
Multichannel seismic impedance
inversion based on Attention
U-Net

Juan Ning1, Shu Li1,2*, Zong Wei1 and Xi Yang1

1School of Communication and Electronic Engineering, Jishou University, Jishou, China, 2School of
Biomedical Engineering, Guangzhou Medical University, Guangzhou, China

Recently, seismic inversion has made extensive use of supervised learning
methods. The traditional deep learning inversion network can utilize the
temporal correlation in the vertical direction. Still, it does not consider the
spatial correlation in the horizontal direction of seismic data. Each seismic
trace is inverted independently, which leads to noise and large geological
variations in seismic data, thus leading to lateral discontinuity. Given this, the
proposed method uses the spatial correlation of the seismic data in the horizontal
direction. In the network training stage, several seismic traces centered on the
well-side trace and the corresponding logging curve form a set of training sample
pairs for training, to enhance the lateral continuity and anti-noise performance.
Additionally, Attention U-Net is introduced in acoustic impedance inversion.
Attention U-Net adds attention gate (AG) model to the skip connection
between the encoding and decoding layers of the U-Net network, which can
give different weights to different features, so themodel can focus on the features
related to the inversion task and avoid the influence of irrelevant data and noise
during the inversion process. The performance of the proposed method is
evaluated using the Marmousi2 model and the SEAM model and compared
with other methods. The experimental results show that the proposed method
has the advantages of high accuracy of acoustic impedance value inversion, good
transverse continuity of inversion results, and strong anti-noise performance.
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1 Introduction

Seismic inversion can be defined as the process of obtaining subsurface model
parameters, such as formation velocity, density, or impedance, from seismic data by
comprehensively available geological and logging data (Treitel and Lines, 2001). For
conventional seismic inversion methods, i.e., model-driven inversion methods, the
mathematical theory is based on the convolution model or other mathematical and
physical models. The convolution model is essentially a simplification and
approximation of the seismic wave transmission process. The subsurface structure is
usually very complex, and errors will inevitably arise when describing the wave
propagation with the convolution model, which leads to inaccurate inversion results. On
the other hand, in order to get a good inversion result, the model-driven method needs a
better initial model and an accurate wavelet. In practical applications, it is usually challenging
to obtain good initial models and accurate wavelets. In addition, problems such as limited
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data bandwidth, data noise, and incomplete data coverage cause
various troubles for model-driven inversion methods.

Unlike traditional model-driven seismic inversion, deep
learning is a data-driven approach that can learn complex
non-linear mappings between inputs and outputs based on
training datasets, and the parameters are adjustable. Deep
learning is a subset of machine learning that has recently
made breakthroughs in image classification (Krizhevsky et al.,
2017), object detection (Ren et al., 2015), image segmentation
(Chen et al., 2017), image and video captioning (Vinyals et al.,
2022), speech recognition (Graves et al., 2013), and machine
translation (Cho et al., 2014). The success of deep learning in the
fields of computer vision and natural language processing has
led to widespread interest among scholars in data-driven
intelligent seismic inversion methods. This class of methods
does not require an initial model and does not require the
estimation of seismic wavelets. Using the powerful learning
ability of deep neural networks to establish non-linear
mapping relationships between seismic data and parameters
to be inverted has become a trendy research direction in the
field of seismic inversion.

Currently, the application of deep learning methods in the field
of seismic inversion is expanding, involving acoustic impedance
inversion, pre-stack elastic and lithological parameter inversion, full
waveform inversion, and so on. Recently, seismic inversion has
made extensive use of supervised learning methods. Alfarraj and
AlRegib (2018) used recurrent neural networks for petrophysical
parameter estimation. Das et al. (2019) and Wu et al. (2020) trained
the convolutional neural networks (CNNs) to invert seismic
impedance using synthetic seismic records on the earth model
constrained by petrophysical relationships. The results show that
the type of sediment phase and source wavelet parameters used in
the training dataset affect the inversion process of the network.
Mustafa et al. (2019) used the temporal convolution network (TCN)
to estimate the acoustic impedance. This method not only
successfully captured the long-term trend but also preserved the
local patterns while overcoming the gradient disappearance problem
in the inversion of recurrent neural network (RNN) and the
overfitting problem in convolutional neural networks. Du et al.
(2019) proposed SeisInv-ResNet for pre-stack seismic inversion to
obtain p-wave impedance, s-wave impedance, and other
petrophysical parameters. Aleardi and Salusti (2021) proposed an
elastic pre-stack seismic inversion method based on CNN.

