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Air pollution is of high relevance to human health. In this study, multiple
machine-learning (ML) models—linear regression, random forest (RF), AdaBoost,
and neural networks (NNs)—were used to explore the potential impacts of air-
pollutant concentrations on the incidence of pediatric respiratory diseases in
Taizhou, China. A number of explainable artificial intelligence (XAI) methods
were further applied to analyze the model outputs and quantify the feature
importance.Our results demonstrate that there are significant seasonal variations
both in the numbers of pediatric respiratory outpatients and the concentrations
of air pollutants. The concentrations of NO2, CO, and particulate matter (PM10

and PM2.5), as well as the numbers of outpatients, reach their peak values in the
winter. This indicates that air pollution is a major factor in pediatric respiratory
diseases. The results of the regressionmodels show thatMLmethods can capture
the trends and turning points of clinic visits, and the non-linear models were
superior to the linear ones. Among them, the RF model served as the best-
performingmodel. The analysis on the RFmodel by XAI found that AQI, O3, PM10,
and the current month are the most important predictors affecting the numbers
of pediatric respiratory outpatients. This shows that the number of outpatients
rises with an increasing AQI, especially with the increasing of particulate matter.
Our study indicates that MLmodels with XAI methods are promising for revealing
the underlying impacts of air pollution on the pediatric respiratory diseases,
which further assists the health-related decision-making.

KEYWORDS

air pollutants, respiratory diseases in children, explainable artificial intelligence (XAI),
feature importance analysis, Taizhou city

1 Introduction

Since the reform and opening up of China from the 1980s, there have been significant
achievements in its economy and the construction of infrastructure. However, the
environmental problems caused by the extensive development model in the early stages is
becoming a serious issue (Xu et al., 2013; Qi et al., 2020), especially regarding air pollution.
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Due to the rapid development of heavy industry, the continuous
expansion of urbanization, and the sudden surge in the number
of motor vehicles, the increasing emission of air pollutants
is being monitored (Kan et al., 2012; Xu et al., 2013; Gu et al.,
2020). In recent years, air pollution has been considered by the
World Health Organization (WHO) as the greatest environmental
risk to health (World Health Organization, 2021). Reports
show that 90% of people are breathing polluted air every day
(World Health Organization, 2018a). There are nearly 7 million
premature deaths from cancer, strokes, and cardiopulmonary
diseases caused by air pollution, and 90% of these deaths occur
in low- and middle-income countries (World Health Organization,
2018b).

Studies have shown that the content of air pollutants
significantly affects human health, both in the short and long
term (Shahi et al., 2014; Khaniabadi et al., 2017; Song et al.,
2018; Wang L. et al., 2018a; Song et al., 2019). The short-term
effects are characterized by a rapid increase in the incidence
of respiratory diseases, especially in vulnerable groups such as
the elderly, children, and pregnant women (Sarnat et al., 2012;
MacIntyre et al., 2014; Zhu et al., 2017; Li et al., 2018). WHO points
it out that the particulate matter can penetrate into the lungs
and enter the bloodstream, which further cause cardiovascular
and respiratory impacts (World Health Organization, 2021).
Besides, There is emerging evidence that NO2 is associated with
respiratory diseases, i.e. asthma, coughing, and difficulty breathing
(World Health Organization, 2022). Long-term chronic effects of
air pollution are also seen on human health (Zhang et al., 2014;
Islam et al., 2017). The Global Burden of Disease Study 2015
showed that chronic respiratory diseases ranked third among
the fatal diseases in China, second only to cardiovascular and
cerebrovascular diseases and tumors; all three of these types of
disease are highly related to air pollution (Prüss-Üstün et al., 2016).

