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Random noise adversely affects the signal-to-noise ratio of complex seismic signals
in complex surface conditions and media. The primary challenges related to
processing seismic data have always been reducing the random noise and
increasing the signal-to-noise ratio. In this study, we propose an improved cycle-
consistent generative adversarial network (CycleGAN) seismic random noise
suppression method. First, the generator replaces the original cycle-consistent
generative adversarial network generator network structure with the Unet
structure combined with the Resnet structure in order to increase the diversity of
seismic data feature extraction and decrease the loss of seismic data details. Second,
in order to improve the network’s stability, the feature extraction effect, the event
texture preservation effect, and the signal-to-noise ratio, the Least Square GAN
(LSGAN) square difference loss is used in place of the conventional generative
adversarial network cross-entropy loss. The feasibility of the proposed method
was confirmed using model and real seismic data, both of which demonstrated
that the improved cycle-consistent generative adversarial network method
effectively suppressed random noise in seismic data. In addition, the denoising
effect was superior to both the widely used FX deconvolution denoising method
and original cycle-consistent generative adversarial network denoising method.
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1 Introduction

Seismic data frequently include a substantial amount of random noise, owing to the
influences of surface conditions, environmental interference, and anthropogenic factors. The
process of seismic acquisition in the field results in the superposition of random noise and
effective signals in the seismic data, which negatively impacts the data’s signal-to-noise ratio
and the precision of its processing and interpretation. Wide frequency bands, ambiguous
apparent velocities, and indefinable propagation directions are all characteristics of such
random noise. It is challenging to accurately predict and efficiently remove random noise
using current conventional methods. Therefore, a major problem in seismic data processing is
the suppression of random noise and improving the signal-to-noise ratio in seismic data (Zhang
et al., 2005). Currently, model- and data-driven denoising methods comprise the random noise
suppression techniques for seismic data. By creating a data distribution model, model-driven
seismic data denoising predicts the actual scenario that contains noisy data. Filtering, sparse
transformation, and modal decomposition are frequently applied in model-driven seismic data
denoising.

Filtering-based seismic data denoising removes the components associated with the noise
by designing various filters, thereby enabling good sorting of the effective signal and noise in the
time-space, frequency, or frequency-wavenumber. Band-pass, median (Guan et al., 2005; Wang
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et al., 2012), frequency-domain, and frequency-wavenumber domain
filtering are commonly used for earthquake data. Predictive filtering
(Gulunay, 1986; Abma and Claerbout, 1997) is another technique that
builds predictive filters for noise reduction using the predictability of
seismic signals in the frequency and time-space domains. Seismic data
denoising based on sparse transformation (Sacchi et al., 1998; Gaci,
2014; Górszczyk et al., 2014; Lari and Gholami, 2014; Zhai, 2014; Xue
et al., 2017; Chen and Song, 2018; Tang et al., 2018; Dalai et al., 2019)
uses the characteristics of the difference in coefficient amplitudes
between the effective signal and the noise in the transform domain.
Typically, the noise corresponds to a low-value coefficient, while the
effective signal corresponds to a high-value coefficient. The method
involves filtering out the low-value coefficients corresponding to the
noise and retaining the corresponding high-value coefficients of the
signal using the hard or soft threshold method. The denoised signal is
then obtained through inverse transformation. Seismic data denoising
based on mode decomposition considers that the mode of the effective
signal is similar to that of the original signal, while the mode of the
noise signal differs widely from the original signal. Therefore, the noise
in the signal is separated by mode decomposition, which suppresses
the random noise in the seismic data (Chen, 2016; Liu et al., 2017; Yu
andMa, 2018; Zhou and Zhu, 2019). However, model-driven methods
are not very versatile, and algorithms are often designed for specific
data. When a new data type is encountered, current methods may no
longer be applicable.

