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The Weilasituo-bairendaba district is located at the eastern end of the Central
Asian Orogenic Belt, which is an important component of the Cu-Pb-Zn
polymetallic metallogenic belt on the Western slope of the Greater Xing’an
Range in Inner Mongolia, China. The known Cu-Zn deposits such as the
Weilasituo Cu-Zn deposit and the Bairendaba Ag-Pb-Zn deposit are the same
tectonic-magmatic product. The district’s structure framework consists of the
NE-trending regional faults, while the secondary faults provide channels and
space for mineralization. The ore-bearing rocks are either Baoyintu Group
gneisses or quartz diorites. The typical Cu-Zn deposits exhibit obvious Cu, Pb,
Zn geochemical anomaly as well as obvious magnetic anomaly. The district-scale
two-dimensional (2D) mineral prospectivity modeling has been reported.
Nowadays, three-dimensional (3D) mineral prospectivity modeling is necessary
and urgent. Integrated deposit geology and accumulated exploration data, the
above four exploration criteria (regional fault, secondary fault, geochemical
anomaly and magnetic susceptibility) are used for 3D mineral prospectivity
modeling. Filtering (upward continuation, low pass filtering, two-dimensional
empirical mode decomposition), magnetic inversion and 3D modeling
techniques were used to construct geological models. Excellent machine
learning algorithms such as random forest (RF) and XGBoost are applied. The
twomachine learningmethods confirm each other to improve the accuracy of 3D
mineral prospectivity modeling. In this paper, repeated random sampling and
Bayesian optimization are combined to construct and tune models. This joint
method can avoid the contingency caused by random sampling of negative
samples, and can also realize automatic optimization of hyperparameters. The
optimal models (RF28 and XGBoost11) were selected among thirty repeated
training models for mineral prospectivity modeling. The obtained areas under
the ROC curves of RF28 and XGBoost11 were 0.987 and 0.986, respectively. The
prediction-area (P-A) plot and C-A fractal were used to delineate targets and
grade targets. The targets were divided into Ⅰ-level targets and Ⅱ-level targets. The
I- and II-targets are not only highly consistent with the knownCu-Zn deposits, but
also exhibit obvious ore-forming geological features. The 3D targets are beneficial
for Cu-Zn exploration in the Weilasituo-bairendaba district.
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1 Introduction

With the development of computational technology and the
continuous accumulation of geosciences datasets, mineral
exploration has developed from near-surface to subsurface, from
2D to 3D, from qualitative to quantitative (Yuan et al., 2019; Zhang
Z Q et al., 2021). 3D mineral prospectivity modeling is developed
based on the 3D geological modeling and they are both widely
applied in the mineral exploration (Houlding, 1994; Li et al., 2015;
Xiao et al., 2015; Li et al., 2016; Wang G W et al., 2017; Yang et al.,
2017; Mao et al., 2019; Wang et al., 2021; Zhang Z Q et al., 2021; Gao
et al., 2023). Since the 1990s, various knowledge- and data-driven
learning models have been applied to conduct mineral prospectivity
modeling. Knowledge-driven methods include evidential belief
functions (An et al., 1992) and fuzzy logic (Bonham-Carter,
1994). Data-driven learning methods include the WofE model,
the fuzzy WofE model, neural networks, random forests (RF),
logistic regression, support vector machines, the certainty factor
model, evidence theory and the prospecting cost–benefit strategy
(Zuo and Carranza, 2011; Li et al., 2015; Xiao et al., 2015; Li et al.,
2016; Zhang et al., 2016; Hariharan et al., 2017; Yang et al., 2017;
Wang et al., 2021; Zhang C J et al., 2021). Based on the supervised
algorithms, some derivative algorithms such as the semi-supervised
random forests, one-class support vector machine and isolation
forest have occurred (Chen and Wu, 2017; Chen and Wu, 2019;
Wang et al., 2020). RF and XGBoost (Chen and Guestrin, 2016) with
excellent performance were used as the base learners of bagging-
based positive–unlabeled learning algorithm (Zhang Z Q et al., 2021;
Gao et al., 2023). In addition, deep learning is outstanding in the
field of 2D mineral exploration (Zuo et al., 2019; Yang et al., 2023)
and has been applied to 3D mineral exploration (Li et al., 2021).

Machine learning algorithms can be widely used in deposit-,
camp- and district-scale 3D mineral prospectivity modeling (Wang
GW et al., 2017; Wang et al., 2021; Zhang C J et al., 2021; Gao et al.,
2023). RF and XGBoost performs better in district-scale 3D mineral
prospectivity modeling (Zhang ZQ et al., 2021; Gao et al., 2023). The
key steps of mineral prospectivity modeling by machine learning
algorithms are negative sample selection and hyperparameter
tuning. The barren drilling locations and with little metallogenic
potential judge by geologists can be selected as the negative training
samples (Zuo et al., 2019). However, considering the depth beyond
the control of drilling and the variability of geological conditions in
deep space, it is obvious that the above methods also have subjective
factors in 3D mineral exploration. The optimization methods of
parameters include grid search, random search and Bayesian
optimization (Jia et al., 2021). Bayesian optimization is widely
used in hyperparameter tuning because of its excellent
performance (Jia et al., 2021; Zhang Z Q et al., 2021; Gao et al.,
2023). In order to realize the automation of negative sample
selection and hyperparameter tuning, bagging method and
bayesian optimization algorithm have been applied to mineral
prospectivity modeling (Zhang Z Q et al., 2021; Gao et al., 2023).

Random forest (RF) is a typical supervised classification
algorithm (Zhang Z Q et al., 2021). RF has been widely used in

data classification (Wang et al., 2022), particularly in mineral
prospectivity modeling (Carranza and Laborte, 2015a; Carranza
and Laborte, 2015b; Gao et al., 2016; Zhang et al., 2016; Wang
et al., 2021; Zhang ZQ et al., 2021). XGBoost is an ensemble learning
algorithm, which belongs to boosting algorithm (Chen and
Guestrin, 2016). It has stable performance (Chen and Guestrin,
2016; Jia et al., 2021). At present, the algorithm has been applied in
the field of geoscience, such as lithology classification, mineral
prospectivity modeling, slope stability analysis (Merembayev
et al., 2018; Bharti et al., 2021; Jia et al., 2021; Zhang et al., 2022).

The previous district-scale mineral prospectivity modeling
studies were mainly 2D, but not 3D. Zhang (2017) and Yang
(2017) conducted mineral prospectivity modeling for the Pb-Zn
polymetallic deposits in the western slope of the southern section of
the Greater Xing’an Range (GXAR), and the results show that the
Weilasituo-bairendaba district is important to explore Cu-Pb-Zn
polymetallic deposits. In this paper, four geological information
such as regional faults, secondary faults, magnetic susceptibility, and
geochemical anomaly were selected based on the metallogenic
geological characteristics and obtained their distribution in 3D
space. RF and XGBoost were used for 3D mineral prospectivity
modeling. The P-A plot and C-A fractal were used to delineate and
grade targets, which are critical in indicating potential Cu-Zn
deposits in the district, particularly in deep space.