It is clear that air pollution is becoming one of the most
important risk factors affecting human health. Specifically, a large
number of studies have been performed examining the impact of
air pollutants on the incidence of respiratory diseases in major cities
across China (Wang and Chau, 2013; Wang L. et al., 2018a). It has
been found that the air quality index (AQI) is positively correlated
with bronchial infections, upper respiratory-tract infections, and
lung diseases in Tianjin (Guo et al., 2010). Yin et al. (2011) pointed
out that levels of particulate matter (PM2.5 and PM10), NO2,
SO2, and carbon monoxide (CO) have positive correlations with
the number of pediatric outpatients with respiratory diseases in
Shanghai, while the correlationwith ozone (O3) was negative. A case
study by Zhang et al. (2014) showed that short-term exposure to air
pollutants can cause explosive increases in pediatric patients with
pneumonia in Guangzhou. The results of the study by Shen et al.
(2017) showed that sulfur dioxide (SO2) is the main pathogenic
factor for respiratory-tract infections in Henan Province, and this
has synergistic effects with the particulate matter and nitrogen
oxides (NOx). A study in Beijing further showed that air pollution is
one of the important causes of the increase in the number of elderly
patients with allergic rhinitis (Zhang et al., 2016).

The above studies clearly point out that the content of air
pollutants can significantly affect the incidence of respiratory
diseases. However, these studies were mainly based on parametric
linear models, i.e., multiple linear regression, (Ruckerl et al.,

2006; Wang M. et al., 2018b), or they relied on semi-parametric
generalized linear models and generalized additive models
(Dominici et al., 2002; Terzi and Cengiz, 2009; Ravindra et al.,
2019). Unfortunately, these linear models are not very efficient
for capturing the non-linear dependence among the complex data.
Furthermore, although the regression coefficient can be simply used
for evaluating the feature importance, it is incapable of quantifying
the synergy of multiple variables and performing a local analysis for
a given sample with the linear models.

The development of machine learning (ML) and deep learning
has led to technological innovations in numerous areas, including
autonomous driving (Bojarski et al., 2016; Badue et al., 2021),
facial recognition (Hu et al., 2015; Parkhi et al., 2015), weather
forecasting (McGovern et al., 2017; Reichstein et al., 2019), and
smart healthcare (Litjens et al., 2017; Hesamian et al., 2019). Using a
variety of linear and non-linear computational units,ML approaches
are able to learn complex representative features from high-
dimension data to establish models projecting from predictors to
predictands. In the field of the atmospheric environment, a number
of studies have been performed considering time-series prediction
of atmospheric pollutants (Freeman et al., 2018; Wang et al., 2020;
Kleinert et al., 2022), spatial and temporal downscaling (Yu and
Liu, 2021; Geiss et al., 2022), and modal classification (Harrou et al.,
2018). However, there have still been few studies using ML models
with explainable artificial intelligence (XAI) methods to analyze
the correlations between air-pollutant concentrations and human
health. Because ML models have higher non-linearity and stronger
robustness, it is of great significance to simulate how the morbidity
rates of respiratory diseases are affected by the concentrations of
different air pollutants. Furthermore, XAI methods can further
quantitatively analyze the feature importance of each air-pollutant
input and help to reveal the underlying impacts of air pollution on
human health.

Taizhou is an important part of the Yangtze River Delta
Economic Zone in East China, with inland ports and mature
industries. However, it still suffers from the growing problem of
air pollution in its main urban area. This is largely caused by the
chemical industry, automobile exhaust emissions, construction-site
dust, and transmission of pollutants. More seriously, measurements
further show that the air pollution issue in Taizhou is more
prominent among the surrounding cities and few studies are
performed for assessing the impacts of air pollution on human
health in Taizhou city. In this context, exploring the impact of
air quality on the incidence of pediatric respiratory diseases is of
great social significance. In this study, we aimed to carry out a
risk assessment of air pollution on children’s health in Taizhou
with ML models and provide a scientific basis for taking effective
intervention measures. In this work, the impact of the air pollution
was characterized by changes in the number of pediatric patients
visiting respiratory departments; furthermore, XAI methods were
used to analyze the contribution of the content of the air pollutants.
The main contributions of our study can be summarized as follows:
1. A detailed statistical analysis is performed between the air-
pollutant concentrations and the number of pediatric respiratory
outpatients in Taizhou, i.e. detrended correlation analysis, stratified
analyses by seasons, air-pollution levels, and types of primary
pollutant. 2. XAI methods are introduced to evaluate the ML
model performance in simulating the number of the clinic visits, by
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quantifying the feature importance of the air-pollutant factors. 3. It
is a useful complement to the research of regional air quality and
pediatric respiratory diseases usingXAI andMLmethods inTaizhou
city.