A representative class of algorithms in data-driven industries is
deep learning, which has yielded very impressive performance across
many fields owing to the advent of big data and the advancement of
computing power. Deep learning approaches aim to use a trained
model to predict unknown data after allowing the model to learn the
data characteristics at various depths (Liu et al., 2018; Luo et al., 2020;
Zhang et al., 2021; Ye et al., 2022). Deep learning techniques have been
applied widely and successfully in seismic exploration (Oliveira et al.,
2018; Wang and Chen, 2019; Dong and Li, 2020; Liu et al., 2022; Yang
et al., 2022; Zhang et al., 2022). Wang et al. (2019) proposed a CNN
denoising framework for seismic data based on data generation and
augmentation, which can better suppress random noise and protect
effective signals. CNNs denoise the signal by extracting the texture
features from the seismic noise data. However, as the neural network’s
layer count rises, it becomes easier to experience gradient explosion
and overfitting, which limits denoising effectiveness (Liang et al.,
2020). The use of neural networks in seismic data denoising is also
constrained by their slow training speeds and for the large number of
seismic data samples required. The emergence of generative
adversarial networks (GANs) has partially solved these issues
(Goodfellow et al., 2014). In order to train, GANs use an
unsupervised learning technique that is widely applicable to both
unsupervised and semi-supervised learning. Compared to other neural
network models, GANs can produce seismic data that is clearer and
more realistic (Wang et al., 2020). By incorporating cyclic consistency
loss, CycleGAN (Zhu et al., 2017), a GAN variant, more effectively
realizes the network adversarial learning process. Some researchers
have successfully applied CycleGAN to the field of seismic exploration
through their research (Kaur et al., 2019; Huang et al., 2022). In the
area of seismic data denoising, Si et al. (2020) successfully attenuated
ground rolls in seismic data using CycleGAN and Conditional GAN.
Wu and Zhang (2021) demonstrated the superior denoising effect of
CycleGAN by applying the original CycleGAN to seismic data random
noise suppression, contrasting it with the conventional denoising

method. CycleGAN was first applied to the denoising of desert
seismic data by Li et al. (2020), resolving the issue that most
denoising algorithms were unable to effectively suppress the noise
in desert seismic data due to its particular characteristics. Ma et al.
(2022) integrated the attention module into CycleGAN and proposed
that ACGNet be used to denoise seismic data, thereby improving the
efficiency of seismic data denoising. Li and Wang (2021) proposed a
CycleGAN based on residual learning (RCGAN) for noise suppression
of seismic data, achieving high quality denoising effect but still having
shortcomings in detail characterization. In contrast to the method of
Li and Wang (2021), we use a Unet structure in the CycleGAN
generator to further improve the denoising effect on seismic data.

Based on the original CycleGAN used by Wu and Zhang (2021),
an enhancement was made in order to further increase the suppression
capability of random noise in seismic data. In order to enhance the
random noise suppression effect of seismic data to a greater extent,
reduce the loss of seismic data details, and better retain effective signals
in seismic data, the generator in the original CycleGAN was improved
to use the U-Net structure (Ronneberger et al., 2015) and ResNet
structure (He et al., 2016). The traditional GAN cross entropy loss is
replaced by the Least Square GAN square variance loss, which
enhances the feature extraction effect, increases network stability,
and yields better in-phase axis texture preservation effect and
higher signal-to-noise ratio. Denoising tests were performed on
model and real seismic data using FX deconvolution denoising
method, the original CycleGAN denoising method used by Wu
and Zhang (2021) and improved CycleGAN denoising method,
which confirmed the denoising effect of the proposed method.

2 Methods

2.1 Residual network principle

Before the advent of ResNet, popular neural network models such
as AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan et al., 2014)
learned the target features more effectively by simply stacking the
number of neural network layers (Figure 1A). However, when the

FIGURE 1
Comparison of the two different module structures: (A)
convolution module and (B) residual module.

Frontiers in Earth Science frontiersin.org02

Sun et al. 10.3389/feart.2023.1102656

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1102656


number of neural network layers reaches a certain depth, issues such as
gradient disappearance, gradient explosion, and overfitting will occur,
resulting in network degradation, lower training accuracy, and lower
test accuracy. By adding a residual module, ResNet addresses network
degradation by reducing gradient disappearance, gradient explosion,
and overfitting caused by an excessively large number of neural
network layers.

The basic structure of the residual module is shown in
Figure 1B. Assuming that the neural network’s input is x, its
predicted output is H(x), and its actual output is G(x). Unlike
the conventional convolution module A structure, in the residual
network, the input x can be directly passed to the output as the
initial result by skip connections, and the output result becomes
H(x) = G(x) + x. This is equivalent to the residual module changing
the learning target and no longer learning a complete output, but
instead learning the difference between the target value H(x) and x,
(i.e., the residual G(x) = H(x) - x).