2 Methodology

2.1 Machine learning

Random forest (RF) is a typical ensemble, which consists of
diversified decision trees (Carranza and Laborte, 2015a; Carranza
and Laborte, 2015b; Wang et al., 2022). It is also known as a set of
hierarchically organized restrictions or conditions based on geological
conditions. The first algorithm was proposed by Ho (1995). The
bagging method and the Gini index were then used to improve the
original RF algorithm (Breiman, 1996; Gini, 1997). The RF algorithm
splits the parent node into binary pieces as specific performance. As a
result, child nodes are “purer” than parent nodes. The goal is to discover
the optimal result to maximize the “purity”. The improved algorithm
was used to make repeated predictions from aforementioned parent
nodes to child nodes, and the information represented by training data
was obtained (Carranza and Laborte, 2015a; Carranza and Laborte,
2015b). RF was developed from bagging (Breiman, 2001). It is notable
for its combination of random feature selection (Jia et al., 2021). RF, as a
data-drivenmachine learningmethod, was used to train data and obtain
predictive models. The training data consists of deposit locations and
non-deposit locations, which was represented by 1s and 0s (Rodriguez-
Galiano et al., 2014). As a result, the predictions produce floating values
ranging from 0 to 1. The closer it is to 1, the more potential to prospect
(Carranza and Laborte, 2015a; Carranza and Laborte, 2015b).

There are three main ensemble algorithms, namely, bagging,
boosting, and stacking. XGBoost belongs to boosting, which uses a
set of algorithms to boost machine learners from weak to strong
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(Freund and Schapire, 1997). The process of XGBoost performance
improvement is essentially the introduction and combination of
optimization algorithms. XGBoost is optimized by GBDTs
algorithm (Jia et al., 2021; Zhang et al., 2022). GBDT is
constituted by gradient boosting and decision tree to make the
residual gradient drop so as to realize the model performance
gradient improvement (Jia et al., 2021). The classification and
regression trees (CART) utilizes the decision tree to handle
regression and classification issues with each specific and
continuous variable (Bharti et al., 2021). Both XGBoost and
GBDT follow the principle of gradient enhancement, but
XGBoost performance is enhanced to effectively prevent over-
fitting (Chen and Guestrin, 2016; Zhang et al., 2022).

The known ore bodies ofWeilasituo Cu-Zn deposit and Bairendaba
Ag-Pb-Zn deposit are positive samples. An equal number of samples
were randomly selected from the remaining geological bodies as
negative samples. Positive samples and randomly selected negative
samples were used to construct a new dataset. Divide the training
dataset and validation dataset from the above constructed dataset in a
ratio of seven to three. To reduce the uncertainty of randomly selecting
negative samples, the training process was repeated thirty times. Based
on the precision, recall and ROC (AUC) values, the optimal model was
determined to conduct mineral prospectivity modeling.

The appropriate selection of hyperparameters is critical for ensuring
the learning model’s performance. In this paper, the Bayesian
optimization was introduced and cooperated with RF and XGBoost,
repectively. In machine learning, the Bayesian optimization technique
can be used to automatically tune hyperparameters (Bergstra et al.,
2011; Bergstra et al., 2013; Zhang Z Q et al., 2021). Sequential model-
based optimization (SMBO) is a kernel program in point of the
Bayesian optimization algorithm (Bergstra et al., 2011; Bergstra
et al., 2013). Table 1 shows the algorithm of the SMBO method.
Firstly, based on the objective function, the SMBO constructs a
surrogate model M0 with hyperparameter setting x and the loss
function F. Secondly, the SMBO constructs trails H, which is used
to update the surrogate model after storing and analysing the x and its
corresponding loss pairs (Bergstra et al., 2011). Then, the SMBO
perfroms an iteratative process (Zhang Z Q et al., 2021) as follows:

(1) search the local optimal hyperparameters x* by the current
surrogate model Mt-1

(2) according to x*, calculate the corresponding loss y
(3) store x* and y in the updated H
(4) find a new surrogate model by the updated H

The SMBO ends when the process iterated to the pre-defined T
iterations and it will output the global optimal hyperparameters with
minimum y (Bergstra et al., 2011; Bergstra et al., 2013; Zhang Z Q et
al., 2021).

The surrogate function and the acquisition function are two key
functions in SMBO (Bergstra et al., 2011; Bergstra et al., 2013). In
this paper, we propose a Python bayesian optimization package
called hyperopt to perform hyperparameter tuning. The surrogate
function and acquisition function is tree-structured Parzen
estimator and expected improvement, respectively. The pre-
defined number of iterations is fifty.

2.2 Model evaluation

The key step is to assess the efficacy of the machine learning
model when applied to mineral prospectivity modeling. Model
evaluation consists of four main components: True Positive, True
Negative, False Positive, and False Negative. They form precision
and recollection, which demonstrate their interdependence (Jia
et al., 2021). Precision and recall are combined to generate the
F1 score (Powers, 2011), which is then used to evaluate the model.
The bigger the F1 score is, the better the model performance and the
closer the prediction result is to the actual geological conditions.
Recall, precision and F1 score are following formulas:

recall � True Positive
True Positive + FalseNegative

(1)

precision � True Positive
True Positive + False Positive

(2)

F1 score � 2 · precision × recall

precision + recall
(3)

In addition to the F1 score, receiver operator characteristic
(ROC) curves are essential evaluation approaches that are used in
mineral prospectivity modeling or lithology categorization (Gao
et al., 2016; Chen and Wu, 2017; 2019; Bharti et al., 2021; Jia
et al., 2021; Zhang Z Q et al., 2021). The ROC curve analyzes
whether positive and negative samples are accurately identified, as
well as the corresponding number of samples (Jia et al., 2021). When
compared to the old evaluation approach, the ROC curve avoids the
rigid categorization of test outcomes into two groups. The ROC
curve allows for an intermediate state and produces a set of ordered
categories. The area under the curve (AUC) is an important
parameter to evaluate the ROC curve’s strengths. In general, the
closer the value of AUC is to 1, the better the model performance is.

In mineral prospectivity modeling, the prediction-area (P-A)
plot has been widely employed (Yousefi and Carranza, 2015; Yousefi
and Carranza, 2016; Mao et al., 2019; Zhang Z Q et al., 2021). The
P-A plot is made up of two curves and their intersection point. They
represent the relationship among the study area, the targets and the
known orebody. That is, within the limited target area, there are as
many known ore bodies as possible (Yousefi and Carranza, 2015;

TABLE 1 Algorithm: Sequential model-based optimization (SMBO).

Input: Initial model, M0

Hyperparameters, x

Loss function, F

Trails, H

Process

1. for t=1 to T do

2. x* ← argmin Mt-1x)

3. y = F (x*)

4. H = H∪(x*, y)

5. Mt ← H

6. end

Output: the global optimal hyperparameters with the minimum y
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Zhang Z Q et al., 2021). The intersection point can reflect the
predictive models’ performance (Yousefi and Carranza, 2015; Mao
et al., 2019; Zhang Z Q et al., 2021). The intersection point is the
balanced point for evaluating the models and delineating targets.
The greater the Y value, the more ore bodies are concentrated in a
smaller space (Zhang ZQ et al., 2021). As a result, the higher the P-A
plot intersection point, the better predictive models perform (Zhang
Z Q et al., 2021). The probability of the intersection point can be
used as the confirmation threshold. Furthermore, discovering new
Cu-Zn mineralization in a target with a smaller area is easy (Yousefi
and Carranza, 2015).