Although the above inversion networks based on deep learning
can well utilize the temporal correlation in the vertical direction,
they do not consider the spatial correlation of seismic data in the
horizontal direction, and each seismic trace is inverted
independently. However, in subsurface seismic profiles, adjacent
traces are highly correlated. The inversion method based on trace by
trace does not exploit the spatial correlation in the horizontal
direction, which may lead to poor horizontal continuity of
inversion results. To improve the continuity, Wu et al. (2021)
proposed a 2D network-based inversion method.

Traditional CNN networks take a long time to train and need a
lot of labeled data. To address these drawbacks of classical CNN
networks, Ronneberger et al. (2015) proposed the U-Net network in
their study of biomedical image segmentation problems. Their
research shows that U-Net can reduce the need for labeled data

to a certain extent while improving training efficiency. Seismic
inversion also faces the problem of a small number of labels (few
logging data) and a very large amount of seismic data. In view of this,
Cao et al. (2022) proposed an inversion network consisting of a
U-Net combined with three fully connected networks and named it
the UCNN, which was used to predict elastic parameters from pre-
stack seismic data. To further reduce the reliance on labeled data,
they use Sequential Gaussian Co-Simulation and Elastic Distortion
algorithms to generate adequate and diverse pre-stack seismic
inversion datasets. Similarly, Wang et al. (2020) proposed a
closed-loop CNN structure with a U-Net network as the main
body to make CNN less dependent on the amount of labeled
data in seismic inversion. The proposed closed-loop CNN can
simulate both seismic forward and inversion processes from the
training dataset.

Given the excessive and repeated extraction and utilization of
similar features for each cascaded CNN structure in U-Net, this
results in a significant computational effort and network parameter
scale. Oktay et al. (2018) proposed the Attention Gate (AG) model
and integrated it into U-Net to obtain the Attention U-Net network.
The AGmodel can implicitly learn to emphasize prominent features
that are helpful for inversion while suppressing irrelevant regions in
the input data. In addition, AG is easily integrated into standard
CNN architectures such as U-Net, which can reduce the
computational overhead while improving the sensitivity and
prediction accuracy of the network.

In conclusion, this paper proposes a multichannel acoustic
impedance inversion based on Attention U-Net to address the
issues with conventional deep learning inversion networks, such
as poor continuity of inversion results and susceptibility to noise due
to the trace-by-trace inversion method. The horizontal spatial
correlation is applied to the inversion network by mapping
multiple seismic traces to one logging curve. Under the
supervision of limited logging data, the inversion network is
trained. The training samples consist of several seismic traces
centered on the well-side traces and associated well-logging
curves. The inversion network simultaneously performs the
duties of predicting acoustic impedance and forwarding seismic
data. This paper is structured as follows: In Section 2, the theory and
network structure of Attention U-Net are briefly introduced, and
then the architecture of the inversion network consisting of three
modules and their specific internal parameter settings are presented.
In Section 3, the experimental results of the inversion of two typical
seismic models (the Marmousi2 model and the SEAM model) are
presented, analyzed, and discussed. The experimental results are
compared with other deep learning inversion methods, and the
noise immunity of the inversion network is discussed in this paper.
Finally, Section 4 concludes this paper.

2 Methods

2.1 Inversion framework

Geological structures are spatially correlated. The closer the
distance, the stronger the correlation, and conversely, the weaker the
correlation. The correlation of seismic data is reflected in the
temporal correlation in the vertical direction of seismic traces
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and the spatial correlation in the horizontal direction between the
central trace and the adjacent traces. Based on the spatiotemporal
characteristics of the seismic data, the inversion framework in
Figure 1 is constructed using a supervised learning approach.
The inversion framework shown in Figure 1 consists of three
main modules: the feature extraction module, the regression
module, and the forward module.

