
Slope stability prediction based on
adaptive CE factor quantum
behaved particle swarm
optimization-least-square support
vector machine

Jingsheng Yang*

College of Engineering and Technology, Southwest University, Chongqing, China

Since the prediction of slope stability is affected by the combination of geological
and engineering factors with uncertainties such as randomness, vagueness and
variability, the traditional qualitative and quantitative analysis cannot match the
recent requirements to judge them accurately. In this study, we expect that the
adaptive CE factor quantum behaved particle swarm optimization (ACE-QPSO) and
least-square support vector machine (LSSVM) can improve the prediction accuracy
of slope stability. To ensure the global search capability of the algorithm, we
introduced three classical benchmark functions to test the performance of ACE-
QPSO, quantum behaved particle swarm optimization (QPSO), and the adaptive
dynamic inertia weight particle swarm optimization (IPSO). The results show that the
ACE-QPSO algorithm has a better global search capability. In order to evaluate the
stability of the slope, we followed the actual project and research literature and
selected the unit weight, slope angle, height, internal cohesion, internal friction angle
and pore water pressure as the main indicators. To determine whether the algorithm
is scientifically and practically feasible for slope deformation prediction, the ACE-
QPSO-, QPSO-, IPSO-LSSVM and single least-square support vector machine
algorithms were trained and tested based on a real case of slope project with six
index factors as the input layer of the LSSVM model and the safety factor as the
output layer of the model. The results show that the ACE-QPSO-LSSVM algorithm
has a better model fit (R2=0.8030), minor prediction error (mean absolute
error=0.0825, mean square error=0.0110) and faster convergence (second
iteration), which support that the ACE-QPSO-LSSVM algorithm emthod is more
feasible and efficient in predicting slope stability.
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1 Introduction

In geotechnical engineering, slope stability analysis has been a significant research area. In
China, nearly 800 people died or missed every year caused by slope instability, resulting in
economic losses of more than 600 million dollars (Wang et al., 2022). Therefore, it is essential to
perform slope stability analysis to ensure the reliability of slopes and the safety of people in the
vicinity.

The study of slope stability was first initiated in Sweden in the 1920s, when engineer
Fellenius proposed the slice method, following which many researchers at home and abroad
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focused on the problem of slope stability (Gasmo et al., 2000; Samui
2008; Zhang et al., 2017; Wang et al., 2019). Slope stability analysis
methods can be divided into qualitative, quantitative, and non-
deterministic methodologies (Yan 2017). Methods of quantitative
analysis are mainly divided into geological history analysis
methods, engineering geological analogy methods, and graphic
methods (Gao 2014). The quantitative analysis method can be
classified into two types: the limit equilibrium method and the
numerical simulation method (Gao 2014), the non-deterministic
method is mainly divided into fuzzy mathematical method, gray
system theory method, artificial neural network method, genetic
method, probabilistic analysis method, etc., (Chakraborty and Dey
2022). Among these methods, quantitative analysis cannot calculate
the deformation of a rock mass, whereas deformation calculations can
be crucial in some cases, and the qualitative analysis method has the
problem of the dominance of human subjective factors, and people
with different experiences will reach different conclusions with the
same information.

Due to these limitations, traditional quantitative and
qualitative analysis methods are unsuitable for many situations
(Chakraborty and Dey 2022). Recent advances in science and
technology have led to the widespread adoption of artificial
intelligence technology in slope engineering because of its faster
performance and greater accuracy (Jiang et al., 2018; Huang et al.,
2019; Huang et al., 2020a; Chang et al., 2020; Chang et al., 2022).
Slope stability prediction methods based on artificial neural
network (ANN) (Sakellariou and Ferentinou 2005; Cho 2009)
and support vector machine (SVM) (Samui 2008; Tan et al.,
2011) have received extensive attention from researchers.
Although ANN has successfully been applied to slope stability

prediction research, it still suffers from certain disadvantages,
such as over-fitting, slow convergence, and poor generalization
performance (Gülcü 2022). Contrary to ANN, SVM in machine
learning can overcome the disadvantages and is well accepted in
several fields including geology (Huang et al., 2020b), geotechnical
engineering (Huang et al., 2022a), environmental science (Huang
et al., 2010), agronomy (Thanh Noi and Kappas 2017), bioscience,
etc., (Mourao-Miranda et al., 2005).

