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Model error is an important source of numerical weather prediction (NWP)
errors. Among model errors, the systematic diurnal bias plays an important
role in high-resolution numerical weather prediction models. The main
purpose of this study is to explore the characteristics of the systematic
diurnal bias of a high-resolution NWP model in southern China and reduce
the diurnal bias to improve the forecast results, hence providing a better
background field for data assimilation. Based on the China Meteorological
Administration Meso-scale (CMA-MESO) high-resolution NWP model, a 15-
day sequential numerical weather prediction experiment was performed in
southern China, and the forecast results were analyzed. A sequential bias
correction scheme (SBCS) based on analysis increments was designed to
reduce the systematic diurnal bias of the CMA-MESO model, and 15-day
sequential comparative experiments were carried out. The analysis results
showed that the CMA-MESO model has apparent systematic diurnal biases,
and the characteristics differ among variables. A large diurnal bias was mainly
found in the lower model layers, and it was concentrated in areas with a
complex underlying surface for the horizontal distribution, such as the
Qinghai-Tibet Plateau and South China Coast. The results based on the 15-
day sequential experiment showed that the sequential bias correction scheme
partly reduced the systematic diurnal biases of the CMA-MESO model. The
mean biases of meridional wind, zonal wind, potential temperature, and water
vapor mixing ratio were reduced by 45%, 35%, 20%, and 10%, respectively, and
the root mean square errors (RMSEs) were reduced by approximately 5%. This
study revealed the characteristics of the systematic diurnal bias of CMA-MESO
model in southern China, which may be caused by the diurnal variation in the
thermal and dynamic exchange on underlying surfaces. The effectiveness of
the sequential bias correction scheme was also verified, and the results had
good prospects for providing more reference information for high-resolution
numerical prediction models and data assimilation.
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1 Introduction

Numerical weather prediction (NWP) refers to a process in which
the atmospheric governing equations are numerically integrated under
given initial and boundary conditions to obtain the future atmospheric
state (Xue and Chen, 2008). NWP isn’t only the basis of modern
weather prediction but has also become an important research tool to
determine the physical mechanisms and influencing factors of the
occurrence and development of weather disasters. However, due to
the non-linear and chaotic characteristics of the atmosphere, the initial
errors and model errors of the NWP have a great impact on weather
prediction (Lorenz, 1963; Bauer et al., 2015), which cause inaccurate
forecast results.

Model errors can be classified as random errors and systematic
bias (Dalcher and Kalnay, 1987; Murphy, 1988; Krishnamurti et al.,
1999). The systematic bias mainly includes the mean and periodic
bias such as associated with the annual cycle and the diurnal cycle
(Bhargava et al., 2018), associated with the presence of short- or
long-term bias, such as weather highs and lows, or the phase of El
Niño (Danforth et al., 2007; Danforth and Kalnay, 2008a; Danforth
and Kalnay, 2008b). Several studies have found that the systematic
biases have some important influences on the forecast results. For
example, the diurnal biases of atmospheric water vapor mixing
ratio and the temperature play important roles in the energy
budget and precipitation prediction for the NWP model (Dee
and Todling, 2000; Dee, 2005; Svensson and Lindvall, 2015; Zhang
et al., 2016; Bhargava et al., 2018; Patel et al., 2021). Dee and
Todling (2000) analyzed the systematic bias in the NWP model
and found that the systematic bias of the atmospheric water vapor
mixing ratio plays an important role in the precipitation forecast of
the model. The systematic bias of the 2-m temperature was found
to show a strong diurnal cycle in the Global Forecast System (GFS)
winter forecast results (Patel et al., 2021). In data assimilation, a
background field that is assumed to be unbiased is needed to obtain
the background error of the model and an accurate initial field. If
the background field itself contains systematic bias, then the
resulting initial field will also contain such bias (Dee and
Arlindo, 1998; Dee, 2005; Zhang et al., 2016). This means that
the systematic bias of an NWP model could also have a negative
impact on its initial field through data assimilation (Bhargava et al.,
2018). Therefore, it is necessary to identify the impacts of
systematic bias on model forecasts and explore how it can be
reduced.