In the training phase, the input of the inversion network is the
seismic data of the well-side trace and the 2 k nearby seismic data
centered on it. The feature extraction module extracts the
temporal and spatial features of the seismic data of the well-
side trace and the 2 k nearby seismic traces by Attention U-Net.
The regression module is used to map the data from the feature
domain (spatiotemporal feature series) to the target domain
(predicted acoustic impedance), while the forward module is
used to map the data from the feature domain to the target
domain (forward 2 k + 1 traces seismic data). Referring to the
structure of the multi-task learning of Mustafa et al. (2021), the
inverse network learns two tasks simultaneously: the predicted
acoustic impedance data and forward seismic data. By sharing
representations between the two tasks, especially if they are
related to each other, we bias the network to learn more
generalizable features.

2.2 Network model

2.2.1 Feature extraction module
The Attention U-Net is used as a feature extraction module to

extract spatial and temporal features of seismic data. The input of the

feature extraction module is the seismic data of the well-side trace
and the nearby 2 k traces centered on it, and the output feature size is
the same as the input size. Attention U-Net is improved by using
U-Net as the base framework, as shown in Figure 1, adding AG at the
jump connection between the encoding-decoding layers of the
U-Net network, so that the originally up-sampled features are
connected with the encoded layer AG-processed signal. By
assigning different weights to different features, the model is
better able to pay attention to the features relevant to the
inversion task, which improves the sensitivity and prediction
accuracy of the model.

Attention U-Net is divided into an encoding part and a decoding
part, as shown in Figure 1. The encoding part of the Attention U-Net
framework used in this paper contains four downsampling layers.
The downsampling layer includes two consecutive convolutional
blocks and a 2 × 1 max-pooling layer, and each convolutional block
consists of a 3 × 3 two-dimensional convolutional layer (Conv2d), a
batch normalization layer (BN) (Ioffe and Szegedy, 2022), and a
rectified linear unit (ReLU) (Nair and Hinton, 2010) activation
function. Batch normalization is used to accelerate the convergence
of the network, and ReLU is used to enhance the non-linear
approximation capability of the model. The decoding part
corresponds to the encoding part, and the decoding part also
contains four upsampling layers. Each upsampling layer consists
of a 4 × 3 deconvolution layer, an AG model, and two convolution
blocks.

The input of AG is the feature in the encoding part and the
feature after deconvolution in the decoding part. The specific
structure of AG is shown in Figure 2. The features extracted
from the decoding part after deconvolution are used as the

FIGURE 1
Structure of inversion network.
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gating signal g, and the features from the matching layer’s coding
portion are used as x. The 1 × 1 convolution is done for g and x, and
the two results A and B are added element by element to highlight
the features. Then, the non-linear ability of the added result is
increased by the ReLU activation function to obtain C, and the
channel of C is reduced to 1 channel by a convolution operation. D is
processed using a sigmoid activation function such that its value falls
within the range of (0, 1), and the result is an attention weight that is
the same size as the input feature and has one channel. Finally, the
attention weight is multiplied by x.

2.2.2 Regression module
The regression module maps the output of the feature extraction

module from the feature domain to the target domain. The
regression module’s structure, as shown in Figure 3, consists of
two convolutional blocks and a 2D convolutional layer. Each
convolutional block consists of a 2D convolutional layer, a group

normalization layer, and the ReLU activation function. Group
normalization groups the outputs of the convolutional layers and
normalizes each group using the learned mean and standard
deviation, which have been shown to reduce covariate bias in the
learned features and speed up learning (Wu and He, 2012).

As shown in Figure 3, the input of the regression module is the
output of the feature extraction module, and the output is the predicted
acoustic impedance. Calculate themean square error between the actual
acoustic impedance and the output of the regression module. In other
words, the mean square error between the predicted and the actual
acoustic impedance data is calculated to update the learnable
parameters in the feature extraction module and the regression
module. The following Eq. 1 illustrates this:

l1 � MSE mi,t , m̂i,t( ) (1)
where mi,t is the actual acoustic impedance, m̂i,t is the predicted
acoustic impedance, and MSE is as in Eq. 4.

FIGURE 2
Attention gating model.

FIGURE 3
Block diagram of the regression module.
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2.2.3 Forward module
The forward module maps the output of the feature extraction

module from the feature domain to the target domain. As shown in
Figure 4, the input of the forward module is the output of the feature
extraction module, and the output is the predicted well-side trace
and 2 k nearby seismic data. The structure of the forward module
consists of two convolutional blocks plus a 2D convolutional layer.
Each convolutional block consists of a 2D convolutional layer, a
group normalization layer, and a ReLU activation function to
achieve reconstruction.

