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Fine-scale population map plays an essential role in numerous fields, including
resource allocation, urban planning, disaster prevention and response. Point of
Interest (POI) data is widely used for population spatialization, but the types of POI
are ignored. Since different types of POI data have different impacts on population
distribution, this paper used typed POI data and other multi-source data to map
population distributions at fine scales. At the township level, three random forest
models were used to generate the population maps of 150m, 300 m, and 500m
in 2020, enabling the downscaling of county-level population distribution to the
grid level. The main influencing factors of population distribution were extracted
and analyzed based on the feature importance output from the model.
Zhengzhou city was used as a case for study. The experiments show the
results of population spatialization for all three scales in this study have better
fitting accuracy than that of the GPWv4 and LandScan datasets. The coefficient of
determination (R2) is 0.8333 for 150 m gridded population, 0.8295 for 300m, and
0.8224 for 500 m; POI types related to residence information have greater
contributions to population spatialization than other features; typed POI data
are more conducive to population spatialization.
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1 Introduction

Demographic data reveal entire population counts in entire administrative units,
ignoring the detailed characteristics of population distribution within the units (Wang
et al., 2018; Xiong et al., 2019), making it difficult to accurately understand the actual
population distribution within an administrative unit or across administrative units.
Meanwhile, the demand for high-resolution population distribution data is growing.
Population spatialization is to use demographic data, administrative boundaries, and
suitable ancillary data to dis-aggregate demographic data in administrative districts to
regular grids of a certain size through certain modeling methods (Bai et al., 2013; Dong et al.,
2016), so as to present information on the spatial distribution of population. Fine grid
population distribution can reproduce the population geographic distribution of the
objective world, solve the problem of disconnection between population statistics and
the spatial characteristics of the regions they belong to (Fu et al., 2014), and provide basic
data support for the coupling analysis of population data with natural resources and socio-
economic data. Fine-scale population distribution also helps to solve the problems of urban
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planning, resource allocation, disaster prevention and response,
public health, etc (Li et al., 2018; Wang et al., 2020).

With the development of remote sensing and Geographic
Information System (GIS) technology, the supporting methods
and data of population spatialization are constantly changing and
enriching. In terms of population simulation methods, population
density models (Clark, 1951; Jiang et al., 2002) and spatial
interpolation methods (Martin, 1996; Mennis, 2003) were used in
the early days, which evolved to the use of statistical regression
models, including geographically weighted regression (GWR),
spatial regression models (Spatial Lag Model, SLM and Spatial
Error Model, SEM), and multiple linear regression (MLR) (Lo,
2008; Chun et al., 2018; Yang and Chen, 2019), and gradually
evolved to the application of machine learning models (He et al.,
2020; Li and Liu, 2021) and deep learning models (Zhao et al., 2020;
Cheng et al., 2021). Most of the early population spatialization
research is based on a certain kind of data, and now it has developed
into the fusion of multi-source geospatