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Objective temperature forecast products can achieve better forecast quality by
using one-dimensional regression correction directly based on the present model
temperature forecast product, and the forecast accuracy can be further improved
by adding appropriate auxiliary factors. In this paper, ECMWF forecast products
and ground observation data from Fujian are used to revise the surface
temperature at 2 m by introducing a cloud cover forecast factor based on the
model temperature forecast correction method. Analysis shows that the forecast
deviation of daily maximum and minimum temperature after the revision of a
single-factor forecast is obviously correlated with cloud cover. A variety of
prediction schemes are designed, and the final scheme is determined through
comparative testing. The following conclusions are drawn: all schemes based on
cloud cover grouping can improve forecast performance, and the total cloud
cover scheme is generally better than the low cloud cover scheme. There is a
good positive correlation between the forecast deviation of maximum
temperature and the mean total cloud cover; that is, the more cloud cover,
the bigger the deviation. The minimum temperature is negatively correlated with
cloud cover when the cloud cover is less than 40% and positively correlated for the
rest. The absolute forecast deviations of the maximum and minimum
temperatures are larger when the total cloud cover is less. Whether for Tmax or
Tmin forecast, the binary regression scheme after grouping consistently showed
the best performance, with the lowest MAE. The final schemewas used to forecast
the maximum and minimum temperature in 2021, and most verification
indicators showed improvement in most forecast periods. The forecast
accuracy for the 36-h daily maximum and minimum temperature is 81.312%
and 91.480%, respectively, which is 2.4%–2.6% higher than the single-factor
regression scheme. The forecast skill scores (FSS) reach 0.065 and 0.086,
indicating that the method can effectively improve forecast quality in a stable
manner and can be used for practical forecasting.
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1 Introduction

In recent years, with the advancement of numerical forecast
and the continuous improvement of statistical methods such as
model output statistics (MOS), perfect prognosis (PP), artificial
neural networks (ANN), Kalman filter (KF), and the support
vector machine (SVM) (Huang and Xie, 1993; Zhang and Sha,
2001; Wang et al., 2004; Chen et al., 2005; Wu et al., 2007; Qian
et al., 2010; Chen et al., 2011; Li et al., 2011), the accuracy of
temperature forecasts has been greatly improved, but it is still
unable to meet people’s growing demand for accurate and refined
temperature forecasts. Therefore, methods of improving the
accuracy of forecasts is an urgent issue. Temperature is
sensitive to local weather and geographical characteristics. The
MOS is the most commonly method used in daily temperature
forecasting. It can introduce many forecast factors that are difficult
to introduce by other methods, match local weather and climate
characteristics, and make appropriate corrections to the systematic
deviations of numerical models (Liu et al., 2004).

The MOS forecast method usually requires a certain length of
historical data samples to achieve better forecast results. The
samples should preferably have the same climate background
characteristics, and the consistency factors of the samples
should be as large as possible. Che et al. (2011) used the
K-mean clustering method to make seasonal divisions in North
China for temperature forecasts; the forecast error is generally
smaller than the traditional seasonal division. Zhi et al. (2010,
2014) compared the different training periods of super-ensemble
temperature forecasts and found that a sliding training period is
better than a fixed training period. Wu et al. (2016) further
optimized the division method of the training period. They
used the quasi-symmetric sliding training period method to
revise the model temperature forecast by selecting the sample
data 1 month before and after the forecast date and also considered
the model consistency and the sample’s climate characteristics,
which significantly improved the forecast quality. However,
methods that highlight the training period do not consider the
influencing factor of temperature. Many scholars in China have
introduced multiple factors. Liu et al. (2004) selected multiple
factors for MOS forecasts, and the forecast verification results
showed that the short-term temperature forecast was improved in
most cases. Zhang et al. (2011) used the MOS method to select
11 factors on the basis of T213 to forecast the daily maximum and
minimum temperatures of 124 stations in Yunnan Province, and
the forecast results were improved, especially in summer. Zhu and
Mu (2013) established a MOS forecast equation based on the WRF
model, using temperature, wind, sea level pressure, relative
humidity, and precipitation at Urumqi Airport as forecast
factors. The accuracy of the hourly temperature forecast was
significantly improved compared with the forecast results
directly output by the model. The introduction of multiple
factors to establish equations can improve temperature
prediction, but the factors should be selected to optimize the
role of the main factors.