Calculate the mean square error between the feature extraction
module’s input and the forward module’s output. To put it another
way, the mean square error between the 2 k + 1 seismic data in the
well-side trace and nearby traces and the predicted 2 k + 1 seismic
data is calculated in order to update the learnable parameters in the
feature extraction module and the forward module. The following
Eq. 2 illustrates this:

l2 � MSE xi,t , x̂i,t( ) (2)
where xi,t is the seismic data of the well-side and nearby 2 k traces,
and x̂i,t is the predicted 2 k + 1 seismic data.

2.3 Loss function

The loss of the entire inversion network is the mean square error
between the predicted acoustic impedance data and the actual
acoustic impedance (l1), and the mean square error between the
2 k seismic data in and around the well-side traces and the predicted
2 k + 1 seismic data (l2), with the total loss shown in Eq. 3:

l � αl1 + βl2 (3)

where α and β are weighting factors that control the effects of
acoustic impedance losses and seismic losses, respectively.

2.4 Evaluation of inversion results

The inversion results are evaluated quantitatively by calculating
the mean square error (MSE) and the coefficient of determination
(R2) of the actual and predicted acoustic impedance.

Mean Squared Error (MSE): MSE is the average of the squared
sum of the errors of the corresponding points of the predicted data
and the real data, and the smaller the value indicates that the
predicted data fits better with the original data, which is defined as:

MSE � 1
N
∑
N

i�1
yi
���� − ŷi

����22 (4)

where yi, ŷi denote the actual acoustic impedance and predicted
impedance, respectively, and N is the number of data.

Determination Coefficient (R2): R2 is a measure of the goodness
of fit between variables that takes into account the mean square error
between predicted and actual data. Its range of values is [0, 1], and
the larger the value, the better the fit between the variables, the more
the independent variable explains the dependent variable, and the
more the independent variable contributes to the overall variation. It
is defined as:

R2 y, ŷ( ) � 1 − ∑N

i�1 yi − ŷi( )2

∑N

i�1 yi − μy( )
2 (5)

where yi, ŷi, and μy represent the actual acoustic impedance,
predicted acoustic impedance, and the average of the actual

FIGURE 4
Block diagram of the forward module.
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acoustic impedance, respectively. When R2 is closer to 1, the stronger
the correlation between the predicted and actual acoustic
impedance is.

3 Experiments

The Marmousi2 and the SEAM models are widely used to
validate the performance of deep learning inversion methods.
This subsection will use these two models to validate the
performance of the inversion network architecture proposed in
this paper for acoustic impedance inversion.

3.1 Marmousi2 model inversion experiments

The Marmousi2 model is an extension of the original Marmousi
model for amplitude variation with offset (AVO) analysis (Martin
et al., 2002). The original Marmousi model has been widely used to

validate inversion and imaging algorithms. The researchers added
more complex structures representing hydrocarbon regions to the
model and increased the number of strata, resulting in a new model,
the Marmousi2 model, which has a width of 17 km and a depth of
3.5 km. The model is accompanied by synthetic seismic data, which
are obtained by convolutional forward simulations of the model’s
reflection coefficients using seismic wavelets.

The acoustic impedance model was obtained by multiplying the
density and p-velocity models of the Marmousi2 data. The seismic
data and acoustic impedance profiles are shown in Figures 5A, B,
with 2,721 traces and 688 sampling points per trace in the seismic
profile and 2,721 traces and 688 sampling points per trace in the
acoustic impedance profile. The colors in Figure 5A represent
seismic amplitude values, and the colors in Figure 5B represent
the acoustic impedance values. Twenty traces of acoustic impedance
are uniformly extracted as pseudo-well data, and for each pseudo-
logging curve, 2 k + 1 seismic traces centered on the well-side trace
and with k as the radius will be obtained. This paper sets k to 3, and
each pseudo-logging curve corresponds to 7 seismic traces with a

FIGURE 5
The Marmousi2 model. (A) Seismic data profile; (B) real acoustic impedance profile.
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FIGURE 6
Acoustic impedance inversion profiles and residual profiles on the Marmousi2 model. (A) Inversion result of CNN method and its residual (B). (C)
Inversion result of TCNmethod and its residual (D). (E) Inversion result of U-Netmethod and its residual (F). (G) Inversion result of themethod in this paper
and its residual (H).

