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Shear wave velocity is an essential elastic rock parameter for reservoir
characterization, fluid identification, and rock physics model building. However,
S-wave velocity logging data are often missing due to economic reason. Machine
learning approaches have been successfully adopted to overcome this limitation.
However, they have shortcomings in extracting meaningful spatial and temporal
relationships. We propose a supervised data-driven method to predict S-wave
velocity using a graph convolutional network with a bidirectional gated recurrent
unit (GCN-BiGRU). This method adopts the total information coefficient to
capture non-linear dependencies among well-log data and uses graph
embeddings to extract spatial dependencies. Additionally, the method employs
a bidirectional gated mechanism to map depth relationships in both upward and
backward directions. Furthermore, the prediction performance is increased by an
unsupervised graph neural network to handle outliers and the generation of
additional features by the complete ensemble empirical mode decomposition
with additive noise method. Finally, the GCN-BiGRU network is compared with
Castagna’s empirical velocity formula, support vector regression, long-short-term
memory (LSTM), GRU, and BiGRU methods over the North Sea open dataset. The
results show that the proposed method performs better predicting S-wave
velocity than the other ML and empirical methods.
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Introduction

In reservoir characterization, shear wave (S-wave) velocity is an essential elastic property
for building accurate rock physics models and discriminating fluid content in geologic
formations (Xu and White, 1995; Vernik and Kachanov, 2010; Refunjol et al., 2022).
However, the availability of measured S-wave velocity logs in exploration projects is
frequently scarce for an economic reason (Anemangely et al., 2019). Statistical and
empirical methods address this problem using compressional wave velocity correlations
(Castagna et al., 1985; Greenberg and Castagna, 1992). Nevertheless, statistical methods,
such as linear regression (LR), often have low accuracy and fail to capture the complex
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relationships among the data. Moreover, empirical methods require
additional information, such as mineral composition, pore aspect
ratio, fluid saturation, total organic carbon content, or formation
pressure, for proper calibration and accurate results (Vernik et al.,
2018; Omovie and Castagna, 2021). In contrast, machine learning
(ML) methods discover intrinsic relationships, make accurate
predictions, and overcome data scarcity efficiently (Ali et al.,
2021). ML methods have been applied for predicting S-wave
velocity using well-log data, such as support vector regression
(SVR) (Ni et al., 2017), long-short-term memory (LSTM) (Zhang
et al., 2020), gated recurrent units (GRUs) (Sun and Liu, 2020), and
gradient boosting (Zhong et al., 2021).

The S-wave velocity prediction is frequently addressed as a
multivariate time series problem by assuming independence
among variables and calculating a single depth point without
further considerations (Jiang et al., 2018). Alternatively, the
S-wave velocity prediction can be reframed as a supervised data-
driven learning problem with recursive neural networks (RNNs) by
considering the trend variations in the rock properties with depth
(Hopfield, 1982). GRU is an improved RNN, less complex, and
easier to train than LSTM (Cho et al., 2014). GRU dynamically
extracts patterns from previous depth points to forecast rock
properties in the following depth points (Chen et al., 2020).
Bidirectional gated recurrent units (BiGRUs) with attention
consist of two synchronous GRU to increase the prediction
performance. The input sequence starts from the top to the
bottom for the first unit and from the bottom to the top for the
second unit. At the same time, the attention mechanism selects the
most important features contributing to the prediction (Zeng et al.,
2020). However, GRU has limitations in extracting local spatial
characteristics from data (Jiang et al., 2021). Therefore, recent
models combine convolutional neural network (CNN) layers to
extract local and global features (Wang and Cao, 2021).

Graph theory receives particular attention for representing
complex models surpassing the limitations of Euclidean space
(Zhou F. et al., 2019a). A graph is a collection of vertices and
edges that shares a relationship, represented by a Laplacian
matrix (Scarselli et al., 2009). A graph embedding translates
the latent dependencies from the graph into a low-
dimensional space while preserving the original features,
structure, and information (Hamilton et al., 2017). In this
context, graph neural networks (GNNs) are a learning
algorithm that handles graphs and resembles RNNs (Gori
et al., 2005; Di Massa et al., 2006; Xu et al., 2019). Graph
convolutional networks (GCNs) are first-order approximations
of local spectral filters on graphs that perform convolution
operations with linear computational complexity (Defferrard
et al., 2016; Kipf and Welling, 2017). Furthermore, GCN-GRU
has been successfully used for time-series prediction by
exploiting the advantages of both graph and recurrent network
architectures (Zhao et al., 2020).

We propose a graph recurrent gated method to predict S-wave
velocity and compare it with other ML methods. For added value,
the proposed method includes unsupervised distance-based outlier
elimination with GNN, empirical mode decomposition (EMD) as
feature engineering, and non-linear graph embedding with the total
information coefficient (TIC) for more meaningful results. The
workflow contains four steps:

1) An unsupervised GNN is used to detect outliers by learning the
information from the nearest neighbor samples (Goodge et al.,
2022). The goal is to remove the extreme values in the well-
logging data resulting from human, environmental, or
instrumental errors that impact the final prediction.