The least-square support vector machine (LSSVM), an
advanced version of the SVM, reduces the complexity of the
optimization process and can quickly solve linear and non-
linear multivariate calibration problems (Li and Tian 2016).
Thus, LSSVM has excellent application potential in slope
stability prediction research. In general, LSSVM has a high level
of accuracy and generalization based on the choice of its
regularization parameter (γ) and squared bandwidth (δ2)
(Samui and Kothari 2011). Nevertheless, the choice of
traditional LSSVM on γ and δ2 is not well suited for slope
stability prediction research (Samui and Kothari 2011; Zeng
et al., 2021).

To better select γ and δ2 for high level performance of LSSVM,
several heuristic algorithms (Yu 2012; Kamari et al., 2014; Li et al.,
2018; Suarez-Leon et al., 2018) such as genetic algorithm (GA) (Wu
2011b; Atashrouz et al., 2016; Wen et al., 2017), particle swarm
optimization (PSO) (Zhao and Yin 2009; Wu 2011a; Yu et al., 2016)
have been applied to the optimal selection of parameters for
LSSVM. These optimization algorithms are well-received by
researchers because of their versatility, such as fast and high
efficiency, effective escape from local optimal solutions, and
balancing local and global search (Wang et al., 2010;

FIGURE 1
The modeling flow chart of slope stability prediction based on ACE-QPSO-LSSVM: (A) Benchmark function performance test, (B) Algorithm parameters
and data selection, (C) Model prediction and analysis.

Frontiers in Earth Science frontiersin.org02

Yang 10.3389/feart.2023.1098872

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1098872


Viswanathan and Samui 2016; Gedik 2018). GA is a search
(optimality-seeking) algorithm with natural selection principles
and natural genetic mechanisms. The population-based heuristic
search technique known as PSO was created at the same time by
Kennedy and Eberhart in response to their studies of the social
interactions between flocks of fish and birds. PSO is easier to
implement than GA and performs better in multivariate
function optimization. Rapid convergence and the discovery of
almost ideal solutions (Juang 2004; Panda and Padhy 2008; Duan
et al., 2013; Li et al., 2015; Wu et al., 2015). Since 1995, many
researchers have tried different performance optimizations for PSO
(Fan 2002; Wang et al., 2017). In 2004, Sun et al. introduced the
quantum theory to PSO, called Quantum-behaved particle swarm
optimization (QPSO) (Xu 2004). Theoretically, the global search
algorithm QPSO can ensure good optimal results in the search
space. As opposed to PSO, the iterative equations of QPSO do not
require the velocity vector of the particles. It requires fewer
parameters to be adjusted, which can be implemented more
easily. In addition, researchers have confirmed that QPSO has
excellent properties such as better global search capability and
faster computational speed compared to the standard PSO
algorithm on some widely used benchmark functions (Jun et al.,
2004; Xu 2004), and has good potential for the evaluation of slope
stability.

In summary, to compensate for the shortcomings of the slow
solution speed of SVM and the limited search space of PSO, which is
easy to fall into local optimal solutions. In this paper, an improved
QPSO-LSSVM algorithm is proposed by optimizing the LSSVM
parameters with adaptive CE factor quantum-behaved particle
swarm (ACE-QPSO) and applied to the stability prediction study
of slopes, subsequently analyzing sample data and case predictions to
determine whether the algorithm is scientifically and practically
feasible for slope deformation prediction.

2 Methods

The rest of this paper is structured as follows: Section 2 introduces
the algorithmic principles of SVM, single LSSVM, and PSO, QPSO.
Section 3 presents the improved QPSO-LSSVM algorithm applied to
slope stability prediction. Section 4 tests the performance of the ACE-
QPSO, QPSO, and IPSO algorithms through three classic benchmark
functions. Section 5 compares the improved QPSO-LSSVM algorithm,
QPSO-LSSVM algorithm, PSO-LSSVM, and single LSSVM
algorithms for prediction and analysis based on training and
testing samples for slope stability prediction. At the end of this
paper, Section 6 presents the research conclusions. The modeling
flow chart of slope stability prediction based on ACE-QPSO-LSSVM is
shown in Figure 1.