Frontiers in Earth Science frontiersin.org07

Ning et al. 10.3389/feart.2023.1104488

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1104488


depth of 688 sampling points. The inverse network is trained using
seismic data and pseudo-well data, the training epoch is set to 700,
and the batch size is 20 for each iteration. In each training iteration,
the weight coefficients in the loss function α and β are set to 1. The
total training loss of the previously described inverse network is
calculated and back-propagated through the network.

The Marmousi2 model has a complex stratigraphic structure
and contains many different subsurface layered media models. The
mean square error function is chosen as the loss function to measure
the mean square error of the predicted and real acoustic impedance.
ADAM is chosen as the optimizer, and ADAM adaptively sets the
learning rate during training, with the initial learning rate set to
0.001. A weight decay of 0.0001 is chosen to limit the L2 norm of the
weights from becoming too large, reducing the risk of overfitting the
network. The network’s training is implemented in the PyTorch
framework, and GPUs are applied to accelerate the computation.
Finally, the trained inverse network is used for acoustic impedance
inversion.

In order to prove the effectiveness of this paper’s method, the
inversion results of this paper’s inversionmethod are compared with
the inversion results of the commonly used deep learning inversion
methods, including the inversion method based on CNN (Das et al.,
2019), the inversion method based on 1D TCN (Mustafa et al.,
2019), and the inversion method based on 1D U-Net. This 1D U-net
model is constructed into the same network structure as the U-net
proposed in this paper, but it lacks an attention mechanism. These
inverse networks are set up with the same training conditions,
training data, and hyperparameters. The inversion result of the

method based on CNN is shown in Figure 6A, the inversion result of
the method based on 1D TCN is shown in Figure 6C, the inversion
result of the method based on 1D U-Net is shown in Figure 6E, and
the inversion result of the method proposed in this paper is shown in
Figure 6G. Figures 6B, D, F, H correspond to the residual difference
between each network’s inverse acoustic impedance and the real
acoustic impedance.

As shown in Figure 6, the inversion results shown in Figures 6E, G
have a higher similarity to the real model than the inversion results in
Figures 6A, C.Moreover, Figure 6Ghas stronger horizontal continuity
and weaker visible jitter in both horizontal and vertical directions for
the inverse acoustic impedance profile than Figure 6E, the water layer
at the top of the figure also clearly shows a relatively better inversion of
Figure 6G. The partition interface and fault location in different strata
are the main locations where the inversion results show errors,
according to the residual profiles. In comparison to other figures
in Figure 6, the inversion method in this paper can also invert the
convolution structure in the model well, and the inversion results are
more continuous and closer to the actual acoustic impedance, as well
as more accurate in predicting the location of the faults. In most
locations, the error is lower than that of other inversionmethods. This
is due to the effective use of the inversion network proposed in this
paper for the spatial correlation of seismic data’s horizontal direction.

In order to compare the details of the inversion results of
different methods from the microscopic level, the representative
Trace No. 570 (corresponding to the position around x = 3,565 m)
and Trace No. 1400 (corresponding to the position around x =
8,747 m) are selected for inversion.

FIGURE 7
Acoustic impedance inversion results of trace no. 570. (A) Inversion result of the CNNmethod. (B) Inversion result of the TCNmethod. (C) Inversion
result of the 1D U-Net method. (D) Inversion result of the method in this paper.
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At these two locations, the acoustic impedance values obtained by
four inversion methods were compared. Figures 7A–D shows the
inversion results of Trace No. 570 using the conventional CNN
inversion method, the 1D TCN inversion method, the 1D U-Net
inversion method, and the method proposed in this paper, with the
red and black lines representing the true impedance and acoustic
impedance inversion results, respectively. Similar to the inversion
results of the four networks mentioned above for all seismic traces,
the inversion result of the method in this paper is relatively better. The
inversion result in Figure 7A has a large inversion error at a large depth,
the inversion result in Figure 7B is very different from the true value, and
the inversion result in Figure 7C changes too drastically, whereas the
difference between the inversion result and the actual acoustic impedance
in Figure 7D is very small, with the two curves almost overlapping.