The local variation of temperature depends on temperature
advection, pressure change, atmospheric stability, and diabatic
processes (Zhu et al., 2000). Liang and Huang (2006) pointed out
that in the absence of large-scale system transit, the diabatic

processes are the main factors that affect the temperature change
in the near-surface layer, while the diabatic processes are affected by
many factors, such as the sky condition, the topography, underlying
surface, and vegetation type. Therefore, it is necessary to fully
consider the role of cloud cover in temperature forecast. Qin
et al. (2007) analyzed the relationship between cloud cover and
temperature in Nanning City and found that total cloud cover has a
significant negative correlation with mean temperature and
maximum temperature, while low cloud cover has a significant
negative correlation with maximum temperature and a significant
positive correlation with minimum temperature. Zheng et al. (2013)
adopted the optimized cloud scheme in GRAPES, and the surface
temperature simulated by the model was closer to the observed
value. Luo et al. (2014) classified the sky conditions and established
the classic MOS forecast model. They selected the numerical forecast
product factors corresponding to the general occurrence time of
maximum and minimum temperature, which positively and
significantly improved the quality of local temperature forecast.
Forecasters also make adjustments to temperature forecasts by
evaluating the cloud cover in practice, but the specific adjustment
extent varies from person to person and cannot be uniformly
regulated.

Currently, most MOS temperature forecast methods directly
perform one-dimensional regression correction on the model
temperature forecast product, which can achieve good correction
effects. The forecast quality is not worse than that of multi-factor
modeling correction and has been widely used in many
meteorological departments. Different amounts of cloud cover
will cause differences in the deviation between the model
temperature forecast and the actual observation. Therefore, it is
meaningful to introduce cloud cover forecast as an auxiliary factor to
further optimize the MOS temperature forecast, but few people have
studied and applied it in practice. The Fujian Provincial
Meteorological Observatory divided temperature samples
according to different total cloud cover, established independent
models for each subset, and achieved good correction effects. It
ranked first in the comprehensive skill of temperature in the
2021 National Meteorological System Intelligent Forecast
Technology Method Exchange Competition. In this paper, the
optimal scheme of daily maximum and daily minimum
temperature forecasts based on cloud cover is selected by further
studying the cloud cover groupings and comparing several schemes.

2 Data and pre-processing

2.1 Data

In this paper, the maximum and minimum temperature at 2 m,
total cloud cover, and low cloud cover of ECMWF from 2018 to
2021 issued by the China Meteorological Administration were
adopted. The ECMWF data are obtained twice a day at 08:
00 and 20:00 (Beijing time, same below), and the forecast time
period is 0–240 h, the horizontal resolution is 0.125° × 0.125°, and
the time resolution is 3 h for 0–72 h and 6 h for 78–240 h. To ensure
calculation efficiency and reliability of the observation data, the
testing stations are 70 national meteorological stations in Fujian
Province.
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2.2 Data pre-processing

The inverse distance weighting interpolation method is used to
interpolate the ECMWF fine grid point surface elements to the station,
and the Cressman objective interpolation method is used as a reference
for the weighting coefficients. This is carried out for station-based
modeling and forecast. The interpolation method is as follows:

Pk �
∑m
i�1
∑n
j�1
WkijPij

∑m
i�1
∑n
j�1
Wkij

(1)

In Formula 1, Pk is the forecast value of the element at the kth
station obtained by interpolation, Pij is the forecast value of the
element at the grid point (i, j),Wkij is the weight factor, andm and n
are the numbers of grid points in the latitudinal and longitudinal
directions, respectively. The weighting factor used in this paper can
be expressed as follows:

Wkij �
R2 − d2

kij

R2 + d2
kij

, dkij <R

0, dkij ≥R

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2)

In Formula 2, R is the effective influence radius and dkij is the
distance from grid point (i, j) to station k. In operational work, for the
convenience of calculation, the difference between longitude and
latitude is used to represent the distance, and the effective influence
radius is taken as 1°.