2.3 Magnetic filtering and geophysical
inversion

2.3.1 Magnetic filtering
In order to interpret the regional faults in 3D space, we used

three filtering methods such as up continuation, low pass filtering
and bi-empirical mode decomposition (BEMD). Continuation is
a commonly used magnetic processing method, which is classified
into upward continuation and downward continuation according
to the velocity of abnormal weakening or increasing. Upward
continuation is mainly applied to the extraction of deep anomaly
features and is often used in the exploration of deep structures
(Zhang et al., 2019; Han et al., 2020). The low pass filtering
method allows only low frequencies to pass. According to the
wave velocity = wavelength × frequency, we can set different cutoff
wavelength to obtain magnetic anomalies of different low
frequency values.

The empirical mode decomposition (EMD) is a non-linear data
analysis method (Huang et al., 1998). After scientific research, EMD
was developed into BEMD. BEMD is widely used in the
decomposition of geophysical data and geochemical data (Xu
et al., 2015; Chen et al., 2016; Tao et al., 2018; Zhang et al., 2019;
Gao et al., 2023). The gravity and magnetic data decomposed by
BEMD are often used in the interpretation of structures and
concealed intrusions.

The entire decomposed process that aims to extract different
frequency features mainly includes two procedures: 1) sifting bi-
dimensional intrinsic mode functions (BIMFs); 2)
determination of ending the sifting (Tao et al., 2018). First,
local maxima and local minima should be extracted and

interpolated to yield the upper enveloping surface and the
lower enveloping surface. Second, calculate mean value of the
enveloping surface, and subtract it from the previous sifted
potential field data. Third, according to the Cauchy Criterion
(Nunes et al., 2003; Nunes et al., 2005), judge the sifted
component whether appropriate or not to be BIMFs and the
formula is:

SDij � ∑
m

x�1∑
n

y�1
f i−1( )j x, y( ) − f ij x, y( )
∣∣∣∣

∣∣∣∣2

f 2ⅈ−1( )j X, y( )
< ε (1a)

Where f(i−1)j(x, y) and f ij(x, y) is consecutive sifting results.
SDij is the standard deviation. The ε, an empirical value, can
determine the number of BIMFs. We can determine the value
according to the actual results. The decomposition process ends
when the number of local extreme values in the potential field
met the pre-defined value that is the other empirical parameter
(Huang et al., 1998; Nunes et al., 2003; Nunes et al., 2005).
Finally, the background information remains by the residual
potential field (RES). The BIMFs and one RES can show lots of
geological information.

The BIMFs and RES with different frequency characteristic
means it is possible to transform them into frequency domain
(Tao et al., 2018). Thus, BIMFs and RES images as field source
can reflect the specific depth and power spectrum analysis can be
used to estimate the corresponding depth quantitatively (Zhu and
Liu, 2016; Tao et al., 2018). Nowadays, a radically average
logarithmic power spectrum was developed (Tao et al., 2018;
Zhang et al., 2019). Fitting linearly measured values and
relatively minimal wavenumbers can calculate the estimated
depth (Eq. 2).

h � lnP ω1( ) − lnP ω2( )
2 ω1 − ω2( ) (2a)

Where ω1 and ω2 are wavenumbers. lnP(ω1) and lnP(ω2) are
measured values. The h is the estimated depth (Tao et al., 2018).
Various integrated algorithm packages have emerged, such as the
Geosift software (Tao et al., 2018) that was used in this paper. The
aforementioned empirical parameter of magnetic data
decomposition is 0.3. As a result, the magnetic data
decomposed yield three BIMFs (BIMFM1, BIMFM2, BIMFM3)
and one residue (RESM). Their corresponding depths are
estimated.

TABLE 2 The range and average values of susceptibilities of different lithologies in the Weilasituo-bairendaba district (after IMGECL (2018)).

Lithology Sample number Magnetic susceptibility K (10-64ΠSI) Remanent magnetization Jr (10-
3A/m)

Range Average Range Average

quartz diorite 22 35–320 176 69–435 237

diorite 24 24–198 123 42–260 155

sulfide ore body 10 480–1,228 892 310–735 510

amphibolite 14 30–120 75 52–220 145

biotite plagiogneiss 30 26–96 65 3–47 9
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2.3.2 Geophysical inversion
3D inversion is an effective method to obtain petrophysical

properties such as magnetic susceptibility (Li and Oldenburg, 1996).

3D inversion has been widely applied to mineral exploration (Zhang
et al., 2019; Zhang Z Q et al., 2021). In this paper, 3D inversion of
magnetic data was carried out byUBC-GIF software (Li andOldenburg,

FIGURE 1
(A) Major tectonic units of central Asia, showing the location of the Great Xing’an Range in the Central Asian Orogenic Belt (after Wang F X et al.
(2017)). (B) regional structure distribution map in the Weilasituo-bairendaba polymetallic metallogenic belt (modified after Jiang et al. (2010)). (C) The
simplified geological map of the Weilasituo-bairendaba district (after Wang F X et al. (2017); IMGECL (2018)). Abbreviations: Fm, Formation.
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1996). The size of the inversion mesh is 100 m×100 m×100 m. The
study area was discretized along fixed directions (x-, y-, z-) into
260×179×30 cubic mesh. The total number of mesh cells is 1396200.

3 Data acquisition and preprocessing

This work adopted 1:50,000 magnetic data covering a 470 km2

area. The survey grid was 500 m×100 m in size. The magnetic
measurement instrument was HC-95A helium optical pump
magnetometer. Diurnal correction, normal field correction, and
height correction are applied to the magnetic data. Geosoft
software from Oasis montaj was used to perform magnetic data
preprocessing and filtering, including reduced to pole (RTP),

upward continuation, and low pass filtering. The total magnetic
field intensity was calculated using data from the IGRF 2010. In the
study area, the geomagnetic field declination and inclination
were −8.2° and 63.3°, respectively.

The petrophysical properties of the rocks (Table 2) related to
mineralization are obtained. The magnetic susceptibility of biotite
plagiogneiss is 65 (4π×10-6 SI) and the remanent magnetization is
9×10-3A/m. The magnetic susceptibility of quartz diorite is 176
(4π×10-6 SI) and the remanent magnetization is 237× 10-3A/m. The
magnetic susceptibility of the sulfide ore is 892 (4π×10-6 SI) and the
remanent magnetization is 510×10-3A/m. The metamorphic rock of
Baoyintu Group is characterized by low magnetic susceptibility,
while quartz diorite and sulfide ore body are characterized by high
magnetic susceptibility (IMGECL, 2018; Wang Z L et al., 2019).