The biggest difference between ResNet and other CNNs is the
addition of identity mapping. If the neural network contains more
network layers than the recommended number, the residual network
will train the redundant layers to G(x)=0, which means that their
inputs and outputs are the same, thereby changing the network into an
identity map. Gradient explosion or disappearance during network
training can be avoided by using the identity mapping function, which
allows the network to quickly transfer the gradient value from deeper
to shallower layers. Therefore, adding more layers to the network will
not result in network degradation, thereby enhancing the stability and
effectiveness of the network training process.

2.2 CycleGAN principle and improvement of
loss function

GANs differ from regular neural networks, as they comprise
generator and discriminator networks. GANs originated from the
two-person zero-sum game in game theory. Through cooperative
games, both the generator and the discriminator improve at their
respective functions. The value of the loss function decreases over time
as the model parameters are continuously optimized and iterated
during training, eventually reaching Nash equilibrium, which is a state
of equilibrium in the game process.

CycleGAN was enhanced based on GANs and contains two
generators and two discriminators. Cycle consistency was the
central concept. The data Generated_Y can then obtain the
same data Cyclic_X as the data Input_X through the generator
Y2X (Figure 2). This ensures that Input_X is consistent with
Cyclic_X, which is equivalent to making the data cycle back to
the starting point and maintaining its consistency. The original
data is Domain X, the target data is Domain Y, the generator that
transfers data from Domain X to data in Domain Y is G, and the
generator that transfers data from data in domain Y to data in
domain X is F. The discriminator that determines whether or not
the data belongs to Domain X and is real is DX, and the
discriminator that determines whether or not the data belongs
to Domain Y and is real is DY.

First the loss that corresponds to cycle consistency is defined, also
known as the cycle-consistency loss. The representation of CycleGAN
is as follows to guarantee cycle consistency:

When converting from data in Domain X to data in Domain Y:

x → G x( ) → F G x( )( ) ≈ x

When converting from data in Domain Y to data in Domain X:

y → G y( ) → F G y( )( ) ≈ y

This can be stated as a mathematical formula:

Lcyc G, F( ) � Ex~Pdata x( ) F G x( )( ) − x‖ ‖1[ ]

+ Ey~Pdata y( ) G F x( )( ) − y
����

����1[ ] (1)

GAN loss is the loss function corresponding to a regular GAN, in
addition to the formula corresponding to cycle-consistency loss. The
loss function of the GAN composed of G and DY is:

FIGURE 3
Improved CycleGAN generator network structure used in this
study.

FIGURE 2
Working principle of CycleGAN.
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LGAN G,DY,X, Y( ) � Ey~Pdata y( ) logDY y( )[ ]

+ Ex~Pdata x( ) log 1 −DY G x( )( )( )[ ] (2)

The loss function of a GAN composed of F and DX is:

LGAN F,DX, Y,X( ) � Ex~Pdata x( ) logDX x( )[ ]
+ Ey~Pdata y( ) log 1 −DX G y( )( )( )[ ] (3)

Instead of the conventional GAN loss, we propose to use the least
square GAN squared difference loss. Traditional GAN generates less
accurate results if cross entropy is used as the loss function, as the
generator will stop optimizing the data that the discriminator believes
to be true, even if they differ from the real data. This yields seismic data
with a low quality, and its denoising effect is not readily apparent. The
improved CycleGAN method proposed herein uses the least square
GAN to replace the objective function of a traditional GAN, using the
squared difference as the loss instead of the Log-likelihood to improve
the feature extraction effect and obtain better in - phase axis texture
preserving effect. Its formula is as follows:

LLSGAN G,DY,X, Y( ) � Ey~Pdata y( ) DY y( ) − 1( )2[ ]

+ Ex~Pdata x( ) DY G x( )( )2[ ] (4)
LLSGAN F,DX, Y,X( ) � Ex~Pdata x( ) DX x( ) − 1( )2[ ]

+ Ey~Pdata y( ) DX G y( )( )2[ ] (5)
When these three components are added together, the total loss
objective function of CycleGAN is obtained:

L G, F,DX,DY( ) � LLSGAN G,DY,X, Y( ) + LLSGAN F,DX, Y, X( )
+ λLcyc G, F( ) (6)

2.3 Improved CycleGAN structure

2.3.1 Generator structure
Wemade the following improvements to the CycleGAN generator

to improve the model’s denoising effect on seismic data.