2) The well-logging data are decomposed into intrinsic mode
functions (IMFs) by the complete ensemble EMD with
additive noise (CEEMDAN) algorithm. The IMFs represent
features from the local oscillation frequency with a physical
meaning similar to Fourier domain spectral decomposition
(Huang et al., 1998; Gao et al., 2022). Furthermore, they are
concatenated with the well-logging data to form sequences for
the network input.

3) The well-logging data are converted into the graph domain by
mapping their dependencies with the TIC. TIC is a noise-robust
correlation coefficient representing intrinsic non-linear
dependencies among variables (Reshef et al., 2018).

4) A modified GCN-GRU network with bi-recurrent units and an
attention mechanism predicts the S-wave velocity (Zhao et al.,
2020). The GCN captures the spatial dependencies among the
well-logging data. At the same time, the bidirectional GCN-GRU
maps the sequence of previous and subsequent depth points for
the S-wave velocity prediction (Yu et al., 2018).

Finally, the GCN-BiGRU network is compared with other ML
methods, including SVR, LSTM, GRU, BiGRU, Castagna’s empirical
formula, and LR. The root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE),
and R2 metrics are used to evaluate the performance of the models.
The results show that the proposed method has a lower error in
predicting the S-wave velocity than the other ML and empirical
methods.

Methodology

Local outlier removal with graph neural
networks

Identifying and eliminating potential outliers is an essential step
in S-wave velocity prediction. Among different methods, local
outliers are widely adopted to detect anomalies in multivariate
data by measuring the distance between neighbor points (Breunig
et al., 2000; Amarbayasgalan et al., 2018). However, they lack
trainable parameters to adapt to particular datasets. In contrast,
the message-passing abilities of GNNs can detect anomalies and
outperform local outlier methods by learning the information from
the nearest samples without supervision (Goodge et al., 2022).

The GNN uses the message-passing abilities of a direct graph for
detecting outliers. In general, a graphG(V, E) is defined by a set ofN
vertices or nodes, V � υ1, υ2, . . . , υN{ }, with N nodes features,
X � x1, x2, . . . , xN{ }, a set of M edges, E � e1, e2, . . . , eM{ }, with
edge features defined as ej � (υi, υk), where υi, υk ∈ V (Zhou F. et al.,
2019a). The message-passing characteristic allows the graph to send
and receive information through its connections with its neighbors
in one direction. The message-passing workflow involves a message
function, an aggregation function, and an update function. Then, the
hidden representation of a node is calculated by
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hNi � ak m xi, xk, ej( )( ) (1)

where xi is the feature of the source node υi, xk is the feature of the
adjacent υk,m is the message function that sends the information
to each neighbor node, ak is the aggregation function that
summarizes the incoming messages from k adjacent nodes of
υi, k ∈ Ni, Ni is the number of adjacent nodes to υi, and hNi is the
aggregation of the messages from its neighbors. Finally, the
update function computes the following hidden representation
by using the aggregated messages and the current state of the
node by

hi � u xi, hNi( ) (2)
Then, the well-log data are represented as a graph for the

outlier removal method using GNN, where each sample is
equivalent to a node, and the value of each sample is the
node feature. The edge connects the nearest neighbor
samples to a given sample, and the network learns their
distance as the anomaly score. Therefore, the edge feature ej
is defined by

ej � d xi, xk( ), k ∈ Ni

0, k ∉ Ni
{ (3)

where d is the Euclidean distance between two point samples, xi is
the source sample, xk is the adjacent sample, and k is the nearest
neighbor sample set. The distance information is the message
transmitted from the source sample to the adjacent sample,
m � ej. In addition, the aggregation function concatenates the
distance of all neighbors of the source sample by

ai � e1, . . . , ek[ ] ∈ Rk (4)
Next, Eq. 1 can be rewritten as a neural network F , where ai
represents the hidden representation hNi through the learnable
weights Θ by

hNi � F ai,Θ( ) (5)
Then, the update function in Eq. 2 is rewritten as the learned
aggregated message hNi by

u � hNi (6)
The GNN performance is compared with the isolation forest

(IF) (Liu et al., 2008) and the local outlier factor (LOF) (Breunig
et al., 2000). IF is an unsupervised ensemble method to separate
anomalies from normal data. Based on the principle that a
normal sample requires more partitions to be isolated, an
anomaly sample requires fewer partitions. Then, the IF
constructs a tree representing the number of divisions to
isolate a sample. Normal samples have a path length that
equals the distance from the root node to the terminating
node. Anomalous samples have a shorten path length than
normal samples. On the other hand, LOF is an unsupervised
proximity algorithm for anomaly detection that calculates the
local density deviation of a sample within its neighbors. The local
density is calculated by comparing the distance between the
neighboring samples. Normal samples have similar densities to
their neighbors, while the samples with less density are
considered outliers.