In recent years, due to the increasing frequency of severe
convective weather events and the demand for refined forecasting
with a high spatial and temporal resolution, increasing attention
has been given to high-resolution NWP models. It is worth
noting that the systematic bias of short-term forecasts in high-
resolution models often presents systematic diurnal bias
(Bannister et al., 2019; Scaff et al., 2019; Chen et al., 2021).
This bias plays an essential role in high-resolution models
(Bhargava et al., 2018), and its influence cannot be ignored.
(Faghih et al., 2022). Furthermore, the southern China is
located in a subtropical and tropical region that is affected by
tropical and temperate systems with complex underlying surfaces
and often experiences heavy rains, tornados and other disastrous
weather (Wu et al., 2011). Under such a complex background, if a
high-resolution model directly performs a short-term forecast or
data assimilation without considering the systematic diurnal bias,
it may cause errors in the forecast and assimilation results. To
solve these problems, some prior works proposed the systematic
diurnal bias correction schemes based on Newtonian relaxation
(nudging) method (Dee and Todling, 2000; Dee, 2005; Danforth
et al., 2007), while some introduced the incremental analysis
update (IAU) method (Zhang et al., 2016; Bhargava et al., 2018).
For example, Dee and Todling (2000), Dee (2005) proposed an
unbiased sequential analysis algorithm and corrected water

FIGURE 1
The model region and terrain height.

TABLE 1 Configuration of the CMA-MESO.

Parameter term Parameter configuration

Model version CMA-MESO

Horizontal resolution 0.03° × 0.03°

Vertical levels 51

Initial conditions NCEP-GFS

Lateral boundary conditions NCEP-GFS

Model region 16°–31.36°N, 96°–123.36°E

Physical parameterization scheme WSM6 (Hong and Lim, 2006), MRF (Hong and Pan, 1996), Monin–Obukhov (Beljaars, 1994), RRTM (Mlawer et al. 1997), Dudhia
(Dudhia, 1989), Noah (Wang and Chen, 2013)
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vapor. And on top of Dee’s research, Zhang et al. (2016) proposed
a correction algorithm to correct the diurnal bias of temperature,
water vapor and wind. From the above studies, it can be found
that the methods like IAU or Newtonian relaxation, which use
analysis increments as constant forcings to gradually add them
into the process of model integration (Bloom et al., 1996; Takacs
et al., 2018), are effective means to correct the systematic bias.

However, most of the early studies focused on the correction of
systematic bias in medium-term and long-term forecasts with low-
resolution global models. Limited works were found for high-
resolution short-term forecast in southern China. Therefore, this
study aims at examining the characteristics of the systematic
diurnal bias of the high-resolution model in southern China
and correcting these biases. A 15-day sequential experiment was
conducted based on the CMA-MESOmodel with a 3 km resolution
in southern China, and the bias characteristics of the forecast
results were analyzed. According to the analysis results a sequential
bias correction scheme (SBCS) was designed based on the IAU
approach, and 15-day sequential comparative experiments were
carried out to test the SBCS performance. The results of this study
are expected to be useful for reducing the systematic diurnal bias of
the model, improving forecast results, and providing a better
background field for data assimilation.

This paper is organized as follows. Section 2 introduces the
model, analysis methods and experimental configuration.
Section 3 analyzes the results, and Section 4 presents the
conclusions.

2 Model, methods, and experimental
configuration

2.1 Model configuration

A regional mesoscale model called the CMA-MESO that was
developed by the China Meteorological Administration (CMA)
Earth System Modeling and Prediction Centre (Chen et al., 2008)
is used in this study. Table 1 shows the configurations of this
model. The main features of the CMA-MESO include a fully
compressible dynamic core with non-hydrostatic approximation,
a semi-implicit and semi-Lagrangian scheme for time
integration, and height-based terrain-following coordinates.
The forecast region covers southern China and the South
China Sea (16°–31.36°N, 96°–123.36°E) (shown in Figure 1),
and the horizontal resolution of the model is 0.03° × 0.03°

(3 km) with 51 vertical levels. The lateral boundary conditions
and initial conditions of CMA-MESO are provided (directly
downscaled) from the GFS developed by the National Center
for Environmental Prediction (NCEP) and National Oceanic and
Atmospheric Administration (NOAA).

TABLE 2 Configuration of the analysis bias experiment.