The remainder of this manuscript is organized as follows.
Section 2 introduces the clinical and air-pollutant monitoring data
used in our work, as well as the ML models and XAI methods.
Summary and detailed results are presented in Section 3, and this
is followed by conclusions and future outlook in Section 4.

2 Data and methods

2.1 Data and preprocessing

The datasets used in this work included daily air-pollutant
monitoring data from the Taizhou Environmental Monitoring
Center and daily clinical data from the pediatric department
of a comprehensive Grade 3A hospital in the urban area of
Taizhou, spanning from 2018 to 2020. The air-pollutant data covers
measurements of the content of PM2.5, PM10, CO,NO2, SO2, andO3,
as well as the AQI, the level of air pollution, and the type of primary
pollutant. The clinical data is the total number of outpatients
visiting the pediatric department each day. Since the daily number
of outpatients was found to follow a Poisson distribution using
the Kolmogorov–Smirnov test, a log transform was further applied
to the raw clinical data. Given the raw clinical data as Ct , the
preprocessed predicant Yt is:

Yt = logCt (1)

where the subscript t is the timestamp of the sample.
In this study, in addition to the measurements of air pollutants,

temporal information was also used as an additional predictor.
Hence, the candidate predictors Xt consist of PM2.5, PM10, CO,
NO2, SO2, and O3, as well as AQI, the level of air pollution
(AQI_level), the type of primary pollutant (Major_pollutant), and
temporal information (Month). AQI_level consists of four categories
from I to IV; the higher the AQI_level, the worse the air quality.
Major_pollutant indicates the type of primary pollutant. In our
study, Major_pollutant I means that there is no air pollution.
Major_pollutant values from II to VII were defined as the cases
of O3, CO, NO2, SO2, PM10, and PM2.5, respectively being the
primary pollutant. The temporal information is the month of the
given sample.

2.2 ML models

The ML models used in this study included linear regression,
ridge regression, Huber regression, random forest (RF), adaptive
boosting (AdaBoost), and a neural network (NN). Among these,
linear regression, ridge regression, and Huber regression are
considered as weakly non-linear models, while RF, AdaBoost, and
NN are more robust and complex.

Linear regression is one of the most basic statistical models.
Given predictors X = {x1,x2,…,xk}, the prediction ŷ of linear

regression is written as:

ŷ (w,x) = w0 +w1x1 +⋯+wkxk (2)

where W = {w0,w1,w2,…,wk} are the regression coefficients
(weights) of the corresponding predictors. The weights are usually
estimated by optimizing the L2 loss:

‖ŷ (w,x) − y‖22 (3)

where y is the ground truth. However, linear regression models
are sensitive to outliers and are hence highly dependent on reliable
feature engineering. To build a more robust model, ridge regression
(Hoerl and Kennard, 1970) and Huber regression (Huber, 1973)
further add regularization terms into the loss function. The loss
function of ridge regression can be written as:

‖ŷ (w,x) − y‖22 + α‖w‖
2
2 (4)

where α ≥ 0 is the penalty coefficient. A larger α means stronger
regularization on the model. Huber regression pays more attention
to handling outliers. The loss is given as:

n

∑
i=1
(δ+H(

ŷ (w,x) − y
δ
)δ)+ α‖w‖22 (5)

where

H (z) = {
z2, |z| < ϵ
2ϵ |z| − ϵ2, |z| ≥ ϵ

(6)

in which δ and ϵ are the non-negative constant parameters.
A decision tree is a classic non-parametric supervised learning

approach; a tree-like model is built to learn the simple rules inferred
from the data features, and this hasmultiple nodes and branches.The
clear structure of a decision tree makes it easy to understand, and it
is hence commonly used in data science and decision-making. An
RF (Breiman, 2001) is an ensemble of decision trees. It consists of a
number of independent decision trees; each decision tree is trained
with random bootstrapped samples, and each node of the decision
tree is estimated using random combinations of predictor variables.
The ensemble mean of the decision trees is used as the prediction
of the RF model, and this helps to improve accuracy and mitigate
overfitting problems.