Figures 8A–D corresponds to the inversion results of the above
four methods for Trace No. 1400 seismic trace, respectively, and the
conclusions are consistent with Figure 7. The inversion results of
Figures 8A, B in the figure deviate more from the true values. The

inversion results of Figures 8C, D are in better agreement with the
actual curves, but between sampling points 0 and 100, the inversion
of Figure 8D is better, while the curve change of the inversion result
of Figure 8C is too drastic. This further validates the performance of
the inversion network proposed in this paper.

In order to objectively and quantitatively evaluate the reliability
of the inversion results of the four methods, the coefficients R2 and
MSE are used as evaluation criteria. Table 1 shows the MSE and R2

between the acoustic impedance inversion results of different
methods in Figure 6 and the actual acoustic impedance.

Table 1 shows that this paper employs multichannel inversion,
and the method of acoustic impedance inversion by Attention
U-Net using spatial correlation performs best in terms of MSE
and R2, demonstrating the method’s efficacy.

Gaussian noise of 4%, 8%, and 12% was added to the seismic
data to test the adaptability of the method proposed in this paper to
noise. Table 2 shows the quantitative evaluation of the inversion
results obtained from the different inversion networks in Figure 6
under different noise conditions. As shown in Table 2, the
performance of each method’s inversion results decreases as
noise increases relative to a noiseless environment, but the
performance index of the method proposed in this paper
decreases the least. For example, when the noise of the seismic
data increases from 4% to 12%, the R2 coefficients of the inversion
results of CNN, TCN, U-Net, and the proposed method decreased
by 7.43%, 2.85%, 4.83%, and 1.38%, respectively. Observing the
changes inMSE data leads to a similar conclusion. It can be seen that
the proposed method in this paper has better noise immunity
performance compared with other methods.

FIGURE 8
Acoustic impedance inversion results of trace no. 1400. (A) Inversion result of the CNNmethod. (B) Inversion result of the TCNmethod. (C) Inversion
result of the 1D U-Net method. (D) Inversion result of the method in this paper.

TABLE 1 MSE, R2 between inversion results and actual acoustic impedance.

Methods MSE R2

CNN 0.0897 0.9090

TCN 0.0540 0.9452

U-Net 0.0343 0.9653

Attention U-Net 0.0199 0.9800
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3.2 SEAM model inversion experiments

To further verify the feasibility of the method, this paper conducts
experiments with the SEAM model. The SEAM model is open source
and also widely used for the validation of deep learning inversion
methods (Mustafa et al., 2021). The SEAMmodel is a 3D seismic survey

with very drastic lateral variations in density and longitudinal wave
velocity, which is challenging for the inversion algorithm. The SEAM
model is constructed based on basic rock properties, such as the volume
of shale and sand. It follows the changing trend of shale porosity
characteristics in the Gulf of Mexico, which is a better simulation of the
actual geological conditions. The density of the SEAM model and the

TABLE 2 MSE, R2 between inversion results and actual acoustic impedance under different noise conditions.

Indicator、SNR

methods

MSE R2

4% 8% 12% 4% 8% 12%

CNN 0.1146 0.1404 0.1787 0.8836 0.8571 0.8180

TCN 0.0622 0.0742 0.0886 0.9375 0.9253 0.9108

U-Net 0.0454 0.0729 0.0911 0.9540 0.9261 0.9079

Attention U-Net 0.0244 0.0285 0.0375 0.9751 0.9711 0.9616

FIGURE 9
SEAM model. (A) Seismic data profile. (B) Real acoustic impedance profile.
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longitudinal wave velocity model are multiplied to obtain the
real acoustic impedance model. The seismic data and the real
acoustic impedance profiles are shown in Figures 9A, B, respectively,
with 501 traces and 688 sampling points per trace in the seismic profile
and 501 traces and 688 sampling points per trace in the acoustic
impedance profile. 12 traces of acoustic impedance are uniformly
extracted from the acoustic impedance model as pseudo-well data,
and k is also set to 3, so that each pseudo-logging curve corresponds to
7 seismic traces with a depth of 688 sampling points. The training epoch
is set to 400, and the batch size is 12 for each iteration. The network is
then trained in the same way as the Marmousi2 model, and the trained
network is used to perform acoustic impedance inversion on all seismic
traces.