The daily maximum temperature (Tmax) and the daily minimum
temperature (Tmin) are calculated as the maximum and minimum
temperatures over a 24-h period, respectively. Cloud cover (total cloud
cover or low cloud cover) is calculated as the 12-h mean cloud cover,
and the mean cloud cover at a given point is the mean of all available
cloud cover forecasts at that point within a given forecast time period.
Because the latest ECMWF data are usually obtained later than the
forecast start time, the forecast in this paper is the correction of the
model lag of 12 h; that is, the first day of operational forecast
corresponds to the 12–36-h period of the model forecast and so on
for the other forecast periods.

3 Methods

3.1 Correction method

The one-dimensional linear regression equations for Tmax and
Tmin at a certain forecast period for each station are established using
the least square method:

Si � a + bFi. (3)
In Formula 3, Si is regression correction temperature at the ith

forecast period, Fi is the temperature forecast value of the model at
this period, a is a constant, and b is the regression coefficient. Taking
cloud cover as the division basis, the forecast value and observation
value are used to establish a and b for each subset after division and
are updated twice a day, and the obtained regression equation is used
to correct Tmax and Tmin of the corresponding subset.

During the day, direct solar radiation can reach the earth’s
surface and warm it. If there is cloud cover, the cloud layer will
reflect some of the solar radiation, reducing the energy input to the
surface and hindering warming. At night, the heat released from the
surface dissipates upwards, causing the surface temperature to
decrease. If there is cloud cover, the cloud layer can reflect the
heat from the surface, thereby weakening heat dissipation and
hindering cooling. Therefore, the effect of cloud cover on surface
temperature is opposite during the day and night, and the reverse is
true under clear skies. Because cloud cover at night and during the
day has opposite effects on temperature, daytime cloud cover is used
as the auxiliary factor for the correction of Tmax, and nighttime cloud
cover is used as the auxiliary factor for correction of Tmin.

3.2 Training period

The quasi-symmetric mixed sliding training period method can
significantly improve the quality of a temperature forecast by the
MOS method and has great application value in operational work
(Wu et al., 2016). This paper continues to use this method, and the
total samples during the training periodmixed samples from 35 days
before the forecast date and samples from 35 days after the forecast
day of the previous year and used sliding sampling with the
forecast date.

3.3 Inspection method

To evaluate the operational performance of the MOS forecast,
the mean absolute error of temperature forecast (MAE, Zhou et al.,
2006), the temperature forecast accuracy (FA), and the temperature
forecast skill scores (FSS) were used in this paper:

FA � Nr

Nf
× 100%. (4)

In Formula 4, FA is the percentage of the absolute deviation
between the temperature forecast whose observed value does not
exceed 2°C, Nr is the number of stations (times) where the value of
the difference between the forecast temperature and the observed
value does not exceed 2°C, and Nf is the total number of stations
(times) that have been forecasted.

FSS � MAE0 −MAEN

MAE0
(5)

In Formula 5,MAEO is theMAE of the temperature forecast of
the initial scheme and MAEN is the MAE of the temperature
forecast for the improved scheme. When MAEO � 0, FSS = 1.01.

4 Scheme comparison and
improvement

4.1 Initial scheme design

Based on the observed temperature data from 2019 to 2020 and
temperature, total cloud cover, and low cloud cover forecast data from
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ECMWF, three schemes are designed and compared to discuss the
feasibility and the improvement direction of introducing cloud cover.

Scheme 1: No grouping, using the quasi-symmetric mixed
sliding training period method (one-dimensional regression) to
model and revise all temperature forecast samples (Wu et al., 2016).

Scheme 2: Grouping by total cloud cover, the temperature forecast
samples with total cloud cover less than the specified threshold value

are grouped for separate modeling correction, and the remaining
samples are grouped as another group. The exhaustive method is used
for the cloud cover threshold, starting from 0% total cloud cover as the
threshold, increasing to 100% at 5% intervals; 21 cloud cover values
were selected as grouping thresholds for correction.

