similar to theΔCFS distribution along
the Xianshuihe Fault in Liu e al. (2014). The MS 6.8 Luding
earthquake that occurred on 5 September 2022 also confirmed
our prediction.

Furthermore, the middle section of the Yuke Fault, the southern
section of the Xianshuihe Fault, the eastern section of the Dari Fault,
the Bayankala Fault, the Wudaoliang–Changshagongma Fault, and
the Chuan–Zang railway are near areas in which the ΔCFS changes
sign, therefore potential earthquake risk may be high.

5 Conclusion

We constructed a stratified viscoelastic model to simulate
postseismic stress on the 2022 Lushan–Maerkang earthquake
sequence from historical strong earthquake data in eastern Tibet.
We further assessed the seismic potential of faults in eastern Tibet.
Our conclusions are as follows.

(1) The 1955 M 7.6 Kangding and 2008 MW 7.9 Wenchuan
earthquakes are the most significant loading events on the
2022 MS 6.1 Lushan earthquake. But, the 2013 MW 6.6 Lushan
earthquake is the most significant unloading event. This is a
potential explanation for the occurrence of the 2022 Lushan
earthquake 9 years later. Effects of viscoelastic relaxation of the
lower crust and upper mantle play a significant role in fault activity.

(2) The MW 5.6, MW 5.9, and MW 4.9 Maerkang earthquakes, which
occurred after the 2022 Lushan earthquake, could have been due to
both the 2013 and 2022 Lushan earthquakes. The 2021 Maduo
earthquake had a loading effect on the 2022 Lushan earthquake,
and the 2022 Lushan earthquake might have triggered the
Maerkang earthquakes. Furthermore, the MW 5.6 Maerkang
earthquake may have triggered the MW 5.9 Maerkang
earthquake, and the MW 5.6 and MW 5.9 Maerkang earthquakes
may have jointly triggered the MW 4.9 Maerkang earthquake.

(3) The tectonic stress of the Songpan–Ganzi Terrane has
accumulated to a high level. The hypocenters of the
2022 Lushan–Maerkang earthquake sequence all occurred near
the cross-border conversion between positive and negative stress
change. Rupture of a fault in a late phase of the seismic cycle near
the cross-border conversion between positive and negative stress
change may have been induced by a slight stress disturbance from
a far-field earthquake. Therefore, study of the the middle section
of the Yuke Fault, the southern section of the Xianshuihe Fault
(which has been confirmed by the 5 September 2022, MW

6.8 Luding earthquake), the eastern section of the Dari Fault,

the Bayankala Fault, and the Wudaoliang–Changshagongma
Fault should be emphasized in future research, as they all
correspond to areas of cross-border conversion.
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