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In recent years, Distributed Acoustic Sensing (DAS) deployed in deviated wells has
been increasingly used for microseismic monitoring. DAS can provide observations
of microseismic wavefields with high spatial resolution and wide aperture, at the cost
of unusually large data volumes compared with conventional downhole
microseismic monitoring. To tackle this big-data challenge, we have developed
key elements of a processing workflow that is assisted by machine learning
techniques. We trained a convolutional neural network (CNN) for event detection
and a U-Net model for both P- and S-wave arrival time picking. The workflow was
applied to two multiwell DAS datasets acquired during hydraulic fracturing
completions in western Canada. These datasets also include co-located 3C
borehole geophone arrays that enable further comparison between catalogs
from both sensor types. Compared with a traditional short-term average/long-
term average (STA/LTA) method for event detection, our results indicate that the
CNN method has a lower false-trigger rate and increases the event catalog size by a
factor of 2.6–5.6. U-Net yields arrival-time picks with relatively small errors, high
efficiency, and minimal user intervention, providing hypocenter location and focal
depth that is arguablymore accurate than the geophone catalog.While the proposed
automated workflow requires substantial effort to build high-quality and large
training datasets, it enables the use of DAS for real-time seismicity monitoring
and risk management after the training stage. Although the DAS system detected
fewer events than the geophone catalog and missed smaller magnitude events, our
results indicate that fiber-optic sensors provide enough sensitivity to detect and
locate sufficient events to characterize the treatment stages. DAS also captured
induced events located at a hypocentral distance of >1 km, which are possibly
indicative of reactivation of structural features.
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1 Introduction

In recent years, distributed acoustic sensing (DAS) has been increasingly used for
microseismic monitoring during hydraulic fracturing. DAS systems operate by emitting
coherent laser pulses into an optical fiber (Hartog, 2017). Part of the signal is returned due
to Rayleigh backscattering, and the phase change of the back-scattered signals is converted to
strain or strain-rate using interferometry. Optical fibers can be permanently deployed
(cemented) behind a casing, or they can be temporarily deployed on a wireline (e.g., Eaton
et al., 2022; Wang et al., 2022). Once a fiber-optic cable is deployed downhole, it can be used for
many purposes, including monitoring interwellbore strain during hydraulic fracturing (Jin and
Roy, 2017; Zhang et al., 2020), carbon capture and sequestration monitoring (Daley et al., 2013),
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flowmonitoring, vertical seismic profiling (VSP) (Mateeva et al., 2013)
and microseismic monitoring (Cole et al., 2018; Karrenbach et al.,
2019). One important advantage of DAS is that fibers can be
kilometers long and can be used to monitor the entire well with
high spatial resolution (on the order of a few meters). Thus, DAS
monitoring systems typically provide denser sampling of elastic
wavefields compared with traditional geophone arrays.

Several case studies have illustrated successful microseismic
monitoring with DAS technology (e.g., Karrenbach et al., 2019;
Lellouch et al., 2020a). Microseismic waveforms recorded by a
standard fiber, however, generally have a lower signal-to-noise ratio
(SNR) than those from geophones (Correa et al., 2017). Fortunately,
engineered fiber with high back-scattered technology has become
available, enabling SNR that approaches geophones (Richter et al.,
2019). DAS systems measure strain or strain-rate along the fiber, and
thus provide a single (axial) component. Locating microseismic events
in 3D generally requires multi-fiber (Cole et al., 2018) and/or multi-
component fiber (Lim Chen Ning and Sava, 2018) acquisition.
Geophones and seismometers can measure three component (3C)
data, thereby providing directional information that is not directly
available from DAS observations. Advanced processing techniques
using DAS have been developed to locate microseismic events
(Verdon et al., 2020) and to determine source mechanisms (Baird
et al., 2020; Rodriguez &Wuestefeld, 2020). The results from previous
studies highlight the potential to integrate measurements from
different fiber-optic cables, including microseismic, strain, and
temperature, to improve subsurface monitoring during hydraulic
fracturing (Zhang et al., 2021).