AdaBoost (Freund and Schapire, 1997) is another commonly
used ensemble machine model. It starts with an initial weak learner,
i.e., a linear model, and this weak learner is trained with the
complete dataset to obtain an accuracy that is slightly higher than
random guessing. Then, AdaBoost reweights the training samples
and assigns higher weights to the samples misclassified by the
initial weak learner. Subsequently, the goal of AdaBoost is to build
another weak learner to complement the previous one with these
reweighted training samples. In this adaptive strategy, the training
samples misclassified by the previous weak learner will contribute
more to the model performance, and hence the subsequent weak
learners are forced to improve the misclassified samples. The final
AdaBoost model is an ensemble of all the individual weak learners
that converges to a strong learner.

As a more flexible and non-linear ML method, NNs
(Rumelhart et al., 1986) have been widely used in multiple fields
including computer vision, earth science, and biological science.

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2023.1105140
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ji et al. 10.3389/feart.2023.1105140

FIGURE 1
Time series of the numbers of patients visiting the pediatric department of a comprehensive Grade 3A hospital in Taizhou from 2018 to 2020. The
scatter points show the number of pediatric outpatients (red) and outpatients visiting for respiratory diseases (blue) in a single day. The solid lines are
the monthly average respectively. The mean and standard deviation for each year are shown at the bottom of the plot.

These are built from multiple layers, and each layer consists of
a number of neural nodes with non-linear activation functions.
The prediction of an NN model is generated through forward
propagation. A loss function is applied to quantify the distance
between the model output and the ground truth. A series of
optimizers have been designed to minimize the loss function
using backward propagation with the training samples. Hence,
NNs are highly non-linear and they have advantages in learning
representative features from the data. However, a decrease in model
performance is seen when handling a small dataset with an NN.

2.3 Explainable artificial intelligence
methods

Although ML models show great potential for improved
performance, there are always questions relating to how their
decisions are made and how much we can rely on them. Hence,
it is of great importance to understand the results of ML
models rather than them simply being “black boxes.” In this
study, four XAI methods—permutation feature importance (PFI),
the partial dependence plot (PDP), local interpretable model-
agnostic explanations (LIME), and Shapley additive explanations
(SHAP)—are used to gain a well-grounded understanding of the
established ML models and explore the feature importance of their
predictors.

The PFI method (Breiman, 2001) computes the contribution
of a single feature by randomly shuffling its values among the
validation/testing samples with a trained model while keeping the
other features unchanged. The decrease in the model score, i.e., R2

for regression, with the permuted data is defined as the importance
of the selected feature. Since the model and the remaining features
are unchanged, the change in the model’s score is seen as the
contribution of that feature to themodel performance. It can be seen
that the PFI strategy can be applied to any ML model because it
gives the feature importance by simply permuting the data without

internal knowledge ofmodel that has been used. Given anMLmodel
f trained with data containing K features, the model score evaluated
on the unpermuted testing data D is s. Then, a random permutation
is performed on feature k among the testing samples to obtain the
permuted data ̃Dk. The new model score evaluated on the permuted
data ̃Dk is sk. The importance Ik of feature k is defined as:

Ik = s− sk (7)

In practice, Ik is computed multiple times on different perturbed
data, and the average value is used as the feature importance.
The larger the value of Ik, the more significant the impact
of the feature on the prediction and the more important the
feature.

The PDP (Friedman, 2001) is used to assess the marginal effects
of one or two features in an ML model. The idea is similar to
the PFI method, in that the feature importance is defined as the
drop in the model score that occurs when breaking the relationship
between the given feature and targets. The strategy of the PDP is to
calculate the importance of the given feature by marginalizing over
the distribution of the other features among the training data. Given
an ML model f trained with data D containing K features, the set of
features we are interested in is k (usually one or two features) and
the set of remaining features is c. The partial dependence function is
then given as:

̂fk (Dk) = ∫ ̂f (Dk,Dc)dℙ(Dc) (8)

In practice, the partial dependence function is estimated as:

̂fk (xk) =
1
n

n

∑
i=1

̂f (xk,xic) (9)

where n is the number of instances in the training data, xk is the value
of feature k, and xc is the actual values of the remaining features in
set c. The partial dependence ̂fk(xk) shows the marginal effect of the
given value xk of feature k on the prediction.
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FIGURE 2
Time series of air-pollutant concentrations and AQI in Taizhou from 2018 to 2020: (A) SO2, (B) NO2, (C) O3, (D) CO, (E) PM10, (F) PM2.5, and (G) AQI. The
scatter points show the daily data, the blue dashed lines are the monthly averages, and the red dashed lines are trend lines. Unitary linear regression
models for each air pollutant are given at the top of each plot, and the mean and standard deviation for each year are shown at the bottom. The
horizontal dotted lines show the thresholds of air-pollutant concentrations for the different levels of pollution. The numbers below the horizontal
dotted lines show the number of days in each year that exceeded these pollution thresholds.