2.1 LSSVM algorithm

In 1995, Vapnik proposed the support vector machine (SVM)
(Sain 1996), a supervised machine learning method for classification
and regression. In recent years, SVM has received much attention due
to its good classification performance and fault tolerance (Xuegong
2000; Huang et al., 2022b). Given a set of training samples
(xi, yi)|xi ∈ Rn, i � 1, 2 . . . l{ }, where xi is a D-dimensional input
vector and yi is an output indicator. The regression function can
describe the non-linear relationship between the inputs and outputs:

f x( ) � ωTφ x( ) + b (1)
where f(x) represents the predicted value, φ is the high-dimensional
feature map, ω is the weight vector, and b stands for the bias term.
Considering that there is a fitting error, we can introduce slack
variables ξi ≥ 0 and ξ*i ≥ 0. Therefore, we derive the following error
minimization expression:

FIGURE 2
Flow chart of ACE-QPSO optimized LSSVM algorithm.
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MinJ ω, ξ, ξ*( ) � 1
2

ω · ωT( ) + c∑l
i�1

ξi + ξ*i( ) (2)

yi − ω · φ xi( ) − b≤ ε + ξ i
ω · φ xi( ) + b − yi ≤ ε + ξ
ξi, ξ

*
i ≥ 0

⎧⎪⎨⎪⎩ (3)

In Eq. 2, c is the penalty function. Then the constraint is expressed
as follows. For Eq. 3, Suykens et al. proposed a least-square support
vector machine (LSSVM) (Suykens and Vandewalle, 1999) based on
regularization theory, which transforms the above equation into:

MinJ ω, e( ) � 1
2
ωTω + 1

2
c∑l
i�1
e2i (4)

The above equation is constrained by
yi � ωTφ(xi) + b + ei, i � 1, 2, . . . ,N, where ei ≥ 0 is a non-negative
relaxation variable. Furthermore, the optimization problem is solved
using the Lagrange method, which corresponds to the Lagrange
function as the Eq. 5 where αi is a Lagrange multiplier. Then taking
partial derivatives of the Eq. 5 and by eliminating ω and ei (Espinoza
et al., 2006) yields the following linear system as the Eq. 6 in which
K(x, xi) � φ(x)φ(xi)T is the kernel function and satisfies Mercer’s
condition. The mentioned regression function obtains as the Eq. 7 in
which αi and b express the solution of the linear system shown in Eq. 5.

L ω, b, e, α( ) � 1
2
ωTω + 1

2
c∑l
i�1
e2i −∑l

i�1
αi ω

Tφ xi( ) + b + ei − yi[ ] (5)

0 1 . . . 1

1 K x, xi( ) + 1
c
. . . K x, xi( )

..

. ..
.

/ ..
.

1 K x, xi( ) / K x, xi( ) + 1
c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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α1
..
.

αl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
0
y1

..

.

yl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

y x( ) �∑l
i�1
αiK x, xi( ) + b (7)

The main kernel functions used for LSSVM are the following
options: linear kernel function, polynomial kernel function, radial
basis function (RBF), and Sigmoid kernel function. Kang et al. (Kang
et al., 2016) have shown that by using different kernel functions in
LSSVM for slope stability analysis studies, RBF significantly
outperforms other kernel functions. Therefore, in this study, the
RBF kernel function is used and expressed as the Eq. 8 where σ is
the width of the RBF that influences how the RBF’s inputs are scaled.

K x, xi( ) � exp − x − xi‖ ‖2
2σ2

( ) (8)

2.2 QPSO algorithm

2.2.1 Adaptive dynamic inertia weight particle swarm
optimization (IPSO)

The PSO algorithm is a population-based heuristic search
technique developed by James Kennedy and Russell Eberhart in
1995 by observing and studying the social behavior of flocks of
birds and fish. Particles’ position and velocity are updated by Eqs
9, 10 in each step:

Xk+1
i � Xk

i + Vk+1
i (9)

Vk+1
i � ωVk

i + c1r1 pk
best,i −Xk

i( ) + c2r2 gk
best −Xk

i( ) (10)

In the above equation,Xk
i denotes the N-dimensional vector of the

particle (i) at iteration (k), Vi denotes the velocity of the particle, ω
denotes the inertia weight factor, c1, c2 denotes the learning factor, and
r1, r2 denotes random functions in the range [0,1].

TABLE 1 Three benchmark functions.

Name Test function Domain Optimum point

Sphere
f1(x) �∑D

i�1
x2i

[−100, 100] 0

Ackley

f2 x( ) � −20 exp −0.2
�������
1
30
∑30
i�1
x2i

√√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
−exp 1

30
∑30
i�1
cos 2πxi⎛⎝ ⎞⎠ + 20 + c

[−32, 32] 0

Griewank
f3(x) �∑D

i�1
x2i
4000 −∏D

i�1
cos( xi�

i
√ ) + 1

[−600, 600] 0

TABLE 2 Comparison of the results of each algorithm.