Since DAS technology provides thousands of channels with a high
sampling rate (>1,000 Hz), DAS acquisition tends to generate
exceptionally large data volumes—typically on the order of a TB
per day. This large data volume poses a significant challenge for real-
time data processing and analysis to inform operational decisions
(Clarke et al., 2019). Common outputs of microseismic monitoring
include the origin time, location of hypocenter, magnitude, and source
mechanism of detected microseismic events (Maxwell 2014; Eaton
2018). Event detection and arrival time picking are two of the most
time-consuming steps in the processing workflow. Increasing DAS
data volumes are stretching the capabilities of traditional processing
hardware and workflows. In addition, both permanently and
temporarily deployed DAS systems usually contain higher noise
levels than conventional 3C geophone data, with SNR that can
vary greatly from trace to trace. Most traditional methods, such as
event detection using short-term average/long-term average (STA/
LTA), are quite sensitive to noise and may miss weak events, which
makes them poorly suited for DAS data. These tools also need a certain
level of human intervention, such as setting thresholds and performing
quality control, which renders them inefficient for dealing with large
data volumes produced by DAS.

Machine-learning techniques have been widely used to improve
processing speed and accuracy. Some machine learning assisted
techniques have been published to accelerate DAS microseismic
data, such as the convolutional neural network (CNN) (Binder &
Tura, 2020; Huot et al., 2021; Ma et al., 2021; Given et al., 2022) and
YOLOv3, a state-of-the-art neural network for image object detection
(Stork et al., 2020). Those techniques often show superior
performance over traditional methods, but still require additional
effort to build a synthetic training dataset that has high diversity to
cover most features from field data.

In this paper, we present a novel machine learning-assisted
processing workflow for DAS-recorded microseismic data. We
begin by introducing two machine learning models, including a 2D
convolutional neural network (CNN) for event detection and a 1D
U-Net for arrival time picking. Two field DAS datasets from western
Canada are used to demonstrate that our machine learning workflow
can be effectively applied to large DAS data and provide accurate
microseismic catalogs while reducing human intervention, and can
achieve superior results compared with traditional methods. We
further compared the DAS performance with a downhole three-
component geophone array to obtain quantitative conclusions
regarding the effectiveness of DAS for microseismic monitoring.

2 Methods

2.1 Data preprocessing

This section introduces the processing workflow for DAS
microseismic data, including preprocessing, and two machine
learning models for event detection and arrival time picking.
Briefly, we first remove bias in the background (DC) amplitude
level and spurious data spikes. In addition, we subtract the median
value (using all channels) at each time sample of the DAS recordings to
attenuate the system noise. We then apply a bandpass filter to the data
with a passband of 10 and 150 Hz. This frequency band was chosen to
avoid low-frequency noise and facilitate event detection based on the
frequency band with the highest SNR. Finally, we apply trace
normalization for better visualization.

Figure 1 shows the overall processing workflow for multi-fiber
DAS microseismic data using machine learning, including
preprocessing, event detection using CNN, arrival time picking
using U-Net, and 3D hypocenter location using conventional ray
tracing and grid search. As elaborated in the Results section, this
workflow has been successfully applied to two DAS datasets in western
Canada.

For context, Figure 2 shows phenomenology of four representative
microseismic events recorded by horizontal DAS fibers. The first two
events are characterized by complex microseismic wavefields. The first
P- and S-arrivals are clear in both horizontal and vertical sections of
the well, and exhibit polarity changes. The dense receiver spacing
enables other details to be discerned, such as guided waves, reflections
related to hydraulic fractures induced in a previous stage (Figure 2A)
(Ma et al., 2022), and downgoing reflections from interfaces
(Figure 2B). Effects of the near-field radiated component of strain
(Luo et al., 2021) are also visible near the apex, between P- and S-wave
arrivals. Figure 2C shows a typical microseismic event recorded by
DAS system, which exhibits strong S-arrivals and relatively weak
P-arrivals. The relatively low amplitude of P waves that impinge on
the cable at a high angle is expected, since DAS generally only provides
axial strain or strain rate observations along the fiber and the
projection of P-wave particle motion onto this component is small.
While some events are clear in DAS data and show full wavefields that
cannot be observed by geophone array, many events are weak and of
similar amplitude as the background noise, making them unsuitable
for standard single-channel thresholding detection methods (Lellouch
et al., 2020b). Figure 2D shows a distant event that occurred beyond
the distal end (toe) of the monitoring fiber, which has no recorded
local minimum (apex) of the P or S arrival.
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Template matching or waveform cross-correlation are alternative
event detection methods that take advantage of waveform similarity
and spatiotemporal recording (Maxwell 2014). These approaches are
impractical, however, since events might originate from various
locations so a detection method that relies on template-matching
would in general require an inordinate number of templates.