Both the PFI and PDP methods evaluate the global contribution
of a feature to the model prediction. However, in many cases, we
are more interested in how the features affect the model’s decision
in a given instance. Here, LIME (Ribeiro et al., 2016) serves as an
XAI method for the local explanations for agnostic models; this
further helps to understand the ways in which ML models make
their predictions. The basic idea of LIME is to train an interpretable
model as a good approximation of the original ML model locally.

Given an ML model f trained with data D containing K features,
the predictions of f for sample Di are f (Di). To understand the
prediction f (Di), LIME generates a new dataset D̃i from the sample
Di by perturbation, and this consists of the perturbed features and
the corresponding predictions of the trained model f. With this
generated dataset, LIME then trains an interpretable model f′, i.e.,
linear regression and decision trees, as a local substitution for the
black-box model f. Hence, the explanation of the agnostic model f
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FIGURE 3
Normalized time series of detrended monthly air-pollutant concentrations (A) SO2, (B) NO2, (C) O3, (D) CO, (E) PM10, and (F) PM2.5, as well as the
number of detrended pediatric respiratory outpatients from 2018 to 2020. The detrended Pearson correlation coefficients between the air-pollutant
concentrations and the number of outpatients are listed at the top; the symbol * indicates that the correlation passes the 95% significance test.

is given by the understanding of the interpretable model f′ for the
given instance Di.

SHAP (Lundberg and Lee, 2017) gives another solution to
explain the individual predictions of ML models based on the
Shapley values (Shapley, 1997) in coalitional game theory. The
Shapley values are used to fairly assess the contribution of each
feature to the model prediction. In coalitional game theory, the
effect of a feature should not be evaluated alone but on all the
possible coalitions of features. Given an ML model f with training
data D containing K features, the number of possible combinations
of features is 2K − 1. Using each combination as the input of the
trained model f, there are 2K − 1 predictions, and the differences
between these predictions and the original predictions using the
complete set of features are calculated as the contributions of the
combined features. The average marginal effect of a feature across
all possible coalitions is defined as the Shapley value. However, in
real applications, it is very time-consuming to calculate all these
coalitions. Hence, Lundberg and Lee (2017) combined the LIME
and Shapley values and further proposed an alternative estimation
method, SHAP, based on the kernel and tree models. SHAP is

computationally efficient and can be used for both global and local
interpretation.

3 Results

3.1 Overview of the air-pollutant
concentrations and the number of
pediatric respiratory outpatients in Taizhou

Figure 1 shows the distribution and the trend in the number
of patients visiting the pediatric department of a comprehensive
Grade 3A hospital in Taizhou from 2018 to 2020. It can be
seen that respiratory-related diseases account for over 60% of
all diseases in the pediatric department, and there are clear
interannual and seasonal variations. In particular, the number
of pediatric respiratory outpatients in 2019 was significantly
higher than in 2018 and 2020, with a peak occurring in the
winter. Could this difference be related to the emission of air
pollution?
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FIGURE 4
Frequency histograms of the total numbers of pediatric respiratory outpatients from 2018 to 2020 in different cases: (A–D) different seasons, (E–H)
different levels of air pollution, and (I–L) different types of primary pollutant. The red dashed lines show the daily averages of the numbers of
outpatients in each case.

The statistics of the air-pollutant concentrations are shown in
Figure 2. A remarkable decline is seen in most of the air-pollutant
concentrations from 2018 to 2020, although there is a slight increase
in O3. This indicates that the measures implemented to control air
pollution in Taizhou have resulted in some progress, especially for
the emission of SO2, PM2.5, and PM10. The results also show that
there is significant seasonal variation in the relative proportions of
the air pollutants. The concentrations of NO2, CO, PM2.5, and PM10
are at their peak in winter and low in summer, which is opposite
to the trend for O3. The main reason for the high concentrations
of NO2, CO, and PM in winter is the increased heating needs of
residents; this causes an increase in the amount of coal being burned.
The high concentration of O3 in summer is mainly related to the
high temperature and strong sunshine, which act as a catalyst in O3
production.