The inversion results are shown in Figure 10. Figures 10A, C,
E correspond to the results of the inversion based on the
conventional CNN inversion method, the 1D U-Net inversion
method, and the inversion of the proposed method in this paper,
respectively. Figures 10B, D, F correspond to the residuals
between the acoustic impedance and the real acoustic
impedance inverted by each method, respectively. As can be
seen from the figure, compared with Figures 10C, E has a
better effect in displaying the stratigraphic interface in the left
half of the depth range of 10,000 m to 14,000 m, and the strata are

clearer. Some thin stratigraphic variations can be clearly observed
in the upper left part of Figure 10E diagram between 5,000 and
9,000 m depth. For example, at 2,500 m depth in the real model,
there is a thin arc-shaped stratigraphy that can be seen more
clearly in Figure 10E, whereas it is difficult to see in Figures 10A,
C, and Figure 10A does not outline the central uplifted area in the
real model better. Although the method in this paper has some
errors in the inversion of the SEAM model, the overall effect is
better than the other two methods.

Trace No. 179 (corresponding to the vicinity of x = 12,500 m) was
selected for the inversion experiment, and the acoustic impedance
inversion results of the three inversionmethods are shown in Figure 11.
Figures 11A–C shows the inversion results of Trace No. 179 using the
conventional CNN inversion method, the 1D U-Net inversion method,
and the method proposed in this paper, with the red and black lines
representing the true impedance and acoustic impedance inversion
results, respectively. The proposed method has better inversion results
compared with other methods. From Figure 11C, we can see that the
inversion result obtained by the proposed method almost completely
overlaps with the true impedance, while the inversion result of the CNN
deviates from the true value, and the result obtained by the 1D U-Net
inversion method also has large deviations, with a large deviation at a
small depth.

FIGURE 10
Acoustic impedance inversion profiles and residual profiles on the SEAMmodel. (A) Inversion result of CNNmethod and its residual (B). (C) Inversion
result of U-Net method and its residual (D). (E) Inversion result of the method in this paper and its residual (F).
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To quantitatively evaluate the performance of the method
proposed in this paper, the MSE and the R2 between the acoustic
impedance inversion results and the true acoustic impedance are
calculated and presented in Table 3. The data are the MSE and R2

between the acoustic impedance and the true acoustic
impedance obtained by the inversion of different inversion
methods in Figure 10. The data in the table show that the
inversion result of the proposed method performs best in
terms of MSE and R2, which verifies the effectiveness of the
method.

4 Conclusion

This paper proposes a multichannel seismic acoustic
impedance inversion method based on the Attention U-Net

network. Different from the conventional supervised learning
inversion method, this inversion method applies the spatial
correlation in the horizontal direction to the inversion
network, and trains the network with 2 k + 1 seismic traces
centered on the well-side trace and the corresponding logging
curve to enhance the lateral continuity. In addition, the Attention
U-Net network is used as a feature extraction module in the
inversion network, and the attention gating model is added to the
traditional U-Net-based inversion network. The AG is used to
implicitly learn to suppress irrelevant regions in the input data
while emphasizing salient features useful for inversion results,
and it can be easily integrated into the standard CNN architecture
to reduce computational overhead while improving the model’s
sensitivity and prediction accuracy. The method’s performance is
evaluated using the Marmousi2 and SEAM models, and it is also
compared to several other commonly used deep learning
inversion methods. The results show that the inversion results
of the method proposed in this paper are more consistent with
the actual acoustic impedance values, and the anti-noise
performance is the best. In the SEAM model, where the lateral
velocity and density vary drastically, the proposed method can
better obtain the stratigraphic structure and details in the true
model. These are attributed to the combined application of the
attention gating model and methods such as multichannel
simultaneous inversion.

FIGURE 11
Acoustic impedance inversion results of trace no. 179. (A) Inversion result of the CNN method. (B) Inversion result of the 1D U-net method. (C)
Inversion result of the method in this paper.

TABLE 3 MSE, R2 between inversion results and actual acoustic impedance.

Methods MSE R2

CNN 0.2659 0.5436

U-Net 0.1549 0.7991

Attention U-Net 0.1182 0.8250
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