2.2 CNN architecture for event detection

Near real-time decision making during hydraulic fracturing requires
event detection algorithms to be automated, efficient, and robust in order to
handle large data volumes with minimal human interference. Since DAS
data provide high-resolution 2D space-time images of the strainwavefield, it
is possible to leverage advances in CNN methods for image classification
problems to the DAS event detection task to identify if an input 2D data
window contains microseismic signals. In a CNN, the core operation is
convolution of a two-dimensional image with a series of learnable kernels
and application of a non-linear activation function to create a feature map
(LeCun et al., 1989). TheCNNarchitecture chosen for this study is depicted
in Figure 3. Input images first go through five down-sampling layers, and
each layer consists of a 3x3 convolutional layer, a rectified linear unit (ReLU)
activation function, and a downsampling layer. Gradually increased drop
rates [0.1-0.25] were applied from the first convolutional layer down the
network. Then a fully connected layerwith 128 hidden nodes and a sigmoid
activation functionwas applied to generate two output classes, microseismic
signal and noise. Cross-entropy loss was used as the loss function, which
measures the performance of a classification model whose output is a
probability value between 0 and 1. Bayesian optimization was used to select
hyper-parameters, and the filter numbers of each layer are shown in
Figure 3. The hyperparameters chosen here render the architecture
simpler than most general image classification networks. Nevertheless,
we obtained good results that are illustrated in the following section.
We used Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2015) to
build the architecture.

Training a model using supervised learning methods often
requires a large number of images with corresponding labels.

Creating representative training samples and keeping high diversity
are crucial to successfully train a network and to prevent the network
from learning unrelated patterns. In our workflow, we build the
training dataset using the following steps.

1. Apply a well-established approach, STA/LTA to obtain a
preliminary set of detected events.

2. Limit the DAS data to the well segments (horizontal sections)
desired for training and detection.

3. Normalize the seismic traces to fall within the range from 0 to 255,
for training.

4. Create input blocks with same size (512x512, 0.512), chosen to
provide a balance between retaining representative image features
and reducing computation cost.

5. Manually pick noise at random channels and times to build a suite
of background noise samples, which here are at least 30 s time
separation from any other event.

6. Perform data augmentation by injecting random noise into STA/
LTA pick times for reference events to obtain more events with
various SNR for training.

7. The detection windows are cropped randomly around the apex of each
microseismic event for each training epoch for data augmentation.

Unlike other studies (Stork et al., 2020), we do not use synthetic
datasets for training because synthetic samples usually do not contain
sufficient complexity to provide adequately diverse training data. After
training and validation, we then apply the trained model to search for
events on all fibers.

2.3 U-net for arrival time picking

We treat arrival-time picking as an image-segmentation problem
and use a simplified U-Net architecture to pick arrival times
automatically. Image segmentation methods have been widely used
to solve various geophysical tasks, including horizon interpretation
(Wu H. et al., 2019), fault detection (Wu X. et al., 2019), salt dome

FIGURE 1
Machine learning-assisted processing workflow for multi-fiber DAS microseismic data developed in this project. The primary workflow is highlighted in
red. The machine learning algorithms developed here occur in Step 2.
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FIGURE 2
Examples of microseismic events detected by permanent (cemented) DAS fibers in horizontal wells. Events in (A,B) indicate P- and S- arrivals, fracture-
and interface-induced reflections, guided wave, shear wave splitting, and near-field strain; event (C) is faint but typical of our DAS microseismic data; (D)
shows a distant event beyond the well toe.

