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The global ionospheremap (GIM) total electron content (TEC) data are extensively
employed to statistically study the seismic ionospheric disturbance
characteristics. Due to the limitation of spatial coverage of ground-based
GNSS receivers, in many regions, the GIM TEC results are obtained by
interpolation or extrapolation, and therefore the actual accuracy is different. In
this paper, based on the CMONOC GNSS data, a high-precision regional
ionospheric map (RIM) model over China is established, and the assessment
and analysis of the post-processed IGS GIM over China are conducted.
Statistical results show that the average RMS of IGS GIM over China is less than
2 TECu. The comparison of the TEC values calculated by the GIM with the RIM
shows that the two models give similar results. The Bias and STD of the difference
over most of China is less than 2 TECu except in some low latitude areas.
Meanwhile, the correlation between GIM and RIM is better in the daytime than
at night, and it is not affected by space electromagnetic disturbance. The
assessment results of accuracy in this paper are only applicable to the China
region, and the accuracy of other regions needs to be further assessed.
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Introduction

The Global Navigation Satellite System (GNSS) has been used as a valuable tool to
monitor and estimate ionospheric total electron contents (TECs) (Sardon et al., 1994;
Mannucci et al., 1998; Jin et al., 2004; Davies et al., 2016). And analyze the response of the
ionospheric to seismic activity (Fujiwara et al., 2004; Liu et al., 2004; Pulinets et al., 2004;
Afraimovich et al., 2008; Liu et al., 2009; Zhao et al., 2010; Heki, 2011; Jin et al., 2015). Since
1998, the International GNSS Service (IGS) has established the Ionosphere Working Group
(IWG) (Schaer et al., 1999; Hernández-Pajares et al., 2009) to calculate and model the global
ionospheric VTEC data through the data of global satellite observation stations and release
the Global Ionosphere Map (GIM) to global users. The IGS GIM, as an important part of
GNSS precision products released by IGS, plays an important role in space physics research
and satellite navigation applications. In recent years, the IGS GIM become a superset of data
to study seismic ionospheric TEC disturbances and a large number of researchers utilize the
IGS GIM to conduct studies on ionospheric spatiotemporal variation or earthquake-related
ionospheric disturbances (Guo et al., 2005; Le et al., 2011; Zhao et al., 2016; Thomas et al.,
2017; Zhu et al., 2018). The analysis of seismic ionospheric disturbance provided a new
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breakthrough for the study of earthquake monitoring and prediction
(Pulinets et al., 2004; Jin et al., 2015).

China is considered to be one of the countries with the most
seismic activities and a dense and continuous GNSS network, the
China Crustal Movement Observation Network (CMONOC), has
been established, which provides a good condition for the study of
ionospheric in China (Cai et al., 2014; Zhe et al., 2017). Considering
sharing, coverage, and continuity of the IGS GIMs, the GIMs have
been widely used in a large number of seismic studies. The global
ionospheric grid products are released by IGS through ftp://ccids.gsfc.
nas.gov/gnss/products/ionex/ and modeled based on IGS GNSS data,
its accuracy depends on the proximity of available GNSS tracking
receivers. In addition, some factors such as magnetic storms, solar
activities, and local time can also influence the accuracy to a certain
extent (Afraimovich and Astafyeva, 2008; Liu et al., 2017). The overall
accuracy of the GIM is ~2–8 TECu (1 TECu=1016 el/m2) (Hernández-
Pajares et al., 2009; Roma-Dollase et al., 2018). For the China region,
only 3 IGS stations are used and most of the TEC map over China is
based on interpolation or extrapolation. Although the GIM offered by
different Ionosphere Associate Analysis Centers (IAAC) was
frequently assessed and analyzed by some scientists (Lanyi et al.,
1988; Xiang et al., 2015; Li et al., 2017; Roma-Dollase et al., 2018; Chen
et al., 2019; Zhang and Zhao, 2019; Zhang et al., 2022), and recently a
study on accuracy evaluation of global VTECmaps using a simulation
technique was conducted (Lin et al., 2022). However, most of the
previous studies have focused on accuracy analysis and comparison of
different ionospheric models or products from different research
institutions worldwide, the actual accuracy of GIM over China
region is still not statistically analyzed.