The results in Figures 1, 2 show that there is significant
seasonal variation in both the number of pediatric
respiratory outpatients and the air-pollutant concentrations.
The inference is drawn that there is a certain correlation
between them, and a quantitative assessment of this is now
presented.

3.2 Possible factors affecting the number
of pediatric respiratory outpatients

Figure 3 presents the detrended monthly time series of air-
pollutant concentrations and the number of pediatric respiratory
outpatients. The monthly data is used here because there is often a
lag of a few days between a heavy air-pollution event and patients
visiting the respiratory department. We use these data to explore
the basic mechanism of how air-pollution-related factors affecting
the pediatric respiratory diseases. The results demonstrate that
the main air pollutants—NO2, CO, O3, PM2.5, and PM10—have
significant correlations with the numbers of outpatients, with
detrended Pearson correlation coefficients exceeding 0.35 (passing
the 95% significance test). It also shows that the trends in the air-
pollutant concentrations, aside from O3, are highly consistent with
the outpatient visits; an increasing (decreasing) number of pediatric
respiratory outpatients is seen with an increasing (decreasing)
concentration of air pollutants. This indicates that the pediatric
respiratory diseases are highly related to the air-pollutant factors, at
least in statistics. A stratified analyse is further given as follows to
confirm the point.
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FIGURE 5
Monthly numbers of pediatric respiratory outpatients simulated by different ML models. The evaluation metrics, RMSE and CC, are given at the top.

FIGURE 6
Feature importance for the trained RF model obtained using the PFI
method.

The impacts of the seasons, the level of air pollution, and
the type of primary pollutant on the clinic visits are presented
in Figure 4. These histograms show that all three of these factors
have significant effects on the incidence of pediatric respiratory
diseases. Figures 4A–D show that the daily number of clinic visits
in winter is almost twice that in the summer, which quantitatively
demonstrates that there is remarkable seasonal variation. The
comparisons in the levels of air pollution in Figures 4E–H show
that the daily clinic visits gradually increase with increasing AQI
level (i.e., with worse air quality). The daily number of pediatric
respiratory outpatients increased from 47 in AQI I to 69 in
AQI IV, which indicates that the air quality can significantly
affect the incidence of pediatric respiratory disease. The results in
Figures 4I–L show that the type of primary pollutant is another
factor affecting the daily numbers of clinic visits. The excessive
emission of PM2.5 and PM10 can lead to a notable increase in
the number of pediatric respiratory outpatients. Conversely, the
O3 concentration has a negative correlation with clinic visits. One
of the reasons for this is that ozone-related pollution usually

occurs in summer when the concentration of PM is at a low
level.

3.3 ML regression models of air pollutants
and pediatric respiratory outpatients

A number of ML methods were used to explore the statistical
relationships among the air-pollutant concentrations and the
numbers of pediatric respiratory outpatients. A monthly average
was performed on the raw daily data to show the long-term
impact. As noted in Section 2.1, the candidate predictors cover
the concentrations of major air pollutants, the AQI, the level
of air pollution, the type of primary pollutant, and temporal
information. The log-transformed number of outpatients was used
as the predictand. Hence, the regression model can be written as:

lnResp ∼ML( PM2.5, PM10, CO, NO2, SO2, and O3, AQI,

AQI_level, Major_pollutant, Month) (10)

where Resp is the number of monthly clinic visits, ML() is the ML
model, AQI_level is the level of air pollution, Major_pollutant is the
type of primary pollutant and Month is the index of month.

Figure 5 presents the results of the simulation of the clinic
visits by using ML models. The corresponding scores, root mean
square error (RMSE), and correlation coefficient (CC) are listed
at the top. These results show that all the ML models are able to
capture the trend of the clinic visits and turning points. However, an
underestimate is also seen in simulating the number of outpatients
in 2019. Results in terms of RMSE and CC show that the non-linear
models significantly outperform the linear ones.TheRMSE values of
the linear models, i.e., linear regression, ridge regression, and Huber
regression, are greater than 30 persons/day, and their correlation
coefficients are less than 0.6. The non-linear models, especially the
RF, show superior performance, with RMSE values of less than 20
persons/day and CC values greater than 0.85.