Benchmark function ACE-QPSO QPSO IPSO

Mean St Dev Mean St Dev Mean St Dev

Sphere 9.2565e-08 1.1543e-07 4.8286e-06 9.6155e-06 0.00025573 0.00037107

Ackley 0.00172993 0.00158714 0.01192663 0.01417388 0.03859555 0.02878169

Griewank 0.00036741 0.00043152 0.00926889 0.0124248 0.01922401 0.02133680
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The inertia weight ω represents the effect of the velocity of the
previous generation of particles on the velocity of the contemporary
particles, or the degree of confidence the particles have in the current
state of their own motion, and the particles move inertially based on
their own velocity. Thus, PSO performance is governed by inertia
weight ω, which balances the population’s global and local

development capabilities. Generally, in large problem spaces, to
achieve a balance between search speed and search accuracy,
algorithms are designed to have a high global search capability at
an early stage to obtain a suitable seed, and a high local search
capability at a later stage to improve convergence. Therefore, ω

should not be a fixed constant (Ab Wahab et al., 2015). At present,
the linear reduction is the most commonly used method for
controlling ω, but this method does not maintain a balance
between global and local search (Bergh, F.V. and Engelbrecht 2004;
Deng et al., 2017). In conjunction with the prediction object, therefore,
we propose an adaptive dynamic change of inertia weights to adjust
the value of ω to improve the performance further, as shown in Eq. 11,
which is the adaptive dynamic inertia weight particle swarm
optimization (IPSO).

ω � ω max + ω max − ω min( ) sin π + π ×
t

2T
( ) (11)

where ωmax � 0.9;ωmin � 0.4; t is the current iteration number; and T
is the maximum iteration number.

2.2.2 Adaptive CE factor quantum-behaved particle
swarm (ACE-QPSO)

As mentioned in introduction, two disadvantages of the PSO
algorithm are its inability to guarantee the global optimal solution,
and its poor local search capability, which results in poor search
accuracy (Xinchao 2010). To solve this problem, Sun et al. developed
and proposed the QPSO algorithm (Jun Sun 2004; Xu 2004), inspired
by PSO and quantum mechanical trajectory analysis. Their iterative
equation for particle movement is defined as follows:

xi,j t + 1( ) � pi,j t( ) + α · mbestj t( ) − xi,j t( )∣∣∣∣ ∣∣∣∣ · ln 1
u
( ) if k≥ 0.5

(12)
xi,j t + 1( ) � pi,j t( ) − α · mbestj t( ) − xi,j t( )∣∣∣∣ ∣∣∣∣ · ln 1

u
( ) if k< 0.5

(13)
where,

pi,j t( ) � φi,j t( ) · pbesti,j t( ) + 1 − φi,j t( )( ) · gbestj t( ) (14)

mbestj t( ) � 1
nPop

∑nPop
i�1

pbesti,j t( ) (15)

From Eqs 12–15, mbest is the average best position, one can
obtain this by calculating the average of all the best positions
(pbest) in the population; k, u,φ is the random functions uniformly
distributed in the range [0,1]; and α parameter is the contraction-
expansion coefficient (i.e., CE coefficient), which is the only
parameter in the QPSO algorithm that can be adjusted to
control the convergence rate of the algorithm. Usually, there are
two main methods of controlling α, one is to fix the value of α
during the search period. In the previous research, it was noted that
setting numbers in the range (0.5, 0.8) produces satisfactory results
for most benchmark functions, and QPSO generally performs well
when α =0.75 (Sun et al., 2011). However, the fixed value α is
dependent on the population size and the number of iterations
allowed. The other is to change the value of α by using a time-
varying function expression. Research on QPSO has shown that
non-linearly decreasing the value of α from α1 to α0 (α0 < α1) during
the search process allows the QPSO algorithm to perform

FIGURE 3
The convergence curves of each algorithm on the three
benchmark functions of (A)–(C), respectively: (A) Sphere function; (B)
Ackley function; (C) Griewank function.
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efficiently (He and Lu 2021; Lu and He 2021). In this paper, we
combine the prediction objects and propose a method to adaptively
change the CE coefficient (i.e., α) to further improve the
performance. A new equation is presented by the Eq. 16, which
is the adaptive CE factor quantum-behaved particle swarm.

α � α max − α max − α min( )f x( ) − fw

fb − fw
(16)

where αmax, αmin refer to maximum and minimum values of α,
respectively; f(x) is the current fitness of the particle; fw is the
fitness of the worst particle in the population; and fb represents the
best fitness in the population.