FIGURE 2
(A) The simplifiedmetallogenic model of typical polymetallic deposits (modified after Guo, 2016). (B) and (B1) The geological map and cross-section
map of 0-0′ exploration line of the Weilasituo Cu-Zn deposit (modified after Liu et al. (2016); IMGECL (2018)). (C), (C1) and (C2) The geological map and
cross-section map of 3-3′ and 17-17′ exploration line of the Bairendaba Ag-Pb-Zn deposit (modified after Xi et al. (2014); Liu et al. (2016)).

TABLE 3 The deposit geology of typical deposits in the district.

Deposit name Mineralization
type

Ore-bearing
rocks

Structure Magnetic
anomaly
degree

Geochemical
anomaly

References

Regional
fault

Secondary
fault

Weilasituo Cu-Zn Metamorphic
complex, quartz
diorite

NE EW, NE, NW Middle-high Cu, pb, Zn IMGECL (2018);
Yi et al. (2020)

Bairendaba East
part

Pb-Zn-Ag metamorphic
complex, quartz
diorite

NE EW, NW High Pb, Zn, Ag Sun et al. (2011),
Wang Y et al., 2019

West
part

Zn (-Cu) metamorphic
complex, quartz
diorite

NE EW, NW, NE High Pb, Zn Liu et al. (2012), Xi
et al. (2014)

Bayanula Pb-Zn metamorphic
complex, quartz
diorite

NE NE Middle Pb IMGECL (2018)
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The geochemical anomalies are from regional geochemical soil
survey. The lower limits of geochemical anomalies are calculated
and the formula (IMGECL, 2018) is:

L � x + K × S (4)
where x is the mean value. S is standard deviation. K is an empirical
parameter and the range is from one to three. The interpolation
method is Kriging. According to the lower limit value, the
geochemical single element anomalies can be obtained. There
are thirty-one Cu geochemical element anomalies and the lower
limit is 50 ppm. There are twenty-seven Pb geochemical element
anomalies and the lower limit is 150 ppm. There are thirty-six Zn
geochemical element anomalies and the lower limit is 500 ppm.
Generally, the higher the overlap degree of single element anomaly,
the greater the indication significance to minerals. The two
anomaly combinations in the district are Cu-Pb-Zn-Ag-As and
Sn-Li-W-Mo-Bi (IMGECL, 2018). The high value area of Cu, Pb
and Zn elements is obviously controlled by faults and intrusions,
especially NE-trending faults (IMGECL, 2018). Cu-Pb-Zn element
geochemical anomalies are good indicators for the Cu, Zn
mineralization in the district (IMGECL, 2018). Geochemical
data are from 1:50,000 Ag, Cu, Pb, Zn, and As combination
anomaly maps compiled by Inner Mongolia Geological
Exploration Co., LTD in 2020.

4 Geological setting and exploration
criteria

4.1 Regional geology

The Greater Xing’an Range (GXAR) metallogenic belt is located
in Central Asian Orogenic Belt (Figure 1A), which is one of the
nineteen important metallogenic belts in China (Yang, 2017).
Metallogenic elements such as Sn, Fe, Pb, Zn, Au, Cu, Ag, and
Mo are associated with or zoned (Zhang et al., 2013; Liu et al., 2016;
Zhou et al., 2019). It is an important Ag-Pb-Zn-Cumetallogenic belt
between Xilinhot and Xilingol on the western slope of the Southern
section of GXAR (Liu et al., 2004; Wang et al., 2006). The geological
tectonic evolution was controlled jointly by Paleo-Asian ocean,
Mongol-Okhotsk ocean and Paleo-Pacific plate (Ouyang, 2013;
Xu et al., 2013; Wang F X et al., 2017; Chen et al., 2021). During
the early Cretaceous, the lithosphere in Northeast China and its
adjacent areas was thinned and extended on a large scale due to the
subduction of the Paleo-Pacific plate into the Eurasian plate, and the
asthenosphere material upwelled, resulting in a strong crust-mantle
interaction (Hua and Mao, 1999; Lin et al., 1999; Mao and Wang,
2000; Mao et al., 2005; Mao et al., 2013; Ouyang, 2013; Zeng et al.,
2016). The Mesozoic Pb-Zn-Ag-Cu mineralization is associated
with the extensional environment by both the Mongol-Okhotsk

FIGURE 3
3Dmodel of themajor orebodies of (A) theWeilasituo Cu-Zn deposit; (B) the Bairendaba Ag-Pb-Zn deposit. 3D geological model of key zones of (C)
the Weilasituo Cu-Zn deposit (D) the Bairendaba Ag-Pb-Zn deposit.
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ocean closure and the subduction of the Paleo-Pacific plate (Mao
et al., 2013; Ouyang, 2013; Zhang, 2017; Liu et al., 2018). The typical
Cu-Zn deposits are closely related to Yanshanian magmatic
hydrothermal deposits, particularly the Beidashan intrusions
(Tang et al., 2014). Different deposits with different major ore-
forming elements result from magmatic hydrothermal evolution
differentiation (Ouyang, et al., 2014; Liu et al., 2016; Wang F X et al.,
20177; Li et al., 2018). The specific performance is that as the
temperature drops, the elements appear as Sn-W-Mo, Cu-Zn,
and Pb-Zn-Ag horizontal zoning (Liu et al., 2016; Gao et al.,
2019; Zhou et al., 2019). NE- and NW-trending faults are
important ore-controlling structures (Zhang et al., 2013).

The Weilasituo-bairendaba district is located at the western
slope of the southern section of GXAR in Inner Mongolia, China
(Wang et al., 2006). The structural framework is constrained by
NEE- and NE-trending regional faults (Figure 1B) (Ouyang et al.,
2014; Liu et al., 2016). The district is confined between the Erlian-

Hegenshan Fault and the Xra Moron River Fault (Zeng et al.,
2016; Wang F X et al., 2017; Chen et al., 2021). The Xilinhot
Complex, which dates from the Neoproterozoic to the Early
Phanerozoic and is composed of schists, gneisses, granulitites,
and amphibolites, is the oldest formation (Shi et al., 2003). The
Baoyintu Group that evolved from Xilinhot Complex is the
primary body of the strata (Figure 1B). The lithology is mainly
biotite plagioclase gneiss and hornblende plagioclase gneiss. The
south of F1 in the district is Carboniferous and Permian
(Figure 1C). The Carboniferous is composed of clastic rock,
carbonate rock and felsic volcanic rock. The Permian includes
Dashizhai Formation, Linxi Formation, Wanbao Formation and
Manketouebo Formation. Dashizhai Formation and Linxi
Formation are mainly composed of clastic rocks (Liu et al.,
2010). Wanbao Formation and Manketouebo Formation are
mainly composed of volcanic rocks with some quartz diorites.
The regional faults constitute the district’s structural framework,

FIGURE 4
Regional fault model of (A) the different depth of upward continuation of magnetic anomaly; (B) low pass filtering of magnetic anomaly (C) the 3D
regional fault solid model (D) the 3D regional fault buffer model.
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and the secondary faults provide specific migration channels and
storage space for ore-forming fluids (Sun et al., 2011; Liu et al.,
2014). The majority of mineralization-related faults were
developed during the Yanshanian epoch (Sun et al., 2011). The
intermediate-acid intrusions are primarily pale yellow fine-to
medium-grained granite, gray medium-to coarse-grained
quartz diorite, and red fine-to medium-grained granite that
intruded into the Baoyintu Group gneiss. The zircon U-Pb
ages of quartz diorite and diorite in the district are at ca.
300 Ma (Liu et al., 2010; Xue et al., 2010; Wang et al., 2013;
Zhang Y F et al., 2021). Furthermore, the Beidashan intrusions is
composed of porphyritic hornblende granite, porphyritic yellow
granite, and quartz monzonite (Figure 1C) and the LA-ICP-MS
zircon U-Pb age is 140 ± 2 Ma (Liu et al., 2018).