Scheme 3: Grouping by low cloud cover, the temperature
forecast samples with cloud cover less than the specified

FIGURE 1
Comparison of the MAE of different total cloud cover threshold forecasts on the first day. (A) Tmax; (B) Tmin.

FIGURE 2
Comparison of the forecast results of the three schemes from 2019 to 2020. (A) FA of Tmax (unit: %), (B) FA of Tmin (unit: %), (C)MAE of Tmax (unit: °C),
and (D) MAE of Tmin (unit: °C).
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threshold are grouped for separate modeling correction, and the
remaining samples are grouped as another group. Groupings of the
cloud thresholds are the same as in Scheme 2.

According to the forecast results of Scheme 2 (Figure 1A), the
absolute forecast deviation of Tmax for the first day is less than that of no
grouping (the threshold of 0% cloud cover can be approximated to no
grouping). When about 30%–40% cloud cover is used as the grouping
threshold, the forecast result is better, theMAE is small, and theMAE of
the optimal threshold can be reduced by about 0.05°C. For the Tmin

forecast (Figure 1B), the MAE of grouping is also less than that of no
grouping. The improvement is obvious when grouping by the less and
more cloud cover threshold intervals, and grouping by the less cloud
cover threshold is slightly better than grouping by the more cloud cover
threshold. Because the potential for improvement of the Tmin forecast is
smaller than that of the Tmax forecast, there is not much difference
between the different thresholds. The performance of Scheme 3 is
similar to that of Scheme 2 and will not be presented separately.

The optimal threshold scheme of Tmax and Tmin among the
21 grouping methods of Scheme 2 and Scheme 3 was selected to
compare with Scheme 1 and the original uncorrected results. The
results are shown in Figure 2. Seen from FA, the forecast results of
Tmax and Tmin in all three revised schemes were significantly
improved compared with the original uncorrected ones, and the
improvement rate in the first 5 days was 100% or above. For Tmax,
the scheme grouping by total cloud cover performed better than the
other two schemes in all forecast periods in terms of FA and MAE
(Figures 2A, C). The FA of the scheme grouping by low cloud cover
improved compared with no grouping in the first 4 days, but it was
not better on the fifth day, while the MAE improved in all time
periods. For Tmin, the performance of Scheme 2 was also the best
compared with the other schemes in all forecast periods (Figures 2B,
D), followed by Scheme 3, and both schemes were better than
Scheme 1 in terms of FA and MAE. In general, the introduction of
cloud cover improved the forecast performance, and the
introduction of total cloud cover was better than low cloud cover.

4.2 Relationship between cloud cover and
temperature correction forecast deviation

In general, the least squares method is used to directly model and
correct based on the modeled temperature forecast products. The
ideal result of the mean deviation of the objective temperature
forecast is unbiased; however, there is a significant correlation
between forecast deviation of temperature and cloud cover.
Figure 3 shows the relationship between the mean forecast
deviation of Tmax and Tmin based on Scheme 1 and the total
cloud cover with a 12–36 h forecast period in 2019 and 2020 for
70 national meteorological stations. The relationship between low
cloud cover and temperature forecast is similar to the total cloud
cover, which is not given in the paper. It can be seen that for Tmax

(Figure 3A), the 2-year mean forecast deviation of temperature has a
good positive linear correlation with cloud cover; the correlation
coefficient is 0.85 in 2019 and 0.95 in 2020. The forecast value is often
less than the actual when the cloud cover is below 30%–40% and has a
large linear slope. The forecast tends to be greater than the actual
when the cloud cover is above 40% and has a smaller slope. For Tmin

(Figure 3B), a negative correlation exists below the threshold of 40%
cloud cover, with a steep linear slope; the correlation coefficients
were −0.96 in 2019 and −0.89 in 2020. Conversely, a positive
correlation with a smaller linear slope was found above the
threshold of 40% cloud cover; the correlation coefficients were
0.95 in 2019 and 0.96 in 2020. The common point of Tmax and
Tmin is that the absolute deviation will be larger when the cloud cover
is low. Although the influence of cloud cover has been considered in
the ECMWF temperature forecast, there is still a strong mean
correlation between the mean forecast deviation and cloud cover.
Meanwhile, schemes of grouping by cloud cover demonstrate an
improvement in forecast accuracy. Therefore, the multiple regression
scheme introduces a cloud cover factor based on cloud cover
grouping that can be used in professional work. In the following,
schemes will be designed and compared to select the best.

FIGURE 3
Relationship between the mean deviations of 12–36 h forecasts of temperature and the total cloud cover in 2019 and 2020. (A): Tmax and (B): Tmin.

Frontiers in Earth Science frontiersin.org05

Mei et al. 10.3389/feart.2023.1099344

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1099344


4.3 Improving scheme design

Based on the aforementioned discussion, improvement plans
were designed to maximize forecast performance by considering the
roles of total cloud cover, grouping methods, and binary regression
methods in the forecast.

Scheme 4: Binary regression, using the quasi-symmetric mixed
sliding training period method (Wu et al., 2016), taking temperature
and total cloud cover forecast as two forecast factors to establish the
forecast equation.

Scheme 5: After grouping by total cloud cover, correction is
performed using Scheme 4. From Figure 1A, it can be seen that the
optimal threshold for the high-temperature grouping is at 30%–40%
cloud cover, and Figure 3 shows that the 40% cloud cover is a special
turning point in both Tmax and Tmin forecasts. In practical applications,
less cloud cover is conducive to the increase of daytime Tmax and the
decrease of nighttime Tmin. Therefore, the 40% cloud cover is used as
the grouping threshold. After grouping, the cloud cover is introduced
for binary regression to establish the forecast equation.

Using the aforementioned two plans, a verification experiment was
conducted for Tmax and Tmin from 2019 to 2020, and the results were
compared with Scheme 2 whose grouping threshold is set at 40% cloud
cover (Figure 4). In terms of forecast verification results, for Tmax

(Figures 4A, C), the FA in Scheme 5 is generally larger than that in

Scheme 2. With increased forecast time, the improvement is more
obvious, but it is slightly less than that of Scheme 4 on the third to fifth
days, while Scheme 4 is slightly worse than Scheme 2 on the 1st day. In
terms ofMAE, Scheme 5 has a slight decrease, which is better than the
other two schemes. For Tmin (Figures 4B, D), the overall improvement
of Scheme 5 is more significant than that of Tmax, and all forecast
indicators at all forecast periods are improved compared with other
schemes. Scheme 3 is better than Scheme 4. In general, Scheme 5 is
superior to other schemes. For Tmax, there is a linear relationship
between the mean forecast deviation and cloud cover, with different
slopes between low cloud cover and high cloud cover. Each of the three
schemes has advantages, but the performance of the binary regression
scheme after grouping performs more stably in terms of MAE. For
Tmin, the mean forecast deviation has an opposite relationship between
less and more cloud cover. Therefore, the binary regression scheme
after grouping can better improve the forecast quality.

4.4 Availability and stability of improvement
schemes

Scheme 5 was used for temperature forecast in 2021 to test the
usability and stability of the method, and the verification results are
shown in Table 1. According to the results of the Tmax forecast, all

FIGURE 4
Comparison of the forecast results of the three schemes from 2019 to 2020. (A) FA of Tmax (unit: %), (B) FA of Tmin (unit: %), (C)MAE of Tmax (unit: °C),
and (D) MAE of Tmin (unit: °C).
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verification indicators in Scheme 5 show significant improvements
compared to Scheme 1, with an overall increase in FA of 1.2–2.6%.
The highest increase is 2.6% on the 1st day; after the improvement,
the mean accuracy rate reached 81%. The accuracy continued to
increase by about 2% in the fifth to sixth days. MAE decreased by
0.04–0.08°C on all forecast periods, except for slightly less on the
7th day. The first 3 days decreased by about 0.08°C, and the FSS can
reach 0.05–0.06. In terms of the Tmin forecast, all indicators of all
forecast periods also showed improvement, with an increase of
1.0%–2.4% in FA, and the highest increase was 2.36% on the first
day.MAE decreased by approximately 0.05°C–0.08°C. The FSS in the
first 3 days reached 0.06 to 0.08, and the FA on the first day reached
91.48%.