FIGURE 4
Improved CycleGAN discriminator network structure used in this study.

FIGURE 5
Experimental workflow chart of this study.
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(1) The generator used the U-Net structure to increase the
precision of seismic data generation. Encoder and decoder
sub-networks comprise the U-Net structure. The encoder
sub-network examines the input seismic data and
determines its useful signal features. The decoder network
can perform end-to-end training and learns the distinctive
information of seismic data at various scales. By fusing the
shallow low-level features of the encoder with the deep high-
level features of the decoder, skip connections between layers
with equal resolutions can enhance the denoising effect on
seismic data.

(2) A residual network was used in the generator to better preserve the
semantics of the seismic data. To ensure that the output seismic
data retains the same useful information and accuracy as the input
seismic data, a residual network structure was used in the
CycleGAN generator to strengthen the relationship between
the input and output seismic data.

(3) The generator was trained using historical data that was cached.
The seismic data produced by the previous generator is the
historical data that was cached, which can improve seismic
data generation, stabilize the model, and reduce vibrations
during training. These improvements enhance the effect of
denoising on seismic data.

In this study, the encoder and decoder sub-networks comprise the
generator (Figure 3). The encoder sub-network transforms input 128 ×
128 seismic data into 8 × 8 data feature information. The convolution
kernel size was set to 4 × 4, and the stride was set to 1. Five sets of
residual blocks were included in the encoder sub-network, each of
which had five convolutional layers and one pooling layer. To preserve
the characteristic information of the seismic data, the size of the
seismic data was compressed to half of the size of the previous
operation, while the number of channels of the corresponding
seismic data was double that of the previous residual block

FIGURE 6
3D model of the seismic data.

FIGURE 7
Examples of model seismic data training samples. (A–F) Original model data and (G–L) model data with random noise.
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operation. The decoder sub-network upsampled the 8 × 8 data feature
information produced by the encoder to 128 × 128 seismic data. The
sub-network was composed of four groups of residual blocks, each of
which was composed of one deconvolution layer and five convolution

layers. In accordance with the encoding process, the upsampled size of
the feature data was doubled after each residual operation, and the
number of feature data channels was reduced by half of that of the
previous residual operation. The final output was determined by a
convolutional layer with 1 × 1 kernel size, a stride of 1, and using the
tanh activation function.

2.3.2 Discriminator structure
The output of the original GAN discriminator, which represents

the outcome of discriminating the input data as a whole, is a True or
False vector. The value of Xij, which PatchGAN (Isola et al., 2016)
generates as an N × N matrix, denotes the likelihood that each matrix
is true. The discriminator’s final output is the average value of Xij;
therefore, the GAN output produced in this manner is known as

FIGURE 8
Improved CycleGAN loss function curve.

TABLE 1 Comparison of denoising effects on the model seismic data.

Type of data SNR (dB) PSNR (dB) SSIM

FX deconvolution to denoised data 3.6165 14.8536 0.4292

Original CycleGAN to denoised data 7.9243 26.3420 0.6884

Improved CycleGAN to denoised data 16.5606 38.2741 0.8372

FIGURE 9
Experimental results for the model seismic data. (A) Original model data, (B) model data with random noise, (C) denoising effect of FX deconvolution
method, (D) denoising effect of the original CycleGAN method, and (E) denoising effect of the improved CycleGAN method, (F) noise removal by FX
deconvolution method, (G) noise removal by the original CycleGAN method, and (H) noise removal by the improved CycleGAN method developed herein.
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PatchGAN. In this study, PatchGANwas used to enhance the accuracy
and resolution of the output seismic data, which enhances the model’s
denoising capacity.

In this study, the discriminator used PatchGAN (Figure 4). The
input size of the discriminator network was the same as that of the
generator network (128 × 128), the convolution kernel size was set to 4 ×
4, and the step size was set to 1. The Leaky ReLU activation function
with batch standardization and a slope of 0.2 was applied after each
convolution process to produce a 20 × 20 seismic data matrix. The value
of each element in the matrix denotes the probability that a particular
portion of the seismic data input used by the discriminator is real.