Feature engineering with empirical mode
decomposition

The EMD is an adaptative and data-driven decomposition
method suitable for non-stationary and non-linear data (Huang
et al., 1998). In contrast with the wavelet transformation, a
wavelet definition is unnecessary for EMD (Zhou Y. et al.,
2019b). EMD calculates IMFs with several frequency bands
highlighting distinct stratigraphical and geological information
that increases the network performance (Xue et al., 2016). IMFs
are computed using the CEEMDAN algorithm, reducing model
mixing and data loss (Colominas et al., 2014). This computation
involves four steps. First, several types of Gaussian white noise w
are added to the original data x as follows,

xi � x + ε0w
i (7)

where xi is the data after adding white noise for an i-th time, and i
denotes the number of modes (i.e., i = 1, . . . , I), and εk is the fixed
coefficient that regulates the signal-to-noise ratio at each k stage.
Second, the adjoined noise data xi are decomposed using the EMD.
The fundamental EMD mode IMF1 is averaged, and the first
CEEMDAN mode IMF1 is calculated by

IMF1 � 1
I
∑I

i�1IMFi
1 (8)

The first residual is calculated by subtracting IMF1 from x,

r1 � x − IMF1 (9)
Third, the second CEEMDAN mode IMF2 is calculated, where

Ek is the k-th mode decomposed by the EMD algorithm,

IMF2 � 1
I
∑I

i�1E1 r1 + E1ε1w
i( ) (10)

Fourth, the process is repeated until the residual is unable to be
further decomposed,

rk � x −∑K

k�1IMFk (11)
Then, the final residual is calculated by

IMFk � 1
I
∑I

i�1E1 rk−1 + Ek−1εk−1wi( ) (12)
and the representation of the original data are defined by

x � ∑K

k�1IMFk + rk (13)

The IMF approach is compared with the depth gradient and the
spectral band methods. The gradient measures the rate of change of a
well-log property in depth to map subtle changes in the subsurface. The
spectralmethod decomposes thewell-logging data into frequency bands
to capture unseen relationships. In Figure 1, the IMF engineering
features fi are concatenated with the node features xi of each node
vi at each depth point zi. The result is an augmented feature matrix X̂,
which serves as the input sequences for the GCN-BiGRU. Additionally,
the logarithmic transformation is applied to the resistivity log to center
the distribution. And the input sequences are normalized with the
Minmax function for stable training by

xscaled � x −min x( )
max x( ) −min x( ) (14)

Frontiers in Earth Science frontiersin.org03

Cova and Liu 10.3389/feart.2023.1101601

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1101601


where x is the well-log data, min(x) is the minimum value of the
dataset, max(x) is the maximum value of the dataset, and xscaled is
the normalized well-log data.

Graph construction

The S-wave velocity prediction is defined in the graph domain as
follows. Given a certain number of training wells, expressed as an
undirect graph G(V, E), V are the well-logs, E are their complex

dependencies, and X are the values of the well-log curves. The goal is
to learn the intrinsic relationships and predict the S-wave velocity ŷz.
The graph construction workflow calculates the edge weights and
the graph convolution (Gconv) operator. Then, the node features are
fed to the GCN-BiGRU network to output the S-wave velocity, as
shown in Figure 2. Transforming well-log data into the graph
domain is crucial since the Gconv operator requires reliable
estimation of the graph interdependencies for an accurate
prediction. Although there are no optimal methods to generate a
graph from tabular data (Narayanan et al., 2017), we proposed a

FIGURE 1
Sequence construction with the IMF features for the proposed model.

FIGURE 2
Graph construction workflow.
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knowledge-based approach to aggregate information from the
external domain. The edge features are calculated with the TIC
to represent the complex intrinsic relationships between the physical
rock properties measured by the well logs and highlight the most
significant dependencies.

TIC is a variation of the maximal information coefficient (MIC)
that integrates power, equitability, and performance to extract the
potentially diverse relationships among well-log data (Reshef et al.,
2018). MIC is a coefficient that detects non-linear dependencies by
applying information theory and probability concepts and is robust
to noise regardless of the relationship type (Reshef et al., 2011;
Reshef et al., 2015). Mutual information (MI) is defined by the
Kullback-Leibler divergence between two well logs joint and
marginal distributions; the higher the variance, the higher the MI
(Reshef et al., 2016). MIC is calculated by drawing a grid over a
scatter plot to partition the data and embed the relationship. The
well-log data distributions are discretized into bins, and the MI
values are compared and divided by the theoretical maximum for a
particular combination of bins. Then, MIC is defined as the highest
normalized MI between two well-logs by

MIC x, y( ) � max I x, y( )( )
log2 min nx, ny( )( ) (15)

where I(x, y) is the MI between the well-logs x and y, nx, ny are the
number of bins where x and y are partitioned. The MIC calculation
becomes computationally expensive in large datasets. Therefore, the
maximal grid size for simplification and optimization is defined by

nxny <B n( ) � n6 (16)
where n is the sample size. If B(n) is significantly low, MIC searches
only simple patterns, weakening the generality of MIC. If B(n) is
extremely high, MIC searches non-trivial coefficients for independent
paired variables under finite samples. Therefore, MIC is redefined as

MIC x, y( ) � max
nxny ≤B n( )

max I x, y( )( )
log2 min nx, ny( )( ) (17)

MIC measures equitability rather than the power to reject a null
hypothesis of independence. Therefore, TIC is introduced to address
this issue. Instead of choosing the maximal MI value, all entries are
summed,

TIC x, y( ) � ∑
nxny ≤B n( )

max I x, y( )( )
log2 min nx, ny( )( ) (18)

Finally, the prediction performance of the graph embeddings
using TIC and MIC are compared with other linear and non-linear
correlation coefficients. The Pearson product-moment correlation
coefficient (PC) (Szabo and Dobroka, 2017) quantifies linear
relationships. And the Spearman rank correlation coefficient (SC)
(Pilikos and Faul, 2019) and distance correlation coefficient (DC)
(Skekely et al., 2007) measure non-linear relationships.

Network architecture

The GCN-BiGRU, GCN-GRU, and GCN network structures are
shown in Figure 3. In Figure 3A, the input X̂ ∈ RN×Z of the GCN-

BiGRU is the feature matrix defined by well-logging data concatenated
with the engineering features, whereN is the number of well-log curves,
and Z is the number of depth samples. The GCN-GRU predicts the
spatial-temporal relationships in the forward and backward direction
and transmits their final state hz to the next GCN-GRU. The final
output yz is the predicted S-wave velocity at each depth point. In
Figure 3B, the GCN-GRU consists of a reset gate rz, an update gate uz, a
candidate memory cz, and a GCN to extract the most relevant
information between depth points and output the state hz. In
Figure 3C, the GCN concatenates the input node features with a
hidden state, followed by the Gconv, an activation function, and a
dropout layer. The Gconv captures the spatial relationships between the
well-logs and hidden states within a first-order neighborhood radius.
The GCN extracts spatial dependencies among nodes at each depth
point, and the GCN-GRU extracts depth dependencies along depth
points.

The Gconv uses the adjacency matrix A, degree matrix D, and
feature matrix X to construct a normalized spectral filter in the
Fourier domain (Kipf andWelling, 2017). The adjacency matrix A ∈
RN×N describes the edge weights betweenNwell-logs, defined by the
calculated correlation coefficient. The diagonal matrix D ∈ RN×N

describes the number of edges at each node, computed from A.
Then, a single-layer Gconv operator is defined by

Gconv X̂, Â( ) � fdrop σ ÂX̂W( )( ) (19)

where Â is the normalized self-connected adjacency matrix defined
as Â � ~D

−1
2 ~A ~D

−1
2, ~A denotes the adjacency matrix with self-

connections, defined as ~A � A + I, where I is the identity matrix,
~D is the degree matrix of the adjacency matrix with self-connections
~A, defined as ~D � ∑j

~Aij where i is the number of nodes, j is the
number of edges, W are the trainable weights, whose size is
determined by the number of hidden units, σ(·) is the Mish
activation function for non-linearity, and fdrop is a dropout layer
with a given probability, activated during the training phase, to
reduce overfitting. Mish is a novel self-regularized non-monotonic
activation function that surpasses ReLU and Swish performances
(Misra, 2019). Mish is defined by

Mish � x tanh ln 1 + ex( )( ) (20)
The GCN-BiGRU network comprises two GCN-GRUs for a

forward and backward prediction. Each GCN-GRU has a two-gated
mechanism to adaptively capture patterns from different depth points
(Cho et al., 2014), as shown in Figure 3B. The activation gates are the
reset gate rz and the updated gate uz. The GCN-GRU requires two
inputs, the feature matrix x̂z at depth z and the previous hidden cell
state hz−1. First, the reset gate rz controls the amount of information to
preserve from the previous depth point to transmit to the memory
candidate state cz. The reset gate rz combines the previous memory
information hz−1 with the current information x̂z by

rz � σ WrGconv x̂z, hz−1[ ],A( ) + br( ) (21)
whereWr and br are the trainable parameters of the reset gate, x̂z is
the current state input, hz−1 is the hidden state from the previous
depth point, [·] represents the concatenation, σ(·) is the logistic
sigmoid function that forces the output range between [0,1], rz
output is a scalar, rz ∈ [0,1], when rz � 1 the memory is preserved,
when rz � 0, the memory is discarded. Second, the update gate uz
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determines the amount of information to preserve from the previous
depth point and the amount of current information to include from
the current depth point, similar to the reset gate,

uz � σ WuGconv x̂z, hz−1[ ],A( )+bu( ) (22)
where Wu, and bu are the trainable parameters of the update gate.
Third, the memory candidate cz is the present moment state at the
depth point z and is defined by

cz � tanh WcGconv x̂z, rz ⊙ hz−1( )[ ],A( ) + bc( ) (23)
whereWc, bc are the trainable parameters of the candidate memory, ⊙
is the Hadamard product (i.e., element-wise multiplication), and tanh is
the hyperbolic tangent function. Finally, the output state hz at depth z is
defined by

hz � 1 − uz( ) ⊙ cz + uz ⊙ hz−1 (24)
The update gate selectively stores or forgets memory

information. The update gate acts as a forget gate when
uz ⊙ hz−1 ignores unimportant information from the previous
depth point. The update gate acts as a memory gate when (1 −
uz) ⊙ cz preserves relevant information in memory for the next
depth point. Additionally, a dropout layer is added at the end of each
GCN-GRU to increase the network generalization ability and reduce
overfitting. Next, the output state hz is fed into a hierarchical

attention mechanism to highlight the essential features and
attenuate the less significative information contributing to the
S-wave velocity prediction (Bahdanau et al., 2014; Yang et al.,
2016). The output state hz is fed into a fully connected (FC)
layer, followed by an activation function to obtain a hidden
representation uz defined by

uz � tanh Wahz + ba( ) (25)
whereWa and ba are the trainable parameters of the FC layer. Next,
the feature importance is measured between the hidden
representation uz and a trainable context vector uw that is a
high-level representation of a static query of the features
(Sukhbaatar et al., 2015; Kumar et al., 2016). Then, importance
weights are normalized through a softmax function αz by

αz � exp uzuw( )∑z exp uzuw( ) (26)

Then, the weighted sum of the hidden states is the new high-level
presentation of the output state ĥz and is defined by

ĥz � ∑
z
αzhz (27)

and the new output state ĥz is fed to a fully connected (FC) layer
with a Mish activation function and a dropout layer to predict the
S-wave velocity by

FIGURE 3
(A) GCN-BiGRU structure. (B) GCN-GRU structure. (C) GCN structure.
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ŷz � fdrop σ Wfĥz + bf( )( ) (28)

whereWf and bf are the trainable parameters of the final FC layer.
Lastly, the training dataset is rearranged into sequences in the
supervised training process and matched with the labels. The
Huber loss function is implemented to minimize the difference
between the predicted S-wave velocity ŷz and the actual S-wave
velocity yz at depth z. The Huber loss is less sensitive to outliers and
noise by combining L1 and L2 norms (Yu et al., 2016) and is
defined by

L �
1
2

yz−ŷz( )2, yz−ŷz

∣∣∣∣ ∣∣∣∣≤ δ
δ yz−ŷz

∣∣∣∣ ∣∣∣∣ − 1
2
δ( ), yz−ŷz

∣∣∣∣ ∣∣∣∣> δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (29)

where δ � 0.1 is the threshold parameter for the L1/L2 norm. The
adaptive movement estimation algorithm (Adam) is used for
network optimization with a learning rate of 0.001 (Kingma and
Ba, 2015). The grid search strategy is applied to optimize the
network parameters selection and a 10-fold cross-validation
method to evaluate the accuracy and generalization ability of the
model while reducing randomness impact (Hampson et al., 2001).
Finally, the metrics to evaluate the difference between the actual
S-wave velocity and the predicted S-wave velocity are RMSE, MAE,
MAPE, and R2. RMSE measures the average weighted performance
of the model. MAE estimates the average error of the model for the
prediction. MAPEmeasures the percentage of the average difference
between the actual and the predicted value. The coefficient of
determination measures the performance of the model over a
regressor that outputs the mean value of the label that is used in
training. The error metrics are defined as follows,

RMSE �
���������������
1
N
∑N

z�1 yz − ŷz( )2√
(30)

MAE � 1
N
∑N

z�1 yz − ŷz

∣∣∣∣ ∣∣∣∣ (31)

MAPE � 1
N
∑N

z�1
yz − ŷz

∣∣∣∣ ∣∣∣∣
yz

∣∣∣∣ ∣∣∣∣ × 100 (32)

R2 � 1 − ∑N
z�1 yz − ŷz( )2∑N
z�1 yz − �y( )2 (33)

where �y is the mean of the actual S-wave velocity, and N is the
number of samples.

Field data example

The study comprises a selection of 30 wells from the North Sea
area (Bormann et al., 2020). The training dataset consists of 21 wells,
the validation dataset includes 5 wells, and the testing dataset
consists of 4 blind wells. Each well has 6 well-log curves:
Gamma-ray (GR), compressional wave transit-time (DTC), shear
wave transit-time (DTS), bulk density (RHOB), neutron porosity
(NPHI), and deep resistivity (RDEP). The original sampling interval
is 0.152 m, and the range of the training dataset is constrained for
stability purposes, as shown in Table 1. The GCN-BiGRU employs a
prediction window of 1 sample, a sequence length of 8 samples, and
8 hidden units for the dimension of the hidden state. The training

time is 20 min for 50 epochs and a batch size of 128 samples in an
Nvidia GeForce GTX 960M.

Additionally, the robustness of the proposed method is
evaluated by measuring the impact of the proportion of the
training dataset and the sensitivity to Gaussian noise. First, the
training dataset is divided into ten groups based on the number of
wells (i.e., 4, 7, 9, 10, 12, 15, 16, 17, 20, and 21), corresponding to a
ratio of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 of the training
dataset, respectively. Second, the noise resistance is analyzed by
adding Gaussian noise with mean zero and standard deviation of the
training dataset (i.e., σGR = 40.96 api, σDTC = 20.09 us/ft, σDTS =
79.20 us/ft, σRHOB = 0.17 g/cc, σNPHI = 0.10 dec, σRDEP = 21.07Ωm)
to each sample. Then, the performance is evaluated by examining
ten fraction levels of the defined noise (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and 1). Finally, the RMSE on the validation and testing
datasets is calculated for both analyses.