2.3 ACE-QPSO-LSSVM algorithm

The parameter regularization parameter (γ) and squared
bandwidth (δ2) optimization problem of LSSVM is usually
converted into a parameter estimation problem for multiple linear
regression functions (Xue 2017). Moreover, QPSO, as a global
optimization algorithm, can quickly optimize these two
parameters and iteratively change the values of γ and δ2 to
improve the prediction accuracy of LSSVM. Therefore, this paper
proposes an ACE-QPSO-LSSVM algorithm to predict slope stability

and uses performance metrics to evaluate its performance. And the
performance metrics considered are defined as follows (Kang et al.,
2016; Chen 2019).

R2 � 1 −
∑
i
ŷi − yi( )2∑

i
�yi − yi( )2 (17)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (18)

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (19)

Where yi denotes the measured value, ŷi indicates the predicted value,
�yi denotes the mean value, and n is the number of samples used for
training. Apparently, as the coefficient of determination (R2) grows,
the mean absolute error (MAE) and mean square error (MSE) values
decrease, the algorithm prediction accuracy increases, and vice versa.

Then the main steps in this paper to implement the ACE-QPSO
optimized LSSVM algorithm based on Python are as follows.

Step1: Divide the prediction dataset into training and testing samples
and normalize it. The standardized formula is presented by the follows:

Xnorm � X −X min

X max −X min
(20)

FIGURE 4
Optimization search results for each function: (A) IPSO&Ackley, (B) IPSO&Griewank, (C) IPSO&Sphere, (D) QPSO&Ackley, (E) QPSO&Griewank,
(F) QPSO&Sphere, (G)ACE-QPSO&Ackley, (H) ACE-QPSO&Griewank, (I) ACE-QPSO&Sphere.
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in Eq. 20, Xmin, Xmax are the minimum and maximum values in the
dataset, respectively; Xnorm is the value after the normalization
process; X is the original sample values.

Step2: Initialize the parameters of the QPSO algorithm, including the
particle swarm size S, particle dimension D, the maximum number of
iterations Tmax, the CE control coefficient α, and the range of the
parameters.

Step3: Calculate the fitness of each particle by Eq. 19.

Step4:Use Eq. 14 to calculate pi,j(t) and Eq. 15 to calculate the mean
personal best position of the population mbest.

Step5: Compare each particle’s fitness and corresponding parameters
with their best known position pbest. If the current particle’s fitness
and related parameters are better than pbest, update pbest and fix the
particle position parameter values between the minimum and
maximum positions. On the contrary, not update pbest.

Step6: Compare pbest with the entire swarm’s best known position
gbest. If pbest is smaller than gbest, update gbest fitness as well as
particle swarm. On the contrary, not update gbest.

Step7: Repeat Step3 to Step6 until the iteration termination condition
is met. Output the parameters γ and δ at this point, and use the
parameters to train and predict the least squares support vector
machine LSSVM regression model.

The flow chart of the ACE-QPSO optimized LSSVM algorithm for
slope stability prediction analysis is shown in Figure 2.

2.4 Performance measurement

To better compare the performance of the ACE-QPSO-LSSVM
algorithm with the QPSO-LSSVM, IPSO-LSSVM algorithm, and as a
preparation for the case study below. In this paper, each algorithm’s
global optimal search ability is tested by the benchmark function.
Then, ACE-QPSO, QPSO and IPSO will be tested for their respective

TABLE 3 Sample dataset.