According to the existing reports, the Weilasituo-bairendaba
district is an important component of the Cu-Pb-Zn metallogenic
belt (Yang, 2017; Zhang, 2017). The known Weilasituo Cu-Zn
deposit and Bairendaba Ag-Pb-Zn deposit have many similarities
in stratigraphy, intrusions, structure, geophysics, and geochemistry

(Tang et al., 2014; Zhang, 2017; IMGECL, 2018). They are the same
tectonic-magmatic product as theWeilasituo Li polymetallic deposit
(Guo, 2016; Zhou et al., 2019).

4.2 Tectonic history and Cu-Zn
mineralization

From Paleozoic to Triassic, orogenic processes of GXAR such as
collision orogenesis, uplift, denudation, planation were completed
(Pan et al., 2009). Before Mesozoic, the southern section of GXAR
was mainly controlled by the Paleo-Asian ocean tectonic domain
(Ren et al., 1997; Hong et al., 2003; Wang et al., 2013; Zhang, 2017;
Zhang Y F et al., 2021). The Hercynian fault was formed (Sun et al.,
2011). In the Mesozoic era, the diagenetic and metallogenic
geological events in northeast China and its adjacent areas have
been divided into five periods, and including 140-120 Ma, the
extension environment under the joint action of the Mongol-
Okhotsk ocean closure and the subduction of the Paleo-Pacific

FIGURE 5
BIMFs and RES decomposed from RTP anomaly: (A) BIMFM1 image (B) BIMFM2 image; (C) BIMFM3 image (D) RESM image. White lines are faults
interpreted by BIMFs and RES.
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plate (Ouyang, 2013). The tectonic age of the extension environment
based on zircon U-Pb dating and petrogeochemical analysis of
Mesozoic volcanic rocks in northeast China, 106-133 Ma is

reported (Xu et al., 2013; Zhang, 2017). The magmatic activity in
the middle-southern part of GXAR is mainly concentrated at 150-
120 Ma, and the granite emplacement is concentrated at 140-120 Ma

FIGURE 6
Estimated depths of BIMFs and RES decomposed from RTP anomaly: (A) BIMFM1 (B) BIMFM2; (C) BIMFM3 (D) RESM.

FIGURE 7
Secondary fault model of (A) the 3D secondary fault solid model (B) the 3D secondary fault buffer model.
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(Shao et al., 1998). At 140-120 Ma, magmatic emplacement and
volcanic eruption provided the heat source and provenance for (Cu-
Zn) mineralization (Pan et al., 2009). As a result, Cu-Pb-Zn-Ag
polymetallic deposits related to Yanshanian granitic rocks on the
western slope of the southern Section of GXAR are associated with
the low angle or plate subduction of Paleo-Pacific plate (Mao et al.,
2013). The 40Ar-39Ar dating of Muscovite in Bairendaba Ag-Pb-Zn
deposit shows that the mineralization age is 135 ± 3 Ma and that of
the Weilasituo Cu-Zn deposit is 133.4 ±0.8 Ma (Pan et al., 2009;
Chang and Lai, 2010). The two known deposits as the same tectonic-
magmatic products formed in different space because of the
magmatic evolution (Mao et al., 2013; Mei et al., 2015; Zhou
et al., 2019). The Yanshanian secondary faults are mainly NE-,
EW- and NW- trending, which are important rock-controlling and
ore-controlling faults (Sun et al., 2011).

4.3 Deposit geology

The large and medium-sized deposits in the district are
Weilasituo Li polymetallic deposit, Weilasituo Cu-Zn deposit and
Bairendaba Ag-Pb-Zn deposit. There are also several small

polymetallic ore deposits or occurrences such as Bayangol
Fluorite deposit, Bayanula Pb-Zn deposit and Weilasituo W
deposit (Figure 1C). As the evolution, the temperature changed
from high to low and the ore-forming elements are characterized by
the horizontal zonation of Sn-W-Mo, Cu-Zn, Pb-Zn-Ag, rare earth
(Fluorite) deposit (Figure 2A) (Ouyang, 2013; Liu et al., 2014; Zhou
et al., 2019).

The two typical deposits have many geological similarities
(Figures 2B,C) (Tang et al., 2014; Mei et al., 2015). The lithology
is mainly Baoyintu Group gneiss, and the structure is mainly NE-
trending faults (Figure 1C) (Liu et al., 2014). The secondary faults
are the main ore-controlling structures (Sun et al., 2011). Quartz
diorite is an important part of the ore-bearing intrusion, and the
mineralization is closely related to Yanshanian magmatic activity
(Figure 2B1C1C2) (Guo et al., 2009; Liu et al., 2012; Wang et al.,
2014; Guo et al., 2018; Wang Y et al., 2019).

However, there are also some differences in terms of deposit
geology. The main ore bodies hosted in metamorphic complex and
quartz diorite in the Weilasituo Cu-Zn deposit (Yi et al., 2020). The
faults strictly constrain ore bodies, whose shapes are vein, lamellar or
lenticular. The alteration of surrounding rock mainly includes
silicification, sericitization, fluorination, carbonation and

FIGURE 8
Magnetic susceptibility model of (A) 1:50000 magnetic anomaly distribution map; (B) the 3D susceptibility model (C) the high susceptibility
geological bodies.

Frontiers in Earth Science frontiersin.org11

Gao et al. 10.3389/feart.2023.1102640

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1102640


kaolinization, which are beneficial to discover new ore bodies (Wang
et al., 2010). The total resource of Weilasituo deposit is 8811400t
with average Zn grades of 4.29% and Cu grades of 0.79% (Tang et al.,
2014). Bairendaba deposit is divided into east part and west part, and
silver reserves up to 8000t, lead and zinc up to 3000000t (Sun et al.,
2011). The grades of Cu in the west part and Zn in the east part are
0.28% and 5.14%, respectively (Tang et al., 2014). Sporadic
Yanshanian granites and dikes are exposed in the ore mine
(Wang Y et al., 2019). The main ore-controlling structures are
EW- and NW- trending faults (Sun et al., 2011; Xi et al., 2014;
Wang Y et al., 2019). The alteration types are silicification,
fluorophysis, sericitization, chloritization (Guo et al., 2009; Liu
et al., 2012; Wang et al., 2014; Wang Y et al., 2019).

The two typical deposits exhibit high magnetic anomalies and
strong related geochemical anomalies, indicating the existence of
concealed ore-bearing geological bodies underground. The detailed
deposit geology of known deposits in the district is showed in
Table 3. In this paper, 3D ore bodies of Weilasituo Cu-Zn
deposit and Bairendaba Ag-Pb-Zn deposit were built (Figures 3A,
B). And 3D intrusion model and strata model were built in the key
zones (Figures 3C, D).