2.4 Experimental procedure

The experimental workflow used in this study is shown in Figure 5.
A sample set of seismic data was created for network training after a
series of pre-processing steps, which included normalizing and
standardizing the seismic data. The improved CycleGAN network
was trained using a sample set of original seismic data, as well as a
sample set of seismic data with added random noise. The final results
of the seismic data denoising process were evaluated and analyzed
using signal-to-noise ratio (SNR), peak SNR (PSNR), and structural
similarity (SSIM) quantitative parameter indicators. It was necessary
to change the network parameters, retrain, and test until an optimized
network model was attained if the training and testing results were
unsatisfactory.

In this study, model and real seismic data were used to verify the
denoising effect of the improved CycleGAN network. To evaluate the
denoising effect, quantitative indicators were added, in addition to
qualitative analysis. As evaluation indicators for data denoising, SNR
(Zhang et al., 2009), PSNR (Netravali, 1995), and SSIM (Wang et al.,
2004) were used.

SNR � Es

En
�

∑
N−1

i�0
s2 t( )

∑
N−1

i�0
g t( ) − s t( )[ ]2

(7)

The SNR is the ratio of the effective signal energy to the noise energy,
which is the square of the amplitude ratio. Es is the energy of the
effective signal, En is the energy of the noise, s(t) is the energy of the
effective signal, and g(t) is the energy of the denoised signal. Generally,
the denoising effect improves and the residual noise energy of the
denoised signal decreases as the SNR increases.

The root mean square error is expressed by the following:

MSE � 1
mn

∑
m−1

i�0
∑
n−1

j�0
I i, j( ) −K i, j( )[ ]2 (8)

where I is the seismic data without random noise, K is the seismic data
with random noise, and m and n are the data sizes among them. After
obtaining the root mean square error, the PSNR is expressed as:

PSNR � 201g
2n − 1( )2�����
MSE

√ (9)

Generally, higher PSNR values indicate a more obvious denoising
effect.

SSIM x, y( ) � 2μxμy + c1( ) 2σxy + c2( )
μ2x + μ2y + c1( ) σ2x + σ2y + c2( )

(10)

where x and y are seismic data with random noise and the denoised
results, respectively; μx is the mean of x; μy is the mean of y; σ2 x and
σ2 y are the variances of x and y, respectively; and σxy is the covariance
of x and y. C1 and C2 are constants that maintain the stability of the
structure, i.e., the denominator is guaranteed to be non-zero.
Generally, larger SSIM values indicate higher data similarity.

3 Results and discussion

3.1 Model data test

The model data in this study simulated the generation of
seismic datasets using the methods of Wu et al. (2020), which
produced synthetic 3D seismic data that is similar to real seismic
data (Figure 6). To create a two-dimensional data sample, 128 data
traces were selected in the crossline direction and 128 sampling
points were selected in the time direction. Then, 2,600 data traces
were selected in the inline direction as the sample set, to which
random noise was added to create 2,600 groups of sample sets. As
shown in Figure 7, there was no 1:1 correspondence between the
original model sample data and the model sample data that
contained random noise (SNR is 0.2673). After a series of data
pre-processing operations that included data normalization and
standardization, the sample set was input into the improved
CycleGAN. Training was performed in the network, and the
final training effect was tested. The ratio of the training dataset
to the test dataset was set to 8:2. The final test results were
compared with those of FX deconvolution denoising method
and original CycleGAN denoising methods. For comparison, the
SNR, PSNR, and SSIM were used as evaluation indicators for the
data denoising effect. During training, we set the initial learning

FIGURE 10
3D real seismic data used in this study.
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rate to 0.0002, used the Adam optimization algorithm, and set the
number of epochs to 2000. A dedicated computer (Intel Xeon
Gold5188) with 3584 CUDA cores, 16 GB of video memory, and an
NVIDIA Tesla P100 graphics card was used to train the model.
Figure 8 shows the improved CycleGAN loss function curve. It can
be seen that the network converges after about 1,500 epochs. The
denoising effect is shown in Figure 9.