It is noted that the purpose of this study was not to establish
a high-quality prediction model for the number of pediatric
respiratory outpatients but to explore the potential impact of the
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FIGURE 7
Feature importance of the O3 and PM10 concentrations for the trained RF model using a PDP. (A) Heat map showing the synergistic impact of O3 and
PM10 on the number of outpatients, where the legend is the number of outpatients after the logarithm; PDPs showing the impacts of (B) O3 and (C)
PM10.

A B

FIGURE 8
SHAP feature importance for the trained RF model. (A) SHAP values of each feature; (B) mean of absolute SHAP values of each feature.

air pollutants on this number. The next section details the results of
the application of a number of XAI methods to understanding the
regression models built by the best-performing model, the RF.

3.4 Explanations of the RF model

The feature importance for the RF model, as obtained using the
PFI method, is plotted in Figure 6. This shows that the AQI, the O3
concentration, and the month index are the three most important
factors correlating with clinic visits. As noted earlier, the PFImethod
evaluates the global impact of each feature on the model prediction.
However, it can only assess a single feature at a time, and it cannot

show whether the impact is positive or negative. Hence, Figure 7
further presents an analysis of the contributions of O3 and PM10
using the PDP method.

Figure 7A shows how O3 and PM10 synergistically affect the
number of clinic visits. The values in the heat map are the
logarithm of the clinic visits, in which the warm (cold) tones
indicate more (fewer) clinic visits. The impact of PM10 is given
in the bar on the left side. An increasing number of clinic
visits is seen from bottom to top as the concentration of PM10
increases. Similarly, the impact of O3 is presented at the top: an
increase in the O3 concentration is correlated with a decrease
in clinic visits. The heat map shows the joint impact of the O3
and PM10 concentrations on the number of pediatric respiratory
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FIGURE 9
Case study of feature importance for the trained RF model with (A) SHAP and (B) LIME.

outpatients. This indicates that increasing PM10 concentration
and decreasing O3 concentration correlate with increasing clinic
visits. The partial dependences of O3 and PM10 are respectively
given in Figures 7B, C. These plots show that with increasing
O3 concentration—especially when it exceeds 100 μg/m3—a clear
decrease in the number of clinic visits is seen. The results for
PM10 show that increasing PM10 concentration is correlated with
a rapid increase in the number of clinic visits. It’s noted that
the feature importance only gives the contribution of the factors
on the model simulation in statistics. The underlying mechanism
requires further experiments. Here, the contribution of PM10 is clear
as pointed out in the WHO reports (World Health Organization,
2021; World Health Organization, 2022), while that of O3 is likely
a statistical correlation. Nevertheless, the O3 concentration is an
important indicator of respiratory disease in the view of feature
importance.

The feature importance was further assessed using the SHAP
method for the trained RF model, as shown in Figure 8. The colored
scatter plot inFigure 8A shows the SHAPvalues of different features;
the larger the SHAP value, the more important the feature for the
model prediction. The color of each scatter point indicates the value
of each feature. Taking AQI as an example, higher SHAP values
for AQI values are generally positive, which indicates that AQI
has a significant positive impact on the model results. Conversely,
the SHAP values of higher O3 values are negative, which indicates
a negative impact. Among the pollutants, NO2, CO, PM2.5, and
PM10 show a promoting impact on clinic visits. Our results are
in line with previous research (Yin et al., 2011; Shen et al., 2017;

Song et al., 2018). Particulate matter can penetrate deep into the
lungs and exposure to NO2 can irritate the respiratory tract, where
both can further lead to respiratory symptoms. Figure 8B presents
the feature importance as obtained using SHAP. The overall results
are consistent with that assessed by the PFI method, which indicates
that the interpretations of both of these XAI methods are credible.