FIGURE 3
CNN architecture used for event detection. The input is 2D images created from the DAS data in windows, and the output is binary (event or noise).
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detection (Khayer et al., 2022a; Khayer et al., 2022b; Khayer et al., 2022c;
Fard et al., 2022), and arrival time picking (Zhu & Beroza, 2018; Ma et al.,
2020). U-Net (Ronneberger et al., 2015) is a pixel-level neural network for
image segmentation. Figure 4 illustrates the process of microseismic arrival
time picking. Each input 1D seismic trace is tagged using three classes:
P-wave, S-wave, and noise, according to the manual picking (marked by
dashed lines). Then, the network automatically learns representative
features and generates a probability map to predict the arrival time.

Figure 5 shows the U-Net architecture we used with 1-D seismic time
series. The input seismic data undergo four down-sampling stages and four
up-sampling stages. Within each stage, we apply 1-D convolutions and
ReLU activations. A skip connection at each depth directly concatenates the
left output to the right layer without going through the deeper layer (grey
arrows in Figure 5), which improves convergence during training and the

resolution of outputs. The 1-D convolution kernel size is set to seven data
points. Finally, the normalized softmax exponential function is used to
assign probabilities in the last layer. Manual picking samples were used to
build the training dataset. The results of applying these two machine
learning networks and further details on implementation are presented in
the following section.

3 Results

3.1 Data overview

Two case studies are presented in this paper, both involving multi-
well DAS acquisition. In both cases, the reservoir was stimulated in
stages along horizontal sections of the treatment well, as illustrated in
Figure 6. In the first case study, three permanently installed fibers in
both horizontal (Well A, B) and vertical (Well C) wells were used to
monitor hydraulic fracturing (Figure 6A) using a 4-m gauge length, an
acquisition parameter that determines the spatial resolution of the
dataset (Hartog, 2017). The raw data were converted to strain and
down-sampled from 1m to 4 m channel spacing for microseismic data
processing, with a 2000 Hz sampling rate. The second case study has a
similar well geometry (Figure 6B), including two fibers cemented in
horizontal wells (Well A, C) and vertical well (Well M) with a 7-m
gauge length.

In both case studies, we selected three treatment stages, each
several hours in duration, to demonstrate the performance of the
developed workflow. This includes recordings from Stage 21 to Stage
23 in case study 1 and Stage 1 to Stage 3 in case study 2. In addition to
the DAS monitoring, for both case studies there was a co-located
downhole 3-component geophone array in the vertical well, allowing
for the comparison of the DAS and conventional geophone-derived
microseismic catalogs.

3.2 Case study 1: Event detection results
by CNN

For case study 1, the final training dataset consists of
3,584 samples: 1,792 positive, and 1,792 noise samples. Training
hyperparameters used in the model with the best performance

FIGURE 4
Arrival time picking method. The manual picked P- and S-wave
times are marked with blue and red dashed lines, respectively. The
training data contains the labels (0, 1 or 2). The trained network produces
probability densities for P- and S-arrivals.

FIGURE 5
U-Net architecture for arrival-time picking.
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include a batch size of 32 and a learning rate of 0.001. We train the
network for 100 epochs with an early-stop if the performance does not
improve over 10 epochs. In each iteration, 20% of the dataset was

randomly selected for validation. The final model achieves high
accuracy (96.62%), precision (98.73%), and recall (95.51%). We
then apply the well-trained model to search for events

FIGURE 6
(A)Case study 1 well geometry: Two fibers are permanently installed in horizontal Well A and B, one in vertical Well C. Stars indicate perforation locations
of three stages discussed in this paper. (B) Case study 2 has a similar well geometry. Two fibers are permanently installed in horizontal Well A and C, one in
vertical Well M.

TABLE 1 Case study 1: Comparison of DAS CNN, STA/LTA, and geophone performance for event detection.

Stage Well A Well B Well C Common Events CNN False Positive STA/LTA Geophone

21 99 118 69 62 129 18 55 243

22 100 140 99 82 146 20 64 740

23 208 293 182 155 311 49 105 824

In total 408 551 350 299 586 87 224 1807

FIGURE 7
Case study 1: Examples of extremely weak events detected by CNN but missed by both STA/LTA and manual labels.
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independently on all three fibers. The time windows for detection were
25% overlapped to avoiding the loss of edge information.