4.4 Exploration criteria

4.4.1 Orebody model
Drill hole data, mine plan maps and 1: 1,000 geological cross-

section maps of Weilasituo Cu-Zn deposit and Bairendaba Ag-Pb-
Zn deposit were collected. Based on the above, 3D orebody models
were constructed in SKUA-GOCAD. The models are showed in
Figures 3A,B. The orebodies from known deposits were used as
positive samples (Zhang Z Q et al., 2021).

4.4.2 Regional faults
The upward continuation height is 500 m, 1000 m, 2000 m,

and 3000 m, respectively. The results are showed in Figure 4A.
Low frequency anomalies were retained by low pass filtering. The
cutoff wavelength is 2000 m, 3000 m, 5000 m, and 7000m,
respectively (Figure 4B). The BEMD was used to decompose
magnetic data and yielded three BIMFs images (BIMFM1,
BIMFM2, BIMFM3) and one residue (RES) image (RESM)
(Figure 5) and the depth of them was estimated (Figure 6).
According to the result of filtering, three regional faults (F1,
F2, F3) were interpreted.

FIGURE 9
Geochemical anomalymodel of (A) the geochemical anomaly distributionmap; (B) the 3D geochemical anomaly (Cu, Pb, Zn) overlap ratiomodel (C)
the 3D geochemical anomaly model.
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F1, F2 and F3 showed beaded negative anomalies (Figure 4B).
F1 makes a good distinction between Xilinhot metamorphic
complex and its southern Jurassic-Permian (J-P) strata, which
correspond to positive anomalies and negative anomalies of
magnetic data (Figures 4A, B). When the upward continuation
height is 500m, small magnetic anomalies are erased, indicating
that some small abnormal geological bodies are concealed shallow,
small in scale and weak in causing anomalies. When the upward
continuation height is 1,000 m or 2,000 m, F1, F2, and F3 are
obvious, but small magnetic anomalies are almost invisible.
When the upward continuation height is 3000m, the
characteristic of F1 is more obvious than F2 and F3, indicating
that F1 extends deeper and longer.

BIMFM1 image mainly reflects faults (Figure 5A) and the depth
is 1.92 km (Figure 6A). The F1 is the geological boundary between
the Baoyintu Group and the J-P strata and the extended depth is
7.8 km (Figure 6D). The F2 mainly controls the distribution of
Weilasituo polymetallic deposits and Bairendaba Ag polymetallic

deposit. BIMFM2 image mainly reflects the regional faults
(Figure 5B) and the depth is 4.18 km (Figure 6B). Magnetic
anomalies are beaded and distributed along faults and ductile
shear zones. BIMFM3 image mainly reflects the regional faults
and circular structures (Figure 5C) and the depth is 5.95 km
(Figure 6C). The distribution of high magnetic anomalies is more
concentrated, and the characteristic arc edge of the intrusions can be
discovered. RES image reflects the regional background geological
information (Figure 5D) and the depth is 7.8 km (Figure 6D). At the
boundary between the Baoyintu group and J-P strata, a metallogenic
belt is formed, where the typical and key polymetallic deposits are
located.

According to the results of interpretation, 3D regional faults was
built and the regional fault solid model was obtained by meshing
(Figure 4C). Buffer was carried out with the distance of 200 m
interval, and the 3D regional fault buffer model was obtained
(Figure 4D).

4.4.3 Secondary faults
The secondary faults are main deposit-scale ore-controlling

faults in the district. “Structural Outline map of Weilasituo-
bairendaba district, Inner Mongolia” was collected. The
information of secondary faults was obtained through
geological maps. The process of drawing the structural outline
map is divided into three steps (IMGECL, 2018): 1) collect related
geological reports and scientific articles and integrate existing

FIGURE 10
(A) F1 score and (B) ROC(AUC) of the 30 sets of XGBoost/RF predictive models; ROC curves of the (C) RF28 and (D) XGBoost11.

TABLE 4 Result of the RF28 and XGBoost11 predictive models.

Predictive models Recall Precision F1

RF28 0.993 0.921 0.956

XGBoost11 0.988 0.937 0.962
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faults in 2D GIS platform (i.e., ArcGIS) (Bonham-Carter et al.,
1989); 2) record the information of occurrence and age of faults;
3) conduct field investigation and error correction and draw
structural outline map.

Fault attributes include length, strike, inclination, dip angle,
cutting depth, mechanical properties, formation age and so on.
According to the aforementioned information, the 3D secondary
fault model can be established. The secondary fault solid model was
obtained by meshing (Figure 7A). Buffer was carried out according
to the distance of 200 m interval, and the 3D secondary fault buffer
model was obtained (Figure 7B).

4.4.4 Magnetic susceptibility model
Magnetic inversion is aimed to obtain magnetic susceptibility.

The typical Cu-Zn deposits show high magnetic anomalies
(Figure 8A), indicating that there are concealed high magnetic
susceptibility geological bodies, which may be large sulfide
minerals in the deep space, or shallow high magnetic thick
quartz diorite (Li and Zhang, 2013). The 3D magnetic
susceptibility model is showed in Figure 8B. High magnetic
susceptibility geological bodies have been extracted when the

susceptibility is more than 0.001SI (Figure 8C). The strike of the
high magnetic susceptibility geological bodies is mainly NE,
which is consistent with the magnetic anomaly (Chen et al.,
2021).

4.4.5 Geochemical anomaly model
Geochemical elements such as Cu, Pb and Zn are important to

indicate Cu-Zn mineralization in the district. Cu, Pb and Zn
geochemical anomalies are extracted, and their distribution is
shown in Figure 9A. The faults are important ore-controlling
structures (Sun et al., 2011; Zhang et al., 2013). Both geochemical
anomalies and known deposits are controlled by regional faults
(IMGECL, 2018). And secondary faults pass through most of the
areas with obvious geochemical anomalies (Figure 9A). The
occurrence of the faults can be regarded as the occurrence of
the penetrating or the adjacent geochemical anomalies. Thus, the
geochemical anomalies can extend to a depth of 3 km. The
geochemical element coincidence degree of Cu, Pb and Zn in
3D space is showed in Figure 9B. The indication degree of
geochemical anomaly to mineralization in 3D space is showed
in Figure 9C.

FIGURE 11
P-A plot of (A) RF28; (B) XGBoost11. C-A fractal of (C) RF28 (D) XGBoost11.
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4.4.6 Exploration criteria integration
The regional fault, secondary fault, magnetic susceptibility and

geochemical anomaly were integrated for 3D mineral prospectivity
modeling. The district was divided along fixed directions (x, y, z)
into 260×179×30 mesh. The number of cells of the mesh is 1396200.
The number of cells of the ore bodies is 734. The depth of 3D
modeling is 3 km underground. All exploration criteria are
integrated in SKUA-GOCAD software to obtain datasets that can
be used for machine learning.