The effects of the GNN, LOF, and IF methods are shown in
Figure 4. GNN uses 13 samples as neighbors, LOF 50 nodes as
neighbors, and IF 100 estimators. Additionally, a contamination
value of 0.1 is employed for the three methods. The GNN handles
the spikes located on the RHOB log below the 2,200 m better than
the alternative outlier removal methods and other abrupt values on
the rest of the well-logs below the 2,400 m while preserving the
essential well-log information, as shown in Figure 4. In the
prediction performance, the GNN surpasses LOF and IF
methods, with lower RMSE error for the predicted DTS log, as
shown in Figure 5. The RMSE for the training, validation and testing
dataset with the GNN are 21.0482 us/ft, 22.7562 us/ft, and
23.5854 us/ft, respectively. Compared with the LOF and IF
methods, the main drawback of GNN is the higher
computation time.

The cross-plot between the DTS and the well-log curves is
shown in Figure 6. The color represents the distribution density
of the samples. The higher the density, the higher the color intensity.
And the line represents the minimum squares regression line. The
RHOB and NPHI show a good linear trend, the DTC behaves
linearly for low values, and the relationship changes for higher
values. The DEPT and RDEP trend is logarithmic, while the GR is
unclear due to the bimodal distribution between sand and shales.
The cross-plot shows that a linear correlation coefficient is
insufficient to capture the intrinsic relationships of the rock
properties and to build a meaningful graph structure. Therefore,
a non-linear correlation coefficient is more suitable for this task.

The relationship strength between the DTS log and the other
well logs curves with the six correlation coefficients is shown in

TABLE 1 Well-log data range for the training dataset.

Well-logs Data range

GR 0–200 api

DTC 50–200 us/ft

DTS 80–500 us/ft

RHOB 1.8–3.0 g/cc

NPHI 0–1 dec

RDEP 0–20 Ωm
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Figure 7. The hexagons range from 0 to 1, with an increment of 0.2.
The closer to the center, the lower the correlation; the closer to the
edges, the higher the correlation. On average, the DTC, NPHI, and
RHOB logs show a high correlation, consistent with the definition of
S-wave velocity. The DTC correlation is higher because it shares the
shear modulus and density parameters. The density is a very
sensitive parameter for rock velocity, and the porosity directly
impacts the rigidity of the rock and reduces its value. The DEPT
shows a moderate correlation due to the dependency on changes in
pressure and temperature that affect the rock properties. RDEP has

an average correlation linked to the lithology characteristics of the
layer. In contrast, the low correlation in GR is probably due to
averaging effect between sand and shale lithologies. These results
constitute the building block to constructing a graph with
meaningful physical rock relationships, proven by external
knowledge.

The evaluation of the prediction results for the six correlation
coefficients is shown in Figure 8. TIC accuracy is higher than other
approaches, with an RMSE value of 22.1603 us/ft, 23.3468 us/ft, and
24.2019 us/ft for the training, validation, and testing datasets,
respectively. TIC is more reliable for embedding the non-linear
physical correlation between the rock properties and the well-logs
into the graph edges. However, MI approaches have a
high computational cost for extensive datasets than other
correlation coefficients. The TIC matrix used as the
adjacency matrix to represent the edge features in the proposed
method is shown in Figure 9. The DTC and DTS are the only pair
that achieves a high correlation, with a value of 0.57, which is
consistent with the theoretical and empirical results for S-wave
velocity prediction.

The evaluation of the three feature engineering methods for the
DTS log prediction is shown in Figure 10. The gradient method adds
the first derivative as a component. The frequency bandmethod uses
three components. The low-frequency band (i.e., 20 Hz) isolates the
significant geological trend changes. The middle-frequency band
(i.e., 40 Hz) is related to third-order sequence events, while the high-

FIGURE 4
Comparison of the three methods for outlier removal at well W3.

FIGURE 5
RMSE of predicted DTS for the three outlier removal methods.
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frequency band (i.e., 200 Hz) focuses on the local changes inside the
geological formations. After experimentation with the training
dataset, the CEEMDAN method decomposes the data into
7 IMFs. This number preserves the uniformity size in all the

IMFs for the sequence aggregation step and reduces overfitting
by avoiding high-order IMFs without a reliable meaning. Results
show that the feature engineering method can improve the
prediction accuracy of the GCN-BiGRU network. The gradient

FIGURE 6
Cross plots between DTS and the well-logs. (A) DEPT. (B) GR. (C) DTC. (D) RHOB. (E) NPHI. (F). RDEP.

FIGURE 7
The correlation coefficients between DTS and the others well-
log curves.

FIGURE 8
RMSE of predicted DTS of the six correlation coefficients.
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shows the lowest performance because the contribution of its high
frequency is less significant for the prediction. Although the
computational time for the IMFs is longer than other methods,
the RMSE is lower, with 20.3805 us/ft, 23.1001 us/ft, and 23.3531 us/
ft, for the training, validation, and testing datasets, respectively.