Experiment configuration Parameter configuration

Forecast start time 0000, 0600, 1200, and 1800 UTC each day

Forecast lead time 6 h

Forecast dates June 1 to 15, 2022

TABLE 3 Configuration of the analysis bias experiment.

Experiment configuration Parameter
configuration

Historical bias (number of days of data) 7 days before forecast

Forecast start time 0000, 0600, 1200, 1800 UTC
each day

Forecast lead time 6 h

Forecast dates June 8 to 23, 2022

Experiment name CTL BC

Bias correction scheme None SBCS

FIGURE 2
The flowchart of the SBCS.
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FIGURE 3
Evolution of themean bias (dotted line) and RMSE (line) over time for U, V, T, Pi, andQ (Initialized at 0000, 0600, 1200, and 1800 UTC every day, with
a forecast of 6 h, from 1 to 15 June 2022) (Pi and Q are multiplied by 1,000).

FIGURE 4
The power spectra of (A) U, (B) T, (C) Pi, and (D) Q in the forecast mean bias time series from June 1 to 15, 2022.

Frontiers in Earth Science frontiersin.org04

Chen et al. 10.3389/feart.2023.1101809

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1101809


FIGURE 5
The spatial distribution of the vertical mean bias at different times (cool colors represent a negative bias andwarm colors represent a positive bias) (Pi
and Q are multiplied by 1,000).

FIGURE 6
The spatial distribution of the DBA at 1, 13, and 18 model layers (Pi and Q are multiplied by 1,000).
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2.2 Bias analysis method and experimental
configuration

In this study, the NCEP-GFS analysis field (hereafter referred to
as the analysis data) is applied to evaluate the forecasts. The variables
including the meridional wind (U), zonal wind (V), potential
temperature (T), dimensionless pressure (Pi), and water vapor
mixing ratio (Q) are derived from standard initialization process
using the NCEP-GFS analysis data. It should be noted that all
variables in this study are analyzed and corrected at the model layer.

Three evaluation metrics are applied in the following analysis,
including the bias, the root-mean-square error (RMSE) and the
diurnal bias amplitude (DBA):

Bias � At − Ft (1)

RMSE �
��������������
1
n
∑n

i�1 At − Ft( )2
√

(2)
DBA � Biastmax − Biastmin| | (3)

In the above equations, At represents the analysis at time t; Ft

represents the forecast at time t; Biastmax represents the maximum
bias at different forecast times in a day; and Biastmin represents the
minimum bias at different forecast times in a day.

To analyze the characteristics of the bias in the CMA-MESO,
15-day sequential experiments are conducted (as shown in
Table 2). The forecasts start at 0000, 0600, 1200, and
1800 UTC each day from June 1 to 15, 2022. The forecast lead
time is 6 h.

2.3 Sequential bias correction scheme and
experimental configuration

In this study, following Danforth et al. (2007), Danforth and Kalnay
(2008a) and Bhargava et al. (2018), a sequential bias correction scheme
(SBCS) based on the analysis increment was designed to correct the
model diurnal bias. The 6-h analysis increment is obtained by subtracting
the 6-h forecast result from the analysis data. This analysis increment can
represent the systematic diurnal bias to a certain extent.

The detailed procedure for the SBCS is as follows:
Definitions: the model forecast value of a grid is defined asNf(t),

which is calculated by Nf(t) � M[t], where t and M[t] are the time
and the process of the model forecast at the time, respectively. The
analysis value of a grid is defined as Na(t), which is calculated by
Na(t) � A[t], where A[t] is the analysis value at time t. In this study,
N specifically refers to the variables to be corrected, namely, meridional

FIGURE 7
The vertical profiles of the horizontal mean bias and RMSE from June 1 to 15, 2022 (Pi and Q are multiplied by 1,000).

Frontiers in Earth Science frontiersin.org06

Chen et al. 10.3389/feart.2023.1101809

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1101809


wind (U), zonal wind (V), potential temperature (T), dimensionless
pressure (Pi), and water vapor mixing ratio (Q).

(1) Derive the analysis increment ΔA(t) at time t by subtracting the
forecast valueNf(t) from the analysis value Na(t) (as in Eq. 4.

(2) Calculate the average analysis incrementΔA(t) by taking themean
value of the 6-h analysis increment ΔA(t) at different time t in the
previous week Eq. 5. n represents the sample number ofΔA(t) that
is used to obtain the statistical average, and in this study, n � 7.

(3) In the process of model integration, the corrected value Nf(mt) of
the variable Nf old(mt) is calculated by Eq. 6, which is corrected
stepwise at each step of integration. τ and mt are the number of
steps and each moment in the model integration, respectively.

ΔA t( ) � Na t( ) −Nf t( ) (4)

ΔA t( ) � 1
n
∑n

i�1ΔA t( ) (5)

Nf mt( ) � Nf old mt( ) + ΔA t( )
τ

(6)

Figure 2 gives the flowchart of the SBCS. As an example, to
correct the systematic diurnal bias of the forecast at 0000 UTC on

June 8, the average analysis increment ΔA(t) is first derived from the
forecast results of the previous week from 0000 UTC on June 1 to
0000 UTC on June 7. Then, the diurnal bias at 0000 UTC June 8 is
corrected by subtracting ΔA(t).

In accordancewith the above scheme, two groups of experimentswere
carried out from June 8 to 23, 2022. The CTL experiment was a control
experiment without any bias correction scheme, and the BC experiment
was a correction experiment using the SBCS (as shown in Table 3).

3 Results

3.1 Diurnal bias characteristics

To analyze the characteristics of the bias in the CMA-MESO, 15-
day sequential experiments are conducted. The systematic model bias
can be detected by comparing forecasts against observations and
calculating the regional averages of the mean biases in a relatively
long time period (Dee and Todling, 2000). Figure 3 shows the evolution
of the mean bias (dotted line) and RMSE (line) over time for the five
variables. Because the Pi and Q values are too small, they are multiplied
by 1,000 in this figure (the same treatment is hereafter noted in the

FIGURE 8
Evolution of themean bias (dotted line) over time for the U, T, Pi, andQ values at different model layers. (A)U in 36-layer, (B)U in 24-layer, (C)U in 8-
layer, (D) Pi in 24-layer, (E) T in 24-layer, (F) T in 8-layer, (G)Q in 12-layer, and (H)Q in 8-layer (initialized at 0000, 0600, 1200, and 1800 UTC every day,
with a forecast of 6 h, from 8 to 23 June 2022) (Pi and Q are multiplied by 1,000).
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figure title). Figure 3 shows that themean bias of themodel variables has
diurnal characteristics. This diurnal characteristic of the mean bias
presents some periodic diurnal changes with some irregular fluctuations
in U, V, and Pi. However, it shows a continuous periodic diurnal cycle
in T and Q, which presents obvious diurnal fluctuations. For example,
the forecast mean bias of Q at 0000 UTC every day is always the lowest;
then, it increases gradually at 0600 UTC, reaches the maximum mean
bias at 1200 UTC, and finally decreases at 1800 UTC. This fluctuation
obviously shows the diurnal characteristics. Other evolutions of mean
bias, such as for U, also show diurnal characteristics, although noise
exists. On the other hand, the RMSE also shows similar diurnal
characteristics as the mean bias, which means that periodic diurnal
bias exists in the CMA-MESO.

The power spectra of bias time series are another metric used to
examine periodic characteristic (Zhang et al., 2016). Therefore, the 15-
day forecast bias is used for Fourier spectrum analysis. Figure 4 shows
the power spectra of (a) U, (b) T, (c) Pi and (d) Q in the forecast bias
times series at different model layers from June 1 to 15, 2022 (the power
spectra of V is similar to those ofU, so they aren’t shown). The peaks are
mostly concentrated in the spectrumwithin a 1-day period. This means
that the most important periodic variation is the diurnal cycle for the
mean bias of all variables. Among the four variables, the periodic
variation in T and Q is dominated by the diurnal cycle, but the periodic

variation in U and Pi is slightly more complicated. There are still serval
secondary peaks, such as the 2-day and 4-day peaks, in the power
spectra of U and Pi, which indicates periodic variation on a synoptic
scale. On the other hand, the periodic variations in the low and middle
model layers are still dominated by the diurnal cycle, and this
characteristic is not obvious in the high model layer. This means
that the mean bias of the diurnal cycle is mainly in the low and
middle model layers.

Figure 5 shows the spatial distribution of the vertical mean bias
at different times (for example, the result at 0,600 UTC is the forecast
result that started at 0000 UTC and forecasted 6-h). First, there are
different spatial distributions of the vertical mean bias at different
times, whichmeans that the spatial distributions of the vertical mean
bias have diurnal characteristics. For example, for U, the negative
bias region is mainly on the Qinghai-Tibet Plateau and Yunnan-
Guizhou Plateau, and the positive bias region is mainly on the South
China Coast at 0600 UTC. At 1200 UTC, the negative bias region is
mainly on the Qinghai-Tibet Plateau, Yunnan-Guizhou Plateau and
in Guangdong Province, the maximum becomes larger, and the
Qinghai-Tibet Plateau also shows some positive bias. At 1800 UTC,
the area of negative bias increases, and there are only a small number
of positive biases in Southeast Asia and the South China Sea. At
0000 UTC, the whole area is dominated by negative bias. Second, the

FIGURE 9
The power spectra of (A)U, (B) T, (C) Pi and (D)Q in the forecastmean bias time series for the BC (blue line) and CTL (red line) experiments at different
model layers from June 8 to 23, 2022.
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spatial distribution of the vertical mean bias has some characteristics
related to the underlying surface. For U and V, the large bias region
is mainly on the Qinghai-Tibet Plateau and Yunnan-Guizhou
Plateau, which have high altitudes, many mountains and a
complex topography. For Pi and Q, the large bias region is
mainly in the South China Coast and South China Sea, which
have the ocean and coasts.

To explore the impact of the underlying surface on the diurnal
bias variation for the low model layers, an indicator called DBA is
defined. The DBA is calculated by Eq. 3, and it can show the region
with a large diurnal variation in the bias. Figure 6 shows the spatial
distribution of DBA at layers 1, 13 and 18. From Figure 6, it can be
seen that the region of large DBA is mainly concentrated on the
Qinghai-Tibet Plateau, Yunnan-Guizhou Plateau, in Taiwan, and
Southeast Asia; these areas are characterized by high altitudes,
multiple mountains, and complex underlying surfaces. Especially
for T, the temperature is easily affected by the radiation of the
underlying surface. Therefore, the DBA value of T is large in 1-layer,
and it shows an obvious relation between the underlying surface, as
shown in Figure 6. However, in the 13-layer and 18-layer, the impact
of the underlying surface gradually decreases with increasing
altitude. This means that the diurnal bias may be directly
affected by the diurnal variation in the thermal and dynamic

exchange on underlying surfaces, and this influence will gradually
decrease with increasing altitude.

Figure 7 is the vertical profile of the horizontal forecast mean
bias and RMSE from June 1 to 15, 2022. First, the mean bias has
an overall trend of large values in the lower and high model layers
and small values in the middle model layers. Second, the vertical
profile of the four start times presents a different distribution,
especially for the lower layer. For example, the vertical profiles of
U and V show clear diurnal characteristics. It can also be found
that the amplitude of the diurnal bias is large in the lower layer
but small in the middle and high layers. On the other hand, the
vertical profile of the RMSE also presents a similar feature to that
of mean bias. The results of the vertical profile verify the previous
results. The lower layer is easily affected by changes in the
underlying surface, and the systematic diurnal bias is mainly
present in the lower model layer.

According to the above results, it can be found that the forecast
mean bias and RMSE of CMA-MESO have some diurnal features.
These diurnal biases are concentrated on plateaus and mountains
and in oceans and lakes for the horizontal distribution and in the low
model layer for the vertical distribution. This phenomenon may be
mainly caused by the direct impact of the diurnal variation on the
underlying surface.

FIGURE 10
The spatial distribution of the vertical mean bias at different times for the BC and CTL experiments. (A) U, (B) V, (C) T, (D) Pi and (E)Q. (Pi and Q are
multiplied by 1000).
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3.2 Diurnal bias correction

From the above analysis, it can be seen that there are systematic
diurnal biases in the CMA-MESO forecast results in southern China.

To correct these biases in themodel and improve the forecast results,
the SBCS is designed, and two comparative experiments are carried
out. One is the BC experiment using the SBCS, and the other is the
CTL experiment without any bias correction scheme. According to

FIGURE 11
The vertical profiles of the horizontal mean bias and RMSE for the BC andCTL experiments (initialized at 0000, 0600, 1200, and 1800UTC every day,
with a forecast of 6 h, from 8 to 23 June 2022). (Pi and Q are multiplied by 1,000).
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the results, Figure 8 shows the evolution of the mean bias (dotted
line) over time for some variables with important weather
information at different model layers. In addition, in Figure 8,
the 36-layer, 24-layer, 12-layer and 8-layer are selected to
represent high layer, middle layer, middle-lower layer and lower
layer in the model, respectively. The mean bias of U generally
decreases in the high layer, middle layer and lower layer after
using the SBCS (as shown in Figures 8A–C). Moreover, it is
worth noting that the amplitude of the diurnal bias also
decreases, especially in the lower layer (as shown in Figure 8C),
which means that the systematic diurnal bias is reduced. For the Pi
in the middle layer, which is often used to represent synoptic
situations, the mean bias of the BC experiment is lower than that
of the CTL experiment (as shown in Figure 8D). For T in the middle
layer, the mean biases of the two experiments are similar (as shown
in Figure 8E). However, in the lower layer, the mean bias of the BC
experiment is lower than that of the CTL experiment, and the
amplitude of the diurnal bias also decreases (as shown in Figure 8F).
For Q in the middle-lower layer and lower layer, the mean biases of
the BC experiment are lower than those of the CTL experiment, and
the amplitude of the diurnal bias also decreases (as shown in Figures
8G, H). In general, the mean biases and the amplitude of the diurnal
bias are partly reduced after correction with the SBCS scheme.

Figure 9 shows the power spectra of (a) U, (b) T, (c) Pi and (d)
Q in the forecast bias times series for the BC (blue line) and CTL
(red line) experiments at different model layers from June 8 to
23, 2022 (the power spectra of V is similar to U, so they aren’t
shown). The peak of the CTL experiment is still mostly

concentrated in the spectrum within a 1-day period.
However, the peak of the BC experiment within a 1-day
period decreases at most layers. For some of these variables,
such as the T at the high layer, the peak over a 1-day period even
disappears. In addition, although the peak is decreased, diurnal
fluctuation still exists for most of the variables. This means that
the SBCS scheme can only partly reduce the systematic diurnal
bias but cannot completely eliminate the influence of such bias
on the model forecast results.

To determine if there is any change in the spatial distribution
of the model bias after using the SBCS, Figure 10 shows the spatial
distribution of the vertical mean bias at different times for the BC
and CTL experiments. Figure 10A shows that the area and value
of the U mean bias in the BC experiment are smaller than those in
the CTL experiment in areas such as the Qinghai-Tibet Plateau,
Yunnan-Guizhou Plateau and southeast region. Figures 10B–D
also show similar the results as Figure 10A, the mean biases of the
BC experiment are reduced, and the forecast results are
improved. In addition, the improved regions are different. In
detail, for the V, the improved region is concentrated in the South
China Coast and on Qinghai-Tibet Plateau; for the T, the
improved region is concentrated in the north and southeast;
for the Pi, the improved region is concentrated in the South
China Coast and South China Sea areas; and for the Q, the
improved region is concentrated in the South China Coast and on
Yunnan-Guizhou Plateau. In general, the improved region is
closely related to the underlying surface, such as plateau,
mountain, coast and ocean.

FIGURE 12
The improvement rate for the BC and CTL experiments at different times (blue bars indicate the improvement rate of the bias, and red bars indicate
the improvement rate of the RMSE).
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As mentioned earlier, the diurnal bias is closely related to the
underlying surface, and Figure 10 also shows an improvement in
the BC experiment in regions with a complex underlying surface.
What are the characteristics of the mean bias and RMSE at
different vertical layers after using the SBCS? Figure 11 shows
the vertical profiles of the horizontal mean bias (line) and RMSE
(dotted line) for the BC (blue) and CTL (red) experiments. The
mean bias of the BC experiment is generally smaller than that of
the CTL experiment, which means that the forecast result of the
BC is improved and the diurnal bias of the model is partly
corrected. For U, V, T, and Q, the model bias of the BC
experiment is obviously reduced in the high and lower layers,
and there is little change in the middle layer. On the other hand,
for the forecast results at different times, the correction effect at
1200 UTC and 1800 UTC is better than that at 0000 UTC and
0600 UTC. However, for Pi, this improvement is not apparent.
The mean bias of the BC experiment decreases at 0000 UTC and
0600 UTC in the lower layers, and there is little change at other
times in the high and middle layers. In general, it can be seen that
the results of the BC experiment show lower mean bias and
RMSE, especially for the lower model layers, which shows
apparent improvement.

The improvement rate (IR, which is calculated by equation
IR � ( |XCTL |−|XBC|)

|XCTL | × 100%, where X represents the mean bias or
RMSE) at different times is introduced to better show the
improvement of the forecast results using the SCBS (as shown
in Figure 12). Here, X represents the mean bias or RMSE of all
grids respectively. A positive IR represents a positive
improvement, and a negative IR represents a worse
performance. From the Figure 12, it is found that both the
bias and RMSE show positive improvement in all variables at
all times. Specifically, the IR (bias) of U at all times nearly exceeds
40%; the IR (bias) of T at all times nearly exceeds 20%; and the IR
(bias) of Q at all times nearly exceeds 30%. The improvement of V
and Pi is relatively small; the IR (bias) of V is only approximately
10%, and that of Pi is only approximately 5%. On the other hand,
the IR (RMSE) is generally lower than the IR (bias), and those of
U, V, T, Pi, and Q are approximately 10%, 7%, 8%, 5%, and 4%,
respectively.

According to the above results, it is found that the mean bias and
RMSE of the BC experiment using the SBCS are generally lower than
those of the CTL experiment. Furthermore, the SBCS reduced the
systematic diurnal bias and improved the forecast results in the
CMA-MESO.

4 Summary and discussion

In this study, the bias characteristics of the 15-day sequential
experiment results in southern China are analyzed based on the
CMA-MESO high-resolution NWP model. According to the
analysis results, the sequential bias correction scheme called
the SBCS was designed to reduce systematic diurnal bias with
using analysis increments in the CMA-MESO. Two sequential,
15-day comparative experiments are carried out, one using the

SBCS and the other being a control treatment without any bias
correction scheme.

The detailed procedures related to the SBCS within CMA-MESO
are addressed in this paper. Specifically, the historical 6-h
continuous forecast results of the week before the forecast time
are used to obtain the analysis increments of each grid point through
statistical averaging. Then, throughmodel integration, the variable is
corrected stepwise at each step of integration.

The preliminary results of the bias analysis show that the CMA-
MESO has a systematic diurnal bias in southern China. The bias of
each variable has different characteristics at different times of the
day. Specifically, for the horizontal distribution, the systematic
diurnal bias is mainly concentrated on the Qinghai-Tibet Plateau,
Yunnan-Guizhou Plateau, South China Coast and in the South
China Sea. These areas have complex underlying surfaces, such as
plateaus, mountains, lakes, coasts and oceans. For the vertical
distribution, the systematic diurnal bias is concentrated in the
lower model layer, which is susceptible to the underlying surface.
This phenomenon may be caused by the influence of the diurnal
variation in the thermal and dynamic exchange on underlying
surfaces. On the other hand, the preliminary results of bias
correction show that the SBCS partly reduces systematic diurnal
biases, and reduces the mean bias of the CMA-MESO 6-h forecast by
5%–50% and the RMSE by 4%–10%. This means that the SBCS
reduces the systematic diurnal bias and improves the forecast results
of the CMA-MESO in southern China.

This study shows the characteristics of systematic diurnal
bias in southern China with the CMA-MESO high-resolution
model and the positive correction effect of the SBCS. However,
with in-depth research, there are still some problems and
challenges that need to be overcome. First, in this study, the
purpose of the SBCS is to improve both the model forecast results
and the background field in data assimilation. However, we have
not conducted an assimilation experiment using the corrected
forecast results with the SBCS. This will be our next major
research direction. Second, for the improvement of the
forecast results with the SBCS, we have only carried out a 6-h
forecast at present, without carrying out a longer-term (such as
24-h or 36-h) forecast experiment. More sensitive experiments
are needed. In the future, we will further explore these problems.
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