Table 1 shows the detection results of all stages for case study 1.
Compared with STA/LTA, CNN detection increased the event catalog size
by a factor of 2.6. This factor was calculated as the ratio of the absolute
number of events by CNN (586) and STA/LTA (224). Besides the
performance improvement for event detection, CNN detection provides
a lower false positive ratio, which can help to reduce the time cost on quality
control. The false ratio of event detection could be lower since the false
positive number shown in Table 1 counts all false-triggered detection
windows, and not false-triggeredmicroseismic events. Manual validation of
the picked events confirms that the CNN model learned microseismic
features and detected events well. Figure 7 shows two examplesmissed even
bymanually labeling but detected by the CNNmodel, which could be easily
misclassified as false positive samples, but that are revealed to be actual
extremely weak events (arrows).

Figure 8 compares histograms of STA/LTA and CNN detection
results with a one-hour bin width, showing that the CNN model
expands the STA/LTA catalog. Although DAS detected fewer events
than the use of traditionalmethods with geophones (only around 30% of
geophone catalog) and missed smaller magnitude events (below −2.0)
due to the intrinsic limitation of fiber optical sensors, DAS did detect
several events that are close to the treatment well but not contained in
the 3-component dataset. Importantly, both approaches yield good
general agreement in terms of the distribution of events versus time.
When events are detected on at least two horizontal fibers within a pre-
defined time interval (we used one second for this dataset), the events
are labelled as being associated to the same microseismic source.
Selecting common events helps to discriminate events that are too
weak to map and to eliminate inaccurate arrival time picks.

3.3 Case study 1: Arrival time picking by U-Net

To pick the arrival time automatically, we applied the U-Net
method described in Section 2.3 to selected events with associated
signals onmultiple fibers. We first manually picked 62 common events
of Stage 21 from all three wells, which provides 4,000 labeled traces
with clear P- and S-arrivals for training. All input traces share the same
size of 3001x1, which is equal to a time window of 1.5 s suitable for
most channels. We train the network for 100 epochs by using a batch
size of 100 and a learning rate of 0.0001. After training and validation,
we applied the model to each channel of all common events. To pick
the accurate arrival times from the probability maps, we set a threshold
as 0.3 for both P- and S-wave arrival times.

The picking results of the events recorded by DAS are shown in
Figure 9. The diversity in the pick continuity reflects varying
amplitude levels and focal mechanisms. The U-Net model picked
both accurate P- and S-wave for the left strong event, but only S-picks
for the middle example. Figure 9C gives an example of arrival time
picking for a far distant event. In summary, the U-Net model picked
most S-wave with high accuracy but missed weak P-arrivals that are
barely visible in some channels.

3.4 Case study 2

With the machine learning networks trained for detection and
phase-picking, the next test of the networks is to apply them to another
DAS dataset. In case study 2 we applied the same workflow described
in Figure 1, with a few site-specific changes based on the new data
features. New samples from three stages in the second data were

FIGURE 8
Case study 1: Comparison of event histograms from DAS and 3C geophone for three stages. CNN (blue) significantly extends the DAS catalog compared
to STA/LTA (yellow). AlthoughDAS detects fewer events than the geophones(green), there is good general agreement in the distribution of events versus time.
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introduced to retrain both the CNNmodel and the U-Net model based
on the models from the first data. Our machine learning workflow
achieved good results for Case study 2, compared to traditional
microseismic processing tools, after a relatively quick re-training step.

Figure 10 and Table 2 compare the performance of STA/LTA, CNN
detection, and geophone catalog. The results reveal reasonable counts of
microseismic events for each stage, demonstrating that this workflow is
robust. In contrast, manual picking is not feasible to complete event
detection in near real time to aid in stimulation and production
decisions. While advanced transfer learning, an approach used to
generalize a well-trained machine learning model, was not applied in
this project, the CNN model achieved better performance than STA/
LTA and increased the catalog size from 257 to 1,459 with a ratio of
5.6. We remark that both DAS datasets were acquired by the same service
provider, resulting in similar data quality that can ease the learning process
from two different data and avoid intrinsic differences that may prevent the
machine learning model from learning new features.