In this paper, in order to examine the actual accuracy of the IGS
GIMs over China, we first established high-precision regional
ionospheric maps (RIMs) over the China region, and then

conducted the assessment and analysis study by investigating and
comparing the IGS GIMs with RIMs. In addition, we also evaluated
their correlation them during geomagnetic disturbances.

Data and method

In this paper, the GNSS data used to calculate TEC over China was
provided by the CMONOC, which includes more than 260 continuous
GNSS stations and 3 IGS stations. The distribution of these GNSS
stations is illustrated in Figure 1, the red pentacles denote the IGS
stations. The GIMs are computed based on the IGS network where
more than 2,000 ground-based GNSS receivers are distributed
worldwide (Schaer et al., 1999; Hernández-Pajares et al., 2009). The
IGS has ensured open access, high-quality GNSS data products since
1994 and the GIMs data can be retrieved from the IGS website through
the link (https://igs.org/). There are twelve analysis centers that generate
and deliver long-term GIMs. Different agencies may use different
reference frames and techniques to estimate VTEC and differential
code biases (DCB). After computation, three validation centers (JPL,
ESA, and UPC) combine them into a common IGS GIM, which has a
temporal resolution of 2 h and a spatial resolution of 5.0° × 2.5° in
geographic longitude and geographic latitude. More details about the
IGS GIM algorithm can be found in related papers (Feltens and Roth,
1998; Hernández-Pajares et al., 2009).

Model of reginal ionospheric map over
China

GNSS has been widely employed to monitor variations in the
Earth’s ionosphere by estimating total electron content (TEC) using

FIGURE 1
The distribution of 260 continuous GNSS stations (triangles) and 3 IGS GNSS stations (red pentacles) in China.
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dual-frequency observations (Mannucci et al., 1998; Schaer, 1999;
Jin et al., 2004; Davies and Hartmann, 2016). In this study, we first
modeled the RIM VTEC two-dimensional ionospheric maps over
the China area. The RIM model in China can be expressed by the
Spherical Harmonics as:

VTEC β, s( ) � ∑nmax

n�0
∑n
m�0

~Pnm sin β( ) ~Anm cosms + ~Bnm cosms( ) (1)

Where β is the geomagnetic latitude of IPP (Ionospheric Pierce
Point), s � λ − λ0 is the solar-fixed longitude of the IPP, λ and λ0 are
the longitude of the IPP and the apparent solar time, respectively.
Meanwhile, ~Anm and ~Bnm are the estimated unknown parameters for
the RIM model, mainly including the ionosphere spherical
harmonics function coefficients and the DCBs (Differential Code

Bias) of the GNSS satellites. ~Pnm is nth degree and mth order
regularization of the Legendre polynomial. Considering the DCBs
of GNSS satellites and ground receivers is also a non-negligible error
in ionospheric modeling (Schaer, 1999), therefore, according to
Formula 1, the ionosphere sphere harmonic function coefficients
and the DCBs of the GNSS satellites are simultaneously estimated
from GNSS dual frequency observations by the least squares (LS)
method. The specific solution strategy and modeling parameters are
shown in Table 1.

Based on the above parametermodel, we obtained the ionospheric
VTECmaps over the China region (15°–55°N, 70°–140°E), which have
a 1 h temporal resolution and a spatial resolution of 1° × 1° in
longitude and latitude. As an example, Figure 2 illustrates the
spatial distribution of the TEC and RMS of the RIM at 0600 UT
on 23 October 2021. It can be clearly seen that the ionospheric TEC
RMS over China region is within 1 TECu, and its accuracy gradually
decreases from the middle to the north and south sides, which should
be related to the spatial distribution of GNSS stations. Especially in the
northern border area, the worst accuracy is about 1.4TECu, which is
consistent with previous research results (Zhang and Zhao, 2019). At
the same time, we also compared the calculated GNSS DCB with the
final results of IGS, and the results are shown in Figure 3. The mean
value of the difference between them is 0.028 ns, and the maximum
deviation is 0.5 ns, which verifies that the RIM model we have
established is reliable.

Assessment method of GIM accuracy

The observation period selected for accuracy assessment in this paper
is from 1 September to 30 December 2021. Considering that the
ionospheric TEC cannot define an accurate truth value, we consider
the RIM results calculated based on the dense COMONOC data as a
reference. When assessing the accuracy of GIM, it is generally necessary
to check its internal coincidence accuracy and actual accuracy at the same

TABLE 1 RIM modeling parameter.