5 Results

In this paper, the spatial distribution characteristics and
extension depth of F1, F2, F3 regional faults were interpreted,
and the 3D fault model of the district was built. The strike of the
three regional faults is NE. The F1 extends up to 7.8km, and the
F2 and F3 extend up to 5.95 km. The scale of secondary faults
derived from regional faults is small. The typical deposits in the
district show obvious magnetic anomalies. According to the
petrophysical properties, an appropriate magnetic susceptibility
threshold (>0.001SI) was set to extract the high magnetic
susceptibility geological bodies, and the scale was found to
decrease gradually from west to east along F2 (Figure 8C). Based
on regional faults, secondary faults, magnetic susceptibility and
geochemical anomalies as exploration criteria (Table 3), district-
scale 3D mineral prospectivity modeling was carried out.

In the process of mineral prospectivity modeling, the Bayesian
optimization was introduced to tune hyperparameters of RF model
and XGBoost model. After thirty repeated experiments, thirty
models were obtained. The F1 scores and AUC values of thirty
models were showed in Figures 10A, B. The randomness of each
experiment leads to the fluctuation of the final model evaluation
parameters. As mentioned above, the closer the AUC value is to 1,
the better the model performance. The RF28 and XGBoost11 have
the biggest AUC values, and they are 0.987 and 0.986, respectively
(Figures 10C, D). The recall and precision of the RF28 is 0.993 and
0.921, respectively. The F1 score of the RF28 is 0.956 (Table 4). The
recall and precision of the XGBoost11 is 0.988 and 0.937,
respectively. The F1 score of the XGBoost11 is 0.962 (Table 4).
According to these parameters, RF28 and XGBoost11 models
perform better. The RF28 and XGBoost11 models can be used
for mineral probability modelling in the district, and the results
are highly reliable.

Another function of the P-A plot is to conduct predictive model
evaluation (Zhang Z Q et al., 2021). The P-A plots of RF28 and
XGBoost11 are showed in Figures 11A, B. The X value of the
intersection point can be a threshold to delineate targets
(Table 5). The threshold of the RF28 to delineate potential

targets is 0.77 and the threshold of the XGBoost11 is 0.75. The
final targets from RF28 occupied the smallest area of study area (5%)
and contained most known ore bodies (95%) and the parameters of
XGBoost11 are 6% and 94% (Table 5). The spatial correlation
between delineated targets and known Cu-Zn orebody is very
high. According to the F1 scores, AUC values and P-A plot, the
RF and XGBoost exhibited well in this paper, although the
thresholds of the RF28 and XGBoost11 for delineating the targets
are different. The mineral potential maps of RF28 and
XGBoost11 and the targets extracted by P-A plot are showed in
Figures 12A, B and Figures 13A, B, respectively.

According to metallogenic geological conditions, high
probability zones and known small ore occurrences, five
prospecting targets (Target1, Target2, Target3, Target4, Target5)
are delineated. Target 1 with a discovered Cu ore occurrence is
located in the South side of Bairendaba Ag-Pb-Zn deposit and the
north side of F1 (Tang et al., 2014). The scale of the high probability
zone of Target 1 is large, and the probability of the existence of Cu-
Pb-Zn deposits in the deep and periphery space is large. Target
2 shows obvious Cu-Pb-Zn geochemical anomaly and there is a high
probability of Cu-Pb-Zn polymetallic deposit in deep space. Target
3 is located in Bayanula area, south of F1, with obvious Pb-Zn
anomalies and developed secondary faults. There are four
polymetallic ore occurrences in the vicinity (Figure 1C). The
probability of discovering polymetallic deposits in deep space is
high. Target 4 is located in the southwest of Bayanula Pb-Zn deposit,
which is controlled by F2 and shows obvious Cu geochemical
anomaly. There are no obvious secondary faults in the surface
because of sedimentary coverage, and there is a high probability
of concealed polymetallic ore bodies. Target 5 is located in the south
of Daqi, where secondary faults are developed and Ag polymetallic
ore occurrences existed.

In order to further grade the targets and verify the effectiveness
of targets obtained by P-A plot. The C-A fractal (Cheng et al., 1994)
model was used to grade the targets. According to the fitted line
formula, the corresponding probability value of intersection points
can be inverted (Figures 11C,D). Based on the above obtained
probability value, the four levels of classification were carried out.
Traditionally, a probability value greater than 0.5 is more worthy of
further exploration, so two levels of targets were extracted. The
probability value of Ⅰ-level targets of RF28 is greater than 0.89 and
the range of Ⅱ-level targets is 0.57–0.89. The probability value of
Ⅰ-level targets of XGBoost11 is greater than 0.90 and the range of
Ⅱ-level targets is 0.60–0.90.

Targets graded by C-A fractal were showed in Figures 12C, D
and Figures 13C, D. High probability zones of RF28 and
XGBoost11 have the similar distribution position. P-A plot
considers the proportion of known ore bodies in the targets and
the proportion of the targets in the district. The smallest targets
contain the most known ore bodies and the corresponding threshold
is the best for delineating targets. The main purpose of C-A fractal is
to grade the targets. According to the thresholds of the twomethods,
the targets extracted by P-A plot are included in the Ⅰ-level targets by
C-A fractal, while they are included in the Ⅱ-level targets by C-A
fractal. The overall targets delineated by C-A fractal are slightly
expanded, but the position of the Ⅰ-level targets is more accurate. In
order to further delineate the targets for further exploration, the two
methods can be used in combination.

TABLE 5 P-A plot parameters of the RF28 and XGBoost11 predictive models.

Predictive models RF XGBoost

Threshold for determining the targets 0.77 0.75

Percentage of study area occupied by the targets 5% 6%

Percentage of known orebody occupied by the targets 95% 94%
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6 Discussion

Two models, RF28 and XGBoost11, were used for mineral
probability modelling in the district. The prediction results of the
two methods confirm each other to avoid the contingency of single
method. The positions of Weilasituo Cu-Zn deposit and Bairendaba
Ag-Pb-Zn deposit are consistent with the high probability zones.
Bayanula Pb-Zn deposit is in the strike direction of the Weilasituo
Cu-Zn deposit and the Bairendaba Ag-Pb-Zn deposit, which are
both controlled by F2. In addition, it is worth noting that the
Weilasituo Li polymetallic deposit and nearby small W deposit
are consistent with the high probability zones (Figure 12B;
Figure 13B). There is no Cu-Zn polymetallic deposit in the high
probability zones on the north side of F3, but Bayangol small
Fluorite deposit exists, and the prospecting potential is still very
large.

The C-A fractal was used to grade the probability values of
RF28 and XGBoost11 and Ⅰ-level targets and Ⅱ-level targets were
obtained. The potential of exploring minerals is greater in the Ⅰ-level
targets than in the Ⅱ-level targets. Compared with known deposits,
the targets with large prospecting potential are relatively large, and
there are still certain exploration risks. However, targets around
known deposits are more likely to discover ore body than those of
the same level. In order to better show the relationship between the
two-level targets and each exploration criteria, they are
superimposed in Figure 14.