The results for the DTS log prediction during the network
optimization are shown in Figure 11. The RMSE of the GCN-
BiGRU network is 19.6581 us/ft, 23.5363 us/ft, and 24.3045 us/ft for
the training, validation, and testing datasets, respectively, improving the
performance compared with the original GCN-GRU network (Zhao
et al., 2020), as shown in Figure 11A. The Mish activation function
shows superior regularization and overfitting reduction abilities than
other state-of-the-art activation functions, such as Leaky ReLU, GELU,
SELU, and Swish. The RMSE with the Mish activation function is
21.3972 us/ft, 23.1146 us/ft, and 23.6318 us/ft for the testing, validation,
and testing datasets, respectively, as shown in Figure 11B.

The prediction performance by the number of well-logs is shown in
Figure 11C. The node configurations are tested based on their
coefficient ranking. Thus, the GR log is excluded. The node
configurations are defined as follows: The 3 nodes include the DTC,
NPHI, and RHOB logs. The 4 nodes include the DTC, NPHI, RHOB,
and RDEP logs. The 5 nodes include the DTC, NPHI, RHOB, RDEP,
and DEPT logs. The 6 nodes include all logs. Although the RMSE error
decreases with 5 nodes for the training and validation datasets, the
overall performance of the GCN-BiGRU decreases for the testing
dataset. The RMSE for 6 nodes is 20.6117 us/ft, 22.8539 us/ft, and
22.9764 us/ft for the training, validation, and testing datasets,
respectively. The 6 nodes are used since the GCN extracts
meaningful embeddings based on the number of adjacent nodes for
aggregation. When the number of nodes is reduced, the GCN
embeddings are shallower, and the ability to map complex physical
relationships among the input data is also reduced. Then, the prediction
is compared with two attentionmechanisms. The hierarchical attention
shows a lower RMSE than soft attention, with a value of 19.7153 us/ft,
22.9858 us/ft, and 23.1156 us/ft, for the training, validation, and testing
datasets, respectively, as shown in Figure 11D. However, the attention
mechanism occasionally creates spike artifacts.

The impact of the proportion of the training dataset ratio is
shown in Figure 11E. The RMSE is higher for a ratio of 0.1, with a

value of 35.8539 us/ft for the validation dataset and 36.8711 us/ft for
the testing dataset. The RMSE reduces between a ratio of 0.2–0.5,
reaching a value of 32.4315 us/ft for the validation dataset and
32.7639 us/ft for the testing dataset at a ratio of 0.5. The RMSE shows
a stability plateau between a ratio of 0.7–1, achieving a value of
22.2465 us/ft for the validation dataset and 22.9672 us/ft for the
testing dataset at a ratio of 1.

The prediction performance in the presence of Gaussian noise is
shown in Figure 11F. The RMSE is high when the added noise is equal
to the standard deviation of the training dataset (i.e., a noise fraction of
1) with a value of 28.6670 us/ft for the validation dataset and 42.8739 us/
ft for the testing dataset. The RMSE gradually decreases until a noise
fraction of 0.5 with a value of 24.9382 us/ft for the validation dataset and
28.5342 us/ft for the testing dataset. The RMSE is stable when the noise
fraction is lower than 0.2, with a value of 22.9373 us/ft for the validation
dataset and 23.5910 us/ft for a noise fraction of 0.1.

Finally, the DTS log prediction results for all the models are
shown in Figure 12. The GCN-BiGRU shows lower error in the
training, validation, and testing dataset with an RMSE of 19.3260 us/
ft, 22.4905 us/ft, and 22.7120 us/ft, respectively. The evaluation for
the testing dataset is shown in Table 2. The GCN-BiGRU shows an
MAE of 17.2842 us/ft, MAPE of 6.7880%, and R2 of 0.9470. The
GCN-BiGRU performs better than other ML baseline models and
empirical equations without adding mineral components, fluid
properties, pore aspect ratio, or thermal maturity information.
Some discrepancies in the predicted DTS log and the actual DTS
log value are due to the presence of fluids, unbalanced lithologies
samples, or the inherent covariance shift problem.

The results for the testing well B9 are shown in Figure 13. The
predicted DTS log is consistent with the actual DTS log, as shown in
Figure 13A. The model performs satisfactorily when constant or
missing values are present, such as the depths 2,900 m, 3,100 m, and
3,400 m. The distribution of the predicted DTS and the true DTS are
consistent, as shown in Figure 13B. The range of the predicted DTS
for higher values is reduced due to the constraints established during
the training phase. The R2 coefficient between the true and predicted
DTS is 0.9593, as shown in Figure 163. The high coefficient indicates
that the proposed model can explain a significant variation in the
actual DTS log. Moreover, the homoscedasticity analysis shows that
the variance of the residuals is homogeneous, thus increasing the
robustness and feasibility of the method, as shown in Figure 13D.

FIGURE 9
TIC for the training dataset.

FIGURE 10
RMSE of predicted DTS for the three feature engineering
methods.
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Discussion

The proposedGCN-BiGRUmethod predicts the S-wave velocity by
extracting the spatial and depth relationships among well-log data. The
model combines GCN intoGRU to create a GCN-GRUnetwork, which
is implemented to predict the S-wave velocity in two directions, forming
the GCN-BiGRU network. The performance of themethod is evaluated
with a training dataset ratio test and a noise sensitivity test. The GCN-
BiGRU has a lower error than Castagna’s equation, LR, SVR, LSTM,
GRU, and BiGRU baseline methods using the well-logs from the North
Sea area. The approach is feasible and could be further extended for
reservoir properties prediction using inverted seismic data as input and
output maps and volumes of rock properties.

The GCN embeds the topological information, the intrinsic
relationships, and the measured physical properties of the
geological formations by an external-knowledge approach. The
Gconv aggregates nearby information from the nodes, resembling
a spectral Fourier filter. The number of nodes in the graph impacts
the quality of the embeddings. Fewer nodes create shallow
embeddings that reduce the representation ability.

Although 1-layer GCN is adopted due to the current graph
topology, the GCN can extract deeper patterns from the well-log
data with multiple GCN layers (Magner et al., 2022). Further
research could reframe the graph creation process and add more

FIGURE 12
RMSE of the predicted DTS for all the compared methods.

FIGURE 11
Proposed method optimization. (A). Network structure. (B) Activation Function, (C) Nodes number, (D) Attention mechanism, (E) Training ratio test,
(F) Noise sensitivity test.
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hierarchy nodes (i.e., nodes connected below the first-level nodes)
for a meaningful aggregation during the graph embeddings.

The GCN-GRU extracts patterns over previous data windows to
map the changes in rock properties with depth. The number of
hidden units inside the GCN-GRU impacts the ability to memorize
the most important information for the S-wave velocity prediction.
Moreover, the dimension of the hidden states balances the
generalization and overfitting of the GCN-GRU.

GNNs are a versatile approach to solving problems by the intrinsic
message-passing characteristic. As an unsupervised outlier removal
method, GNN shows promising results in handling anomalous values
based on the sample distance between neighbor samples. GNN adapts to
particular datasets by fine-tuning the number of nearest neighbor
samples, which is essential for the detection performance. GNN for
local outlier removal increases the accuracy of themodel at the expense of
a higher computational cost than IF and LOF.

The feature engineering process improves the prediction ability
of the GCN-BiGRU. The prediction error is reduced with the IMFs.
However, the network complexity and the training time increase
with a higher number of features. The frequency bands are an
alternative trade-off between accuracy and efficiency.

The construction of the graph is an essential step for the success
of graph embedding. The proposed approach constructs the
adjacency matrix from the correlation coefficients among well-log
data. This supervised external-knowledge approach links the
relationships between the measured rock properties and the wave
propagation parameters into the network. Linear coefficients have
limitations for capturing intrinsic rock dependencies and are more
sensitive to their variation with depth. Non-linear coefficients
extract suitable representations of the complex relationships
between rocks and measured physical properties and are more

TABLE 2 DTS prediction results for the testing dataset.

Model RMSE (us/ft) MAE (us/ft) MAPE (%) R2

Castagna 44.7420 32.8800 12.4500 0.9374

LR 26.0257 21.1107 10.4064 0.9315

SVR 24.9529 19.9018 8.9553 0.9403

LSTM 38.4902 32.6003 14.7848 0.9079

GRU 32.6786 26.6913 11.2101 0.9201

BiGRU 30.0930 24.8923 11.0732 0.9313

GCN-BiGRU 22.7120 17.2842 6.7880 0.9470

FIGURE 13
DTS prediction results on testing well B9. (A) DTS log curve, (B) True and predicted DTS distribution, (C) R2 analysis, (D) Homoscedasticity analysis.
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robust to well-log data variance, preserving the intrinsic
dependencies that govern depth.

Depth changes are affected by temperature, pressure, fluid, and
lithology, among other factors. Difficulties arise with a fixed adjacency
matrix in complex geological scenarios by approximating the global
properties variation with depth. Specifically, the GCN has limitations
for predicting local minima and maxima due to the smooth moving
average filter in the Fourier domain. Therefore, further research towards
a dynamic graph representation to recreate more realistic models and
map depth-dependent representations is encouraged.

The GCN-BiGRU uses point-wise activation functions as a non-
linear operator. Nevertheless, further research is required to adapt non-
linearities directly into the graph domain and increase the generalization
of the model. The contribution of conventional attention mechanisms
for the S-wave velocity prediction should be further explored. Graph
attention networks or graph transformers have the potential to improve
the ability of the network in abrupt lithology changes.

Conclusion

This study introduces a novelmethod for predicting S-wave velocity
with a GCN-BiGRU network. GCN captures the spatial dependencies
from the well-log data, while bidirectional GCN-GRU maps the
changes in the rock properties with depth in both upward and
backward directions. The well-log data are transformed into the
graph domain by integrating external knowledge into the model.
The well-logs are the graph nodes, well-logging data are the node
features, and their intrinsic non-linear relationships are the edges
features defined by TIC. Moreover, an unsupervised GNN is
implemented for outlier removal to increase the network
performance. And IMFs are aggregated to the node features,
improving the prediction accuracy. The proposed method performs
better than LR, SVR, LSTM, GRU, BiGRU methods, and Castagna’s
empirical equation. Finally, this method shows promising applications
for predicting reservoir properties using inverted seismic data.
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