Number w (KN/m3) c (KPa) Φ (°) A (°) H (m) μ (KPa) FS

Training samples

1 22.40 10.00 35.00 45.00 10.00 0.40 0.90

2 20.00 20.00 36.00 45.00 50.00 0.50 0.83

3 20.00 0.10 36.00 45.00 50.00 0.25 0.79

4 22.00 0.00 40.00 33.00 8.00 0.35 1.45

5 24.00 0.00 40.00 33.00 8.00 0.30 1.58

6 20.00 0.00 24.50 20.00 8.00 0.35 1.37

7 18.00 0.00 30.00 20.00 8.00 0.30 2.05

8 27.00 40.00 35.00 43.00 420.00 0.25 1.15

9 27.00 50.00 40.00 42.00 407.00 0.25 1.44

10 27.00 35.00 35.00 42.00 359.00 0.25 1.27

11 27.00 37.50 35.00 37.80 320.00 0.25 1.24

12 27.00 32.00 33.00 42.60 301.00 0.25 1.16

13 27.00 32.00 33.00 42.20 289.00 0.25 1.30

14 27.30 31.50 29.70 41.00 135.00 0.25 1.24

15 27.30 16.80 28.00 50.00 90.00 0.25 1.25

16 27.30 26.00 1.00 50.00 92.00 0.25 1.24

17 27.30 10.00 39.00 41.00 511.00 0.25 1.47

18 25.00 46.00 35.00 47.00 443.00 0.25 1.28

19 25.00 46.00 35.00 44.00 435.00 0.25 1.37

20 26.00 150.00 45.00 30.00 200.00 0.25 1.20

21 18.50 25.00 0.00 30.00 6.00 0.25 1.09

22 18.50 10.00 0.00 30.00 6.00 0.25 0.78

23 22.40 10.00 35.00 30.00 10.00 0.25 2.00

24 21.40 10.00 30.30 30.00 20.00 0.25 1.70

25 12.00 0.00 30.00 35.00 4.00 0.25 1.46

26 12.00 0.00 30.00 45.00 8.00 0.25 0.80

27 12.00 0.00 30.00 35.00 4.00 0.25 1.44

28 20.00 20.00 36.00 45.00 50.00 0.25 0.96

Test samples

1 27.30 14.00 31.00 41.00 110.00 0.25 1.24

2 27.30 10.00 39.00 40.00 470.00 0.25 1.43

3 20.00 0.10 36.00 45.00 50.00 0.50 0.67

4 22.00 20.00 36.00 45.00 50.00 0.25 0.89

5 31.30 68.00 37.00 49.00 200.00 0.25 1.20

6 22.00 10.00 36.00 45.00 50.00 0.25 1.02

7 25.00 46.00 35.00 46.00 432.00 0.25 1.23
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optimization efficiency by three classical benchmark functions
(Table 1), respectively.

To avoid the contingency of algorithm search, each algorithm
was set to run 50 times for each test function with 200 iterations
each. The final mean best fit values (Mean) and standard
deviation (St Dev) were obtained as shown in Table 2, while
the convergence curves and function result plots of their best fit
values are shown in Figures 3, 4. Combined with Table 2, it can be
seen that the mean best fitness value and standard deviation of
ACE-QPSO are better than QPSO and IPSO, with the best
convergence accuracy under the tests of three different

benchmark functions. Meanwhile, it can be seen from Figure 3
that, overall, ACE-QPSO has faster convergence and higher
optimization efficiency compared with QPSO and IPSO, and
can obtain the best fitness value in a relatively short period.
This indicates that ACE-QPSO has better performance in finding
the optimal.

In Figures 4A–I represents the function images and the best-
seeking results of IPSO, QPSO, and ACE-QPSO on the three
benchmark functions of Ackley, Griewank, and Sphere, in turn.
As can be seen in Figure 4, all the above algorithms are detected as
globally converged, but the optimal positions in (a)–(c) are (0.008,

TABLE 4 Comparison between target and estimated values from each algorithm for the training samples.

Number Sample value FS (Training value)