Three regional faults control the delineated targets (Figures 14A,
B). The targets are distributed in a NE-trending and extends to a
depth of 3 km underground. The typical deposits (Weilasituo Cu-Zn
deposit and Bairendaba Ag-Pb-Zn deposit) have large scale targets
in the deep space (Figures 14A, B). The ore-bearing hydrothermal
fluid required for mineralization migrates upward along regional
faults. Regional faults control the distribution of major deposits in
the district, such as the Weilasituo Cu-Zn deposit and Bairendaba
Ag-Pb-Zn deposit along F2. More deposits are distributed on both
sides of F1. Regional faults play a role of channel in the process of
ore-bearing hydrothermal migration. The targets are mainly
distributed where the secondary faults density is large (Figures
14C, D). According to the deposit geology, secondary faults as
derivatives of regional faults, are specific ore-guiding and ore-
bearing structures (Sun et al., 2011). Secondary faults are very
developed in the Weilasituo Cu-Zn deposit mine and Bairendaba
Ag-Pb-Zn deposit mine (Figures 14C, D), which provide a channel
and space for mineralization. The targets developed near secondary
faults are more worthy of further exploration. Further attention
should be paid to the investigation of secondary faults. Geochemical
anomalies such as Cu, Pb, Zn reflect zones with high value of
metallogenic elements. The known deposits show Cu-Pb-Zn
geochemical anomalies (Figure 9A). The targets are almost
completely covered by geological bodies with geochemical
anomaly (Figures 14E, F). The geochemical anomalies in the
district are controlled by regional faults and spread in a NE-

FIGURE 12
(A) 3D mineral probability map of the RF28 predictive model; and (B) targets by P-A plot; (C) Ⅰ-level targets and (D) Ⅱ-level targets by C-A fractal.
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trending. Larger scale geochemical exploration should be carried out
in the district. The Weilasituo Cu-Zn deposit and Bairendaba Ag-
Pb-Zn deposit exhibit obvious magnetic anomalies (Figure 8A;
Table3). The magnetic susceptibility of quartz diorite, ore-bearing
diorite, ore-bearing complex or ore body are large. High magnetic
susceptibility geological bodies with a larger extension depth are
distributed along regional faults and they are in or around the targets
(Figures 14G, H). According to magnetic susceptibility, they are
considered to be concealed intrusions such as quartz diorite.

In terms of the geological feature, the known deposits and
delineated targets are closely related to faults. The formation of NE-
trending structure is related to the subduction of the Paleo-Pacific plate
in Yanshanian (Mao et al., 2005). Three regionalNE-trending faults (F1,
F2, F3) constitute the structural framework system in the study area
(Figure 1C). Regional faults provide channels for the transport of
metallogenic materials in the deep space, and the known deposits
are densely distributed on both sides of regional faults (Figure 1C). The
secondary faults in the district are related to the specific mineralization
(Sun et al., 2011). The orebodies of the known ore mines are NEE- and
NW- trending (Figures 2B,C), which are related to the distribution of
secondary faults (Sun et al., 2011). The copper and zinc mineralization
in the western slope of the southern section of GXAR is mainly
concentrated in 140-120 Ma, which is closely related to the
subduction of the Paleo-Pacific plate (Mao et al., 2013). The age of
the ore bodies is about 130Ma (Pan et al., 2009; Chang and Lai, 2010),

located in this tectonic environment, and intense magmatic activity
provides metallogenic materials and heat sources (Pan et al., 2009). By
analyzing the existingmetallogenic geological characteristics, the known
deposits show obvious magnetic anomaly and Cu-Zn related
geochemical anomaly (Figure 8A; Figure 9A). The obvious magnetic
anomalies are mainly produced by ore-bearing rocks (e.g., quartz
diorite), and the copper and zinc geochemical anomalies are direct
indicator elements for prospecting. The above metallogenic geological
characteristics can integrate geological data, which is not only used to
select the exploration criteria for mineral prospectivity modeling, but
also to delineate the targets.

The exploration criteria and targets have important spatial
associations. The relationship can reflect the importance of
exploration criteria in mineral prospectivity modeling. According to
special parameters of the RF and XGBoost, the feature importance of
the predictive models can be obtained. It can connect the results of
predictive models and the geological information (Zhang Z Q et al.,
2021). The impurity of the RF algorithm and XGBoost can estimate the
feature importance. According to the impurity, secondary faults and
geochemical anomalies are two most important exploration criteria
(Table 6). Secondary faults represent the pathways and the storage space
for mineralization (Sun et al., 2011). Therefore, the new discovery of
secondary faults is one of the important geological works in mineral
exploration. Geochemical anomalies can indicate the location and scale
of Cu, Zn and their associated elements. As mentioned above, ore

FIGURE 13
(A) 3D mineral probability map of the XGBoost11 predictive model; and (B) targets by P-A plot; (C) Ⅰ-level targets and (D) Ⅱ-level targets by C-A
fractal.
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bodies or mineralization can cause geochemical anomalies and thus
provide important indications for mineral exploration. The impurity of
magnetic susceptibility is relatively small, mainly due to the incomplete

occurrence of ore bodies in the quartz diorite, and some of them in the
metamorphic complex (Figures 3C, D; Table3). The metamorphic
complex shows low magnetic susceptibility, while quartz diorite has

FIGURE 14
The Ⅰ-level targets and Ⅱ-level targets of RF28 and XGBoost11 superimpose exploration criteria: (A) and (B) regional fault; (C) and (D) secondary fault;
(E) and (F) geochemical anomaly; (G) and (H) high magnetic susceptibility geological body.
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high magnetic susceptibility, which leads to a small impurity of
magnetic susceptibility. However, the variation of the distribution of
ore body inmagnetic susceptibility corresponds to the actual occurrence
state of ore body. For the targets delineated in this paper, a large scale
geological, geophysical, geochemical exploration and even drilling holes
should be carried out.

7 Conclusion

Regional faults, secondary faults, magnetic susceptibility and
geochemical anomalies (Cu-Pb-Zn) were determined as exploration
criteria of Cu-Zn deposits in the Weilasituo-bairendaba district. RF
and XGBoost algorithms with better performance were used for 3D
mineral prospectivity modeling. The ROC(AUC), F1 score and P-A plot
proved the reliability of the prediction results. RF28 model and
XGBoost11 model were the optimal models. Five targets were
delineated and graded by P-A plot and C-A fractal. They were
divided into Ⅰ-level targets and Ⅱ-level targets. Target 1, target 2 and
target 3 are controlled by F1. Target 1 and Target 2 are located in the
periphery of the known deposits. Polymetallic ore occurrences have been
found in Target 1 and Target 3. Target 4 and Target 5 are controlled by
F2 and are located on the strike of the main ore-forming line of the
Weilasituo Cu-Zn deposit and Bairendaba Ag-Pb-Zn deposit. Each
target has great potential for prospecting in deep space. The potential
of exploring deposits is greater in the Ⅰ-level targets than in the Ⅱ-level
targets. The Ⅰ-level targets showing obvious geochemical anomaly and
magnetic anomaly were controlled by regional and secondary faults. The
importance of exploration criteria is also reflected by the impurity of the
RF and XGBoost. The secondary faults and geochemical anomalies are
important exploration criteria for Cu-Zn exploration. Thus, the Ⅰ-level
targets are of great significance for future exploration of Cu-Zn deposits
in the Weilasituo-bairendaba district.
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