Although the second DAS case study shows event detectability
that is generally similar to the first case study, and similarly provides
less sensitivity to small microseismic events compared with collocated
3C geophones, in one treatment stage (stage 3) the DAS detection
performance is comparable to geophones. In the case of DAS
recording in a near-vertical fiber located close to the treatment
stage, the vertical fiber provided comparable detection capability
comparable to the geophone array.

After picking the arrival time of all common events by the U-Net
model, we locate hypocenter locations using a conventional approach
consisting of ray tracing and grid search to minimize the misfit
between observed and modelled times. We used a laterally
homogeneous (1-D) velocity model, constructed using the
compressional and shear sonic logs from the vertical well (Well
M). In sedimentary rocks the seismic velocity is often different in
the horizontal direction than in the vertical direction due to seismic
anisotropy. However, in this study, calibration sources with known-

FIGURE 9
Case study 1: Arrival time picking results of representative events. (A) A strong event, (B) a weaker event, (C) an off-well event.

FIGURE 10
Case study 2: Event detection results of three stages in the second DAS data, comparing performance of DAS STA/LTA (yellow), CNN (blue), and 3C
geophone (green).
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location (Eaton, 2018) were unavailable so it was not feasible to
construct an anisotropic velocity model. Figure 11 shows a map
view and a time-depth event distribution, overlaid on a low-
frequency DAS (LF-DAS) strain plot for a single hydraulic
fracturing stage. In map view, both DAS and geophone results
show microseismic clouds of similar extent near the treatment
stage, including a similar fracture azimuth. Two distant small
clouds to the east of the horizontal wells indicate near-fault
reactivation that may be related to the hydraulic fracturing operations.

Another way to validate the quality of the event locations is by
comparing the event distribution with the LF-DAS response. As the
fiber optic cable was used to detect microseismic events (high-
frequency DAS) it was also recording low-frequency signals
(<1 Hz), which can be used to track the growth of hydraulic
fractures (Jin and Roy, 2017). The waterfall plot of LF-DAS in
Figure 11 is from a vertical fiber and contains typical expressions
of fracture opening (positive strain, red) and fracture closure (negative
strain, blue). This plot indicates that fractures initiate at the
perforation depth and grow both upwards and downwards, with
the upward growth being more dominant. The event locations
from the geophones and the DAS are overlain to determine if they
correspond with the observed fracture growth. From geophone data,
most microseismic events originate around the perforation depth, but
hypocenters located using the DAS fiber appear to show more fracture
height growth that is more consistent with the LF-DAS. The good

agreement of event depth and fracture opening benefits from accurate
arrival time picking by U-Net as well as the large aperture provided by
the DAS fibers, which is favorable for characterizing microseismic
sources as it produces a large solid angle (Eaton and Forouhideh,
2011). Fiber strains indicate that the ultimate fracture height growth
extends to approximately 200 m above the perforation depth.

4 Discussion

In this paper, we apply machine learning models to two DAS
datasets during hydraulic fracturing. The examples presented above
show that machine learning methods can automate microseismic
processing tasks, opening up multiple avenues for DAS-based
microseismic analysis and characterization of hydraulic fracturing.
The results of both case studies show that the proposed CNN model
can detect microseismic events recorded by low SNR DAS data with
accuracy and efficiency superior to a commonly used conventional
approach for event detection (STA/LTA). For arrival-time picking, the
U-Net model can achieve accurate picks for both P- and S-arrival time,
resulting in robust hypocenter locations. Qualitative and quantitative
comparisons with results from traditional geophone methods show
that the machine-learning assisted workflow is effective.

Both case studies demonstrated in this paper were acquired using
permanently cemented fiber. DAS fibers can also be deployed into a

TABLE 2 Case study 2: Comparison of DAS CNN, STA/LTA, and geophone performance for event detection.

Stage Well A Well M Common Events CNN STA/LTA Geophone

1 230 65 58 237 78 824

2 339 149 116 372 81 1241

3 329 756 235 850 98 1074

In total 898 970 409 1,459 257 3,139

FIGURE 11
Case study 2: Left: map view of events from a single hydraulic fracturing stage. Right: Time-depth distribution of fiber strain rate in vertical well M, and
microseismic events (orange dots) from DAS (upper) and geophone (lower).
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cased borehole using a wireline system (e.g., Eaton et al., 2022; Wang
et al., 2022), which usually is less sensitive and yields noisier data
compared with cemented fiber due to inferior coupling between the
cable and the surrounding medium. To handle noisy data processing,
our workflow could benefit from further new samples with diverse
noise types and advanced noise attenuation tools (e.g., Mahdavi et al.,
2021; Mafakheri et al., 2022) as part of the data pre-conditioning
step. An advantage of CNN machine-learning techniques is that the
network can be retrained as more data become available, which makes
it possible to use transfer learning, i.e., to train a network using DAS
data from one well and apply it to DAS data from other wells. The
network still requires samples from new wells for training; fortunately,
training is faster and requires fewer new samples as many wells
covered. The automated workflow we have developed allows us to
explore the use of DAS for real-time seismicity monitoring and risk
management.

For DAS microseismic data, most P-waves are barely discernible
because DAS only measures the strain (or strain rate) along the axial
direction of the fiber. Thus, microseismic waveforms fromDAS are usually
S-wave dominated. In this study, we set the same threshold of probabilities
for both P- and S-picks. Tuning the threshold can improve the
performance, but we found that the improvements are not significant.
This limitation could be alleviated by first extracting S-wave arrivals, and
then remove data after the S-picks and subsequently pick the P-wave arrival.
Such a two-step workflow, currently being tested, might help tomitigate the
influence of high amplitude S-wave arrivals on the P-wave picking.
Considering the complex wavefields observed by DAS, there is
considerable scope to develop automated tools to make use of more
complex phase data, including reflections, guided waves, and coda wave.
U-Net is a powerful tool that has the potential to be further developed for
multi-phase picking.

The use of fiber-optic DAS systems formicroseismicmonitoring offers
several advantages over traditional downhole geophone arrays. The dense
spatial sampling provided by DAS acquisitioni results in a large-aperture,
which enables the application of advanced processing and imaging
algorithms. For example, the dipping reflections shown in Figure 2A are
caused by hydraulic fractures from previous stages (Ma et al., 2022).
Additionally, the spatial continuity of the DAS events reveals both
upgoing and downgoing reflections that could be used to improve
depth estimation (Rutledge and Soma, 2013). Integration of different
fiber-optic data, including DAS microseismic, low-frequency DAS, with
other measurements, such as perforation injection and production flow,
could further characterize dynamic structural and fluid changes during
hydraulic fracturing. Fortunately, machine learning provides powerful tools
to handle large data processing and complex statistical tasks combining
various types of data.

5 Conclusion

This paper describes a novel machine-learning-assisted
processing workflow for multi-fiber DAS microseismic data.
Our method uses a CNN model for microseismic event
detection, using a preliminary catalog generated by
conventional detection method (STA/LTA). The CNN model
significantly enhances the detection capabilities compared with
conventional approaches and, more importantly, provides a low
false-positive rate, which can improves processing efficiency.
Using a training dataset with manually picked arrival times, we

then used a U-Net model for arrival-time picking. This method
provides stable and accurate picks for both P- and S- arrival time,
resulting in hypocenter location and focal depth that we infer to be
more accurate than in the geophone catalog. The improved
location accuracy is likely due to the considerably increased
observational aperture provided by multi-well DAS fibers
compared with the geophone data. Two case studies illustrate
some of the advantages offered by semi-automated DAS
microseismic processing enabled using a machine learning
approach, including low computation cost and minimal human
intervention requirements after the training stage. Comparison
with a microseismic catalog from 3C borehole geophone arrays
suggests that the DAS system is less sensitive to weak events than
geophone, although the DAS captured distant events that lie
beyond the typical treatment well distance.
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