ACE-QPSO-LSSVM QPSO-LSSVM IPSO-LSSVM Single LSSVM

1 1.70 1.7261 1.7189 1.7568 1.7347

2 2.00 1.9305 1.8320 1.7935 1.7701

3 1.44 1.4385 1.4223 1.3933 1.3829

4 1.24 1.2408 1.2226 1.2382 1.2257

5 1.09 1.0615 0.9934 1.0150 1.0086

6 1.45 1.4379 1.4250 1.4190 1.4232

7 0.79 0.8210 0.9372 0.9110 0.9571

8 1.20 1.2036 1.2133 1.2083 1.2059

9 0.78 0.8337 0.9149 0.9489 0.9769

10 1.27 1.2350 1.2801 1.2683 1.2784

11 0.80 0.8350 0.8190 0.9301 0.9357

12 1.37 1.3379 1.2761 1.3030 1.2911

13 1.46 1.4385 1.4223 1.3933 1.3829

14 1.28 1.2853 1.2670 1.2926 1.2838

15 1.47 1.4498 1.4133 1.3916 1.3729

16 1.37 1.3817 1.4659 1.4484 1.4941

17 1.30 1.2357 1.2421 1.2293 1.2451

18 2.05 1.9922 1.9702 1.8428 1.8293

19 0.96 0.9612 0.9969 0.9716 0.9890

20 0.83 0.8582 0.8464 0.9177 0.9115

21 1.25 1.2482 1.1425 1.2168 1.1684

22 0.90 0.9237 0.8810 0.9691 0.9513

23 1.24 1.2440 1.2737 1.2466 1.2542

24 1.58 1.5786 1.6086 1.5738 1.5724

25 1.24 1.2540 1.3386 1.2723 1.3039

26 1.44 1.4087 1.3485 1.3382 1.3208

27 1.15 1.2213 1.2997 1.2905 1.2959

28 1.16 1.2274 1.2383 1.2299 1.2443

MSE 0.0345 0.1743 0.2339 0.3025
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0.444), (−0.005, −0.006), (−0.0002, −0.0003), respectively; in (d)–(f)
are (0.625, −0.007), (0.002 (0.001), (0.0004, 0.0006); and in the best
positions of (g)–(i) (−0.512, −0.508), (−0.0005, 7.7 × 10−5), (1.2 ×
10−5, 1.8 × 10−5), respectively. The comparison shows that the
optimal solution coordinates obtained by ACE-QPSO under each
benchmark function are closest to the global optimal solution
coordinates, which indicates that ACE-QPSO has better global
search capability.

3 Materials

3.1 Analysis and selection of factors
influencing the stability of slopes

In practical projects, researchers classify slope stability into two
categories: destructive slopes and stable slopes (Tien Bui et al., 2016;

Zhang et al., 2021; Jiang et al., 2022). There are many factors that
affect slope stability, including geomorphic conditions, stratigraphic
lithology, geological structure, rock structure, and groundwater
action, among others. Therefore, the selection of influencing
factors is an essential prerequisite for evaluating the stability of
slopes correctly. Among them, unit weight (w), slope angle (α), and
height (H) are the main influencing factors of slope geometry, and
slope stability decreases with increasing height, increasing slope
angle, and decreasing weight (Zhou et al., 2019; Chen et al.,
2021). In addition, it is known from the research of previous
researchers (Cha and Kim 2011) that internal cohesion (c),
internal friction angle (φ), and pore water pressure (μ) are also
important factors affecting slope stability. Therefore, in this paper,
the six factors of unit weight (w), slope angle (α), height (H), internal
cohesion (c), internal friction angle (φ), and pore water pressure (μ)
are selected as the leading indicators to evaluate the stability state of
slopes.

3.2 Case data

In this study, 35 sets of slope stability data were collected from the
data given by Keqiang He et al. (Keqiang He 2001), and the data set
was randomly divided into 28 training samples and 7 testing samples
(Table 3). As shown in Table 3, the input layer of the model includes
six index parameters, namely unit weight(w), slope angle(α),
height(H), internal cohesion (c), internal friction angle(φ), and
pore water pressure(μ); the output layer is the safety factor,
denoted by FS.

4 Results

4.1 Parameter setting

This paper uses four algorithms, ACE-QPSO-LSSVM, QPSO-
LSSVM, IPSO-LSSVM, and single LSSVM to train and predict
the Section 3.2’s sample dataset. To better compare the
prediction performance of each algorithm, for the first three
algorithms, the number of particle swarms and algorithm
iterations are 100 and 50, respectively. And the range of γ, δ
parameters is [0.001,100]. While single LSSVM traverses the
debugging γ, δ parameters through grid search, where δ ranges
in [1,100] in 10 stepping cycles and γ takes values from {0.001,
0.01, 0.1, 1, 5, 10} in sequential traversal cycles. Meanwhile, we
use adaptive inertia weight (Eq. 11) for IPSO and make the
learning factor c1=c2=2, while adaptive CE coefficient (Eq. 16)
is used for ACE-QPSO.

4.2 Analysis of training performance results

The performance of each algorithm in training the samples is
shown in Table 4 and Figure 5. Table 4 reflects the performance of
the algorithm to train samples by listing the prediction values and
MSE values obtained from the training samples of each algorithm.
From Table 4, it is seen that ACE-QPSO-LSSVM performs the best
in the training samples, and its MSE is the smallest among the four
algorithms, only 0.0345, which is 80.21%, 85.25%, and 88.60%

FIGURE 5
Comparison of the training results of each algorithm.

FIGURE 6
Fitness curve of each algorithm.
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lower than QPSO-LSSVM, IPSO-LSSVM, and single LSSVM,
respectively. Figure 5 then directly shows the comparison
between the sample and predicted values after training the
training set for each algorithm. From Figure 5, it is seen that,
overall, the predicted values of ACE-QPSO-LSSVM are closer to
the sample values and basically match the predicted trend, and its
prediction effect is the most outstanding among the four
algorithms, with a more stable and accurate prediction
performance.