Local explanations of a given sample by SHAP and LIME are
presented in Figure 9. The selected case happens in December 2019,
which has the most clinic visits in a single month. Figure 9A shows
the impacts of different predictors on the predictand with the SHAP
method. A red (blue) arrow to the right (left) indicates that a factor
has a positive (negative) contribution to the model to generate a
high-value (low-value) prediction. The length of each arrow shows
the degree of the contribution. The feature values are listed at the
bottom, and the model prediction (after logarithm) is given in bold
on the axis. In this case, almost all the predictors contribute to
generating a high-value prediction, especially the joint effects of O3,
NO2, and PM10. Figure 9B shows the assessment given by the LIME
method. Similar to the results of SHAP, LIME shows that most of the
predictors have positive contributions, except the AQI_level being
a slightly inhibitory factor. Moreover, LIME can provide additional
explanations using binary trees. For instance, the concentration of
O3 in this case is 60.23 μg/m3 (see in Figure 9A), which is less the
threshold 80.3 μg/m3 and causes themodel to predict a higher value.
The result is consistent with the PDP analysis in Figure 7B, which
indicates that themodel explanations given by LIME are reliable and
easy to understand. It further assists the decision-making and the
selection of important factors.
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4 Conclusion and discussion

4.1 Conclusion

In this study, air pollution was found to be a major factor
correlating with the incidence of pediatric respiratory diseases.
Multiple ML models were used to explore the relationships between
the air-pollutant concentrations and the numbers of pediatric
respiratory outpatients in Taizhou, China. Different XAI methods
were applied to explain the constructed model and analyze the
feature importance. The main conclusions are as follows.

1. There is a significant seasonal variation in the number of
clinic visits for pediatric respiratory diseases, and the peak
value happens in the winter. Seasonal variation is seen in the
concentrations of air pollutants. The concentrations of NO2,
CO, PM2.5, and PM10 are higher in the winter, while that of
O3 is higher in the summer. Among the air pollutants, NO2,
CO, O3, PM2.5, and PM10 are significantly correlated with the
numbers of clinic visits, with Pearson correlation coefficients
greater than 0.35. Furthermore, comparisons between groups
showed that the seasons, the level of air pollution, and the
type of primary pollutant significantly affected the incidence of
respiratory diseases in children. The concentration of PM was
found to be the most important factor.

2. ML models are capable of well simulating the monthly clinic
visits. The RMSE and CC results show that the non-linear models
significantly outperform the linear ones. Among them, RF served
as the best-performing model.

3. Four different XAI methods—PFI, PDP, SHAP, and LIME—were
used for the explanation of the best-performing model, RF. The
results showed that AQI, O3, PM, and the month were the four
most important features. Among the air pollutants, increases in
the concentrations of NO2, CO, PM2.5, and PM10 were correlated
with increases in clinic visits. A case study in December 2019
showed that the SHAP and LIME methods are credible and easy
to understand for local explanations of the RF model.

4.2 Discussion

The incidence of pediatric respiratory diseases is affected by
a variety of factors, and air pollution is certainly one of the
major causes. For instance, PM10 can penetrate deep in the
lungs and PM2.5 can even enter the bloodstream, both leading
to the respiratory symptoms (World Health Organization, 2021).
Exposure to NO2 can irritate airways and aggravate respiratory
diseases (World Health Organization, 2022). In this study, this
incidence is characterized as the number of pediatric patients
visiting the respiratory department of a single hospital in Taizhou.
Comprehensive collection of clinic-visit information could further
help to improve the reliability of themodel.The purpose of the study
was to explore the potential impact of air-pollutant concentrations
on the incidence of pediatric respiratory diseases using ML models

and XAI methods. Here, the monthly data was used which helped
to abstract a clear and basic pattern of how air-pollution-related
factors affecting the pediatric respiratory diseases. However, the
small datasets could cause the over-fitting issue when training
the ML models. Hence, interpretable ML models that prove still
efficient for small datasets were adopted in this study, i.e. Adaboost
and random forest. With this preliminary exploration, a prediction
model for daily clinic visits will be investigated in future studies,
where sufficient daily data can be used for training and validation.
Furthermore, more factors should be taken into account aside from
the air pollutants. The meteorological data, i.e. temperature and
relative humidity (moisture), are commonly used to adjust the effects
of weather on hospital outpatients (Song et al., 2018). The time
lags between the air-pollution events and the patients visiting the
hospital should also be included as additional factors.
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