Observation GPS

Data type Carrier phase smooth pseudorange

Sampling rate 30 s

Height of ionospheric thin layer 350 km

Mini elevation angle 10°

Earth radius 6371 km

Projection function MSLM

VTEC function model Spherical harmonics functions

Order of spherical harmonics function 6-order and 6-degree

Temporal resolution 2 h

Spatial resolution 1°×1°

Coordinate system Solar geomagnetic coordinate system

The modeling results RIM + DCB

FIGURE 2
The spatial distribution of the TEC and RMS of the RIM (2021-10-23 UT0600), the x-axis and y-axis represent geographic longitude and latitude,
respectively, and the color scale indicates the magnitude of TEC and RMS in TECu.
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FIGURE 3
GPS satellite DCB values based on the RIM model and from IGS.

FIGURE 4
The spatial distribution of the RMS of the IGS GIM. In each panel, the x-axis and y-axis represent geographic longitude and latitude, respectively, and
the color scale indicates the magnitude of TEC in TECu.
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time (Chen et al., 2019; Zhang and Zhao, 2019; Zhang et al., 2022). In
order to clearly demonstrate the spatial-temporal distribution of the IGS
GIM accuracy, we first statistically study the internal coincidence
accuracy of GIM by calculating the root mean square (RMS) of the
GIM over China, where RMS can be expressed as follows:

RMS �
������������������������∑N
i�1

VTECi
RIM−VTECi

obs( )2/N
√√

(2)

where N is the epoch number, VTECRIM stands for the VTEC
value of RIM for each grid point. The ionospheric VTEC value
(VTECobs) directly calculated from GNSS satellite observation
data is taken as the true value after the difference code deviation
is removed, and it is compared with the modeling result
(VTECRIM). On the other hand, considering the high accuracy
of RIM, in order to check the outside precision of GIM, for each

grid point, we also studied in detail the Bias and the standard
deviation (STD) of the IGS GIM relative to RIM, where the
average Bias and STD are expressed as follows:

Bias � ∑N
i�1

VTECi
GIM−VTECi

RIM( )/N (3)

STD �
������������������������������∑N
i�1

VTECi
GIM−VTECi

RIM − Bias( )2/N
√√

(4)

Results and discussion

Firstly, we investigated the spatial-temporal characteristics of
the GIM RMS over the China area. For the GIM, the RMS values can

FIGURE 5
The spatial distribution average bias of the difference between IGS GIM and RIM, the x-axis and y-axis denote geographic longitude and geographic
latitude, respectively. The color scale indicates the magnitude of TEC in TECu.
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be obtained in the GIM files. The scope of our investigation is
15–50°N and 70–140°E. We utilize the RMS values of each grid point
at different times from 1 September to 30 November 2021 and then
calculate its average. Figure 4 shows the spatial distribution of the
average RMS of the IGS GIM. It can be clearly seen that the spatial
distribution of RMS values at different times is very similar. The
RMS value of most areas is ~2 TECu except for low latitude areas,
which is consistent with the previously published conclusion (Zhang
and Zhao, 2019). Larger RMS values occur in low-latitude areas
outside China’s borders (See Figures 4A–L) and the RMS value in
the surrounding area of the three IGS stations is relatively small, this
is because the VTEC value of the area far from the IGS station is
obtained based on interpolation or extrapolation, as the distance
from the puncture point increases, its accuracy will inevitably
decline.

As we all know, RMS only represents the internal coincidence
accuracy of the IGS GIM. In order to effectively assess the true
accuracy, we compared IGS GIM with high-precision RIM, and
statistically analyzed the average value of Bias at each grid point at
each time, as shown in Figures 5A–L. The spatial distribution of
ionospheric bias is similar to RMS. That is the average Bias value of
most China areas is within 2.5TECu except for some areas. During
the daytime, the maximum deviation of GIM appears in the low
latitude area near the border of China, and it is distributed in bands
(Figures 5C–G). At night, especially at UT1800-UT2000, the
maximum bias of GIM appears around 55° N at the
northernmost end (See Figures 5J, K), which is also in a zonal
distribution.

Figure 6 illustrates the spatial distribution of GIM STD
compared with the RIM. From Figures 6A–L, one can see that

FIGURE 6
The spatial distribution of average STD of IGS GIM compared with RIM, the x-axis and y-axis denote geographic longitude and geographic latitude,
respectively. The color scale indicates the magnitude of TEC in TECu.

Frontiers in Earth Science frontiersin.org06

Zhu et al. 10.3389/feart.2023.1095754

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1095754


the spatial distribution of the average STD is very similar to the
spatial distribution characteristics of the average RMS, in other
words, the GIM STD of the whole inland region of China is better
than 2 TECu. However, the STD value is the largest outside the
border region of China, especially in the low-latitude region (See
Figures 6E–G). In view of this, the results of pre-seismic ionospheric
disturbances found in low-latitude areas in previous studies may
need further verification and discussion. Considering that there is
almost no GPS observation in the low latitude area, the RIM
accuracy of the solution will also be reduced. In addition, the
ionospheric activity in the low latitude area is more active, so the
accuracy in the low latitude area does not necessarily reflect the
actual level of GIM. Therefore, the accuracy level of GIM over
China’s interior in this paper is more practical.

Finally, in order to investigate whether the accuracy of the IGS
GIMs is related to geomagnetic disturbances or not, we also investigated
the distribution of correlation coefficients at several points during a
geomagnetic disturbance in detail, the coordinates of these investigated
five points are (110°E, 10°N), (110°E, 20°N), (110°E, 30°N), (110°E,
40°N), and (110°E, 50°N). It is well known that the accuracy of GIM
varies with latitude: In this paper, we statistically investigate the mean
value of the correlation coefficient of five points at different latitudes of
daytime and nighttime, and finally, the time series of their correlation
coefficients are statistically compared. Figure 7 gives the variations of
the correlation coefficient and geomagnetic Dst, Kp index from
1 September to 30 November 2021. From Figure 7, we can clearly
see that there were significant magnetic disturbances in the space
environment on 18 September, 12 October, and 4 November.

However, the correlation coefficient does not change significantly at
the above time. This means that the accuracy level of GIM is
independent of spatial electromagnetic disturbance. At the same
time, we also found that the correlation between the GIM and RIM
was significantly higher during the daytime than at nighttime.

Considering the IGS GIMs are interpolated in both space and time
and the used GNSS receiver is very sparse in the China region, we
checked and assessed the actual accuracy of the IGSGIMover theChina
region. With the increasing number of global GNSS continuous
observation stations, the precision and reliability of IGS GIM are
getting higher and higher. Although the IGS GIM calculation only
uses three GNSS observation data in the China region, the GIM TEC
results over China are generally reliable, but in some low latitude
regions, the difference is relatively larger. That is because, on the one
hand, the external low-latitude regions in China lack any observation
data, and the accuracy of ionospheric RIM calculated in this area is not
high. On the other hand, near the equator, the ionosphere changes are
more responsible. If only the inland areas of China are investigated, the
actual accuracy of GIM will be much higher. Therefore, we suggest that
the accuracy level of GIM TEC may be further improved by adding
more station observations to areas with sparse observation data.

Conclusion

This paper presents a statistical work to assess and analyze the IGS
GIMover the China region. High-precision RIMs are calculated based on
the dense COMONC GNSS observation and used as reference values.

FIGURE 7
The variations of correlation coefficient and geomagnetic index Dst, Kp from 1 September to 30 November 2021.
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The major findings presented herein are summarized as follows:
the accuracy of the IGS GIM over the China area is investigated
and compared. The Bias and STD of the difference between the
GIM and the RIM over China are less than 2 TECu except for some
low latitude areas. Meanwhile, the correlation between GIM and
RIM is better in the daytime than at night, and it is not affected by
space electromagnetic disturbance. The results in this paper
support the precision description given by IGS and verify the
accuracy of GIM, which maybe have important reference
significance for the application of GIMs over China.

This paper mainly only gives some statistical results about China
regions which confirmed partly the actual accuracy of the IGS GIM,
however, it does not represent the actual accuracy of other regions in
the world. In order to better study the temporal and spatial variation
characteristics of the ionosphere, it is necessary to conduct a more
comprehensive and detailed assessment and analysis of the GIM in
the future.
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