4.3 Analysis of convergence rate

The fitness curves of ACE-QPSO-LSSVM, QPSO-LSSVM, and
IPSO-LSSVM throughout 50 iterations are shown in
Figure 6.Combined with Figure 6, it is seen that all three
algorithms can complete convergence by 50 iterations. However,
compared with QPSO-LSSVM and IPSO-LSSVM, ACE-QPSO-
LSSVM has the best convergence and a relatively higher speed, and

it achieves convergence at the second iteration with the best fitness
value of 0.0110. Thus, the ACE-QPSO-LSSVM algorithm with better
convergence has tremendous potential and advantages for slope
stability prediction research.

4.4 Analysis of prediction accuracy andmodel
goodness of fit

The performance of each algorithm in the testing sample is shown
in Table 5 and Figure 7. Then Table 5 reflects the ability of each
algorithm to test samples by listing the prediction values and MSE
values obtained after testing the samples. Combined with Table 5, it is
evident that ACE-QPSO-LSSVM performs the best in the testing
samples, and its MSE value is significantly lower than the other three
algorithms at 0.0311, which is 69.84%, 71.98%, and 77.34% lower
relative to QPSO-LSSVM, IPSO-LSSVM, and single LSSVM,
respectively. Figure 7 directly shows the comparison between the
sample values and the predicted values after the prediction of each
algorithm for the testing set. From Figure 7, it is seen that the
deviations between the predicted and sample values of the ACE-
QPSO-LSSVM algorithm are minor, and its predicted values are the
closest to the actual situation among the four algorithms, with the best
prediction performance.

To avoid the chance of algorithm training and to ensure the
scientific comparison of its performance, we independently repeated
50 times for each algorithm, and used the mean value to calculate the
prediction results. Table 6 below shows the final estimated parameters
obtained by each algorithm, and Table 7 compares the prediction
performance of each algorithm under the three performance metrics
of R2, MAE, and MSE. Combined with Table 7, by comparing the
performance metrics results of each algorithm, we found that the
ACE-QPSO-LSSVM algorithm has a better fitting effect, and its R2

value is significantly higher than the other three algorithms, which is
0.8030. In addition, the MAE and MSE values of ACE-QPSO-LSSVM
are 0.0825 and 0.0110, respectively, which are smaller than the other
three algorithms. It fully indicates that ACE-QPSO-LSSVM has a
minor deviation between the predicted and actual values, with more
accurate prediction performance.

In summary, the ACE-QPSO-LSSVM algorithm outperforms
QPSO-LSSVM, IPSO-LSSVM, and single LSSVM in slope stability

FIGURE 7
Comparison of the training results of each algorithm.

TABLE 5 Comparison between target and estimated values from each algorithm for the testing samples.

Number Sample value FS (Testing value)

ACE-QPSO-LSSVM QPSO-LSSVM IPSO-LSSVM Single LSSVM

1 1.24 1.2569 1.2589 1.2524 1.2626

2 1.43 1.4279 1.4337 1.4397 1.3649

3 0.67 0.7225 0.9319 0.9439 0.9889

4 0.89 1.0392 1.0335 1.0287 1.0477

5 1.20 1.2401 1.2624 1.2660 1.2463

6 1.02 0.9716 0.9567 0.9437 1.0097

7 1.23 1.2732 1.3059 1.3098 1.2920

MSE 0.0311 0.1032 0.1111 0.1374
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prediction with its better fit merit, more minor prediction error, and
relatively higher speed, thus having good potential for application. For
future work, the ACE-QPSO-LSSVM algorithm can be further
explored and developed in terms of changing the form of the CE
coefficient in the iterative process, optimizing the selection of model
input parameters, as well as expanding and improving the sample data
sets, which in turn can provide reference values for slope stability
assessment and prediction research.

5 Conclusion

This paper proposed an improved algorithm for slope stability
prediction based on ACE-QPSO optimized LSSVM. The method can
dramatically improve the convergence speed and accuracy of the
QPSO algorithm by adaptively improving the CE coefficient, then
will provide better adaptation in shorter period. By verifying
performance tests and case studies, the results supported that
proposed ACE-QPSO has better optimal search capability and
search efficiency in prediction of slope stability.

The case study results show that ACE-QPSO-LSSVM has a
better model fit (R2=0.8030) and minor prediction error
(MAE=0.0825, MSE=0.0110) and faster convergence (second
iteration) compared with QPSO-LSSVM, IPSO-LSSVM and
single LSSVM. In addition, ACE-QPSO-LSSVM shows better

accuracy and stability than the other three algorithms under the
benchmark function test.
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