Although some random noise was removed from the denoised
data produced by FX deconvolution denoising method, the overall
denoising effect was not clear and some random noise persisted, which
masked the useful information contained in the seismic data
(Figure 9). Subsequent interpretation of the seismic data presented
challenges. The original CycleGAN method still had an ambiguity
issue in the description of the effective information details after the
random noise was removed; however, the denoising effect was
improved significantly compared to that of FX deconvolution
denoising method. The improved CycleGAN network clarified the
event information of the seismic data output by the generator and
enhanced the texture features by combining the U-Net and ResNet
structures. To improve the final data output quality, the PatchGAN
discriminator was used to separate each detail of the data output by the
generator. The seismic data event information obtained by the
improved CycleGAN denoising method was clearer and the texture

FIGURE 11
Experimental results for the real seismic data. (A) Real seismic data, (B) real seismic data with random noise, (C) denoising effect of FX deconvolution
method, (D) denoising effect of the original CycleGANmethod, (E) denoising effect of the improvedCycleGANmethod, (F) noise removal by FX deconvolution
method, (G) noise removal by the original CycleGAN method, and (H) noise removal by the improved CycleGAN method developed herein.

TABLE 2 Comparison of denoising effects on the real seismic data.

Type of data SNR (dB) PSNR (dB) SSIM

FX deconvolution to denoised data 7.5941 14.7636 0.3720

Original CycleGAN to denoised data 14.4390 23.6452 0.5938

Improved CycleGAN to denoised data 32.5658 39.0285 0.9262
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features were more obvious compared to FX deconvolution denoising
method and original CycleGAN denoising methods (red box in
Figure 9). The improved CycleGAN denoising method also had
better denoising and effective information retention effects on the
seismic data (Table 1).

3.2 Real data test

We use publicly accessible three-dimensional seismic data from
the Netherlands F3, which were collected in the offshore North Sea
region and comprise a large dataset. Figure 10 shows the crossline
(100–611) and inline (300–683) direction ranges, as well as the time
range (1,337–1,848 ms) and sampling interval (4 ms). To create a two-
dimensional sample of the data, 384 lines of data were selected in the
inline direction and 512 sampling points were selected in the time
direction. Then, 120 data lines were selected in the crossline direction
as the sample set. The sample data were expanded to a total of
1,000 sample sets using operations including up and down flip, left
and right flip, and interpolation. A specific amount of random noise
was then added to the sample data to create 1,000 sample sets with
random noise. The improved CycleGAN network was trained using
the sample datasets mentioned above. Another section with
substantial random noise added to the seismic data was also tested.

Figure 11 demonstrates that FX deconvolution denoising method
did reduce some of the random noise to a certain extent, issues like
masked event information and fuzzy texture details were still present.
The denoising effect of the original CycleGAN method was
significantly enhanced compared to that of FX deconvolution
denoising method on the real seismic data. Although a substantial
amount of random noise was eliminated, issues with the detailed
characterization of the seismic data remained, as well as discontinuous
issues, unclear expressions of the in-phase axis information, and lost
texture detail features. In addition to having a better effect on
removing random noise from the real seismic data, the improved
CycleGANmethod proposed herein also better expressed the intricate
features of the real seismic data. The improved CycleGAN method
depicted the event axis informationmore clearly and continuously, the
event edge information restoration effect was improved, and the
texture detail features were clearer and richer (red box in
Figure 11). In addition, the improved CycleGAN method retained
more useful information for the real seismic data and had a more
noticeable denoising effect than FX deconvolution denoising method
and original CycleGAN denoising method (Table 2).

4 Conclusion

In this study, we proposed an improved CycleGAN random
noise suppression method for seismic data. By using the U-Net and
ResNet structures, the proposed method enhanced the generator in
the original CycleGAN method to maximize the retention of useful
information from the input seismic data and strengthened the
output seismic data. The method’s ability to retain details improved
the denoising effect. The objective loss function employs Least
Square GAN square variance loss to enhance the effect of feature
extraction and enhance network stability. The improved
CycleGAN method proposed herein was then compared to FX

deconvolution denoising method and original CycleGAN
denoising method, and was verified as suppressing random
noise using both model and real seismic data. Comparing the
SNR, PSNR, and SSIM enabled an objective quantitative analysis
of these denoising techniques, while viewing images of the
denoising effect allowed for a subjective qualitative analysis.
When the improved CycleGAN method was applied, the event
information was more continuous and clear, the texture features
were more noticeable, and the ability to retain local detailed
features was greater, demonstrating its viability for reducing
random noise in seismic data.

However, the model that was applied in this study was trained
using only a portion of the data from the same region, making it
challenging to produce better results when dealing with more and
various types of complex seismic data. To increase the model’s
capacity for generalization, more diverse types of seismic data must
be used for training.
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