In recent years, the application of the quasi-symmetric sliding
training period MOS forecast method has greatly improved Tmax

and Tmin forecast results in Fujian Province. The method ranks
among the top in national forecast quality inspections; especially,
the FA of Tmin is basically more than 90%. Under the condition
that the forecast accuracy of the original model has not been
improved, there is some room for improvement of the forecast
results, but the forecast accuracy of Scheme 5 increased by about
2% compared with Scheme 2 in Tmax and Tmin forecast in 2021.
These findings show that this method can further improve the
forecast quality, and it has a certain stability. At present, it has
achieved good results in the operational application of actual
temperature forecasts in Fujian. Although Scheme 5 showed some
improvement in Tmax forecasts compared to Scheme 4, the
difference was not significant, and the best plan should be
selected based on local conditions and corresponding
evaluations in practical applications.

5 Conclusion

This paper designs a MOS forecast method that uses total cloud
cover as a predictor for the 2 m temperature forecast. Different

schemes are designed and optimized using multiple verification
indicators. The results show that:

1. All grouping schemes based on cloud cover show improvement
in forecast performance, and the introduction of total cloud cover
shows advantages over low cloud cover.

2. There is a good positive correlation between the annual mean
forecast deviation of the Tmax and the mean total cloud cover. For
Tmin, there is a negative correlation below 40% cloud cover and a
positive correlation above it. Both Tmax and Tmin forecasts have
larger absolute deviations when total cloud cover is less than 40%.

3. Whether for Tmax or Tmin forecast, the binary regression scheme
after grouping consistently showed the best performance, with
the lowest MAE.

4. Based on the optimization of the scheme in the last 2 years, the
improved scheme is used to forecast the Tmax and Tmin in 2021.
The verification indicators show certain improvements in
most forecast periods, with FA for Tmax and Tmin being
81.312% and 91.480%, respectively, which is an
improvement of 2.4%–2.6% relative to single-factor
regression plans. The FSS of 0.065 for Tmax and 0.086 for
Tmin indicate that this method effectively improves forecast
quality and stability, making it suitable for practical
forecasting. The introduction of total cloud cover to the
MOS forecast can significantly improve the forecast quality,
but the correction effect may be poor when the model’s cloud
cover forecast has large biases from observations. Further
research is needed to determine the reliability of cloud
cover forecasts from multiple models and ensemble
prediction products.
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TABLE 1 Test results of Tmax and Tmin forecasts at 1–7 d by Scheme 1 and Scheme 5 in 2021.

Statistics Scheme 1 d 2 d 3 d 4 d 5 d 6 d 7 d

Tmax FA (%) 1 78.706 74.178 69.951 67.544 64.179 60.138 55.477

5 81.312 76.127 72.159 69.034 66.317 62.065 56.718

Improvement 2.606 1.949 2.208 1.490 2.138 1.927 1.241

MAE (°C) 1 1.300 1.460 1.610 1.710 1.830 2.000 2.210

5 1.215 1.380 1.532 1.657 1.775 1.958 2.204

FSS 0.065 0.055 0.048 0.031 0.030 0.021 0.003

Tmin FA (%) 1 89.124 87.771 86.064 83.868 81.034 77.621 74.858

5 91.480 89.657 87.676 85.228 82.697 78.661 76.374

Improvement 2.356 1.886 1.612 1.360 1.663 1.040 1.516

MAE (°C) 1 0.970 1.030 1.090 1.150 1.240 1.350 1.440

5 0.887 0.950 1.023 1.099 1.171 1.296 1.378

FSS 0.086 0.078 0.061 0.044 0.056 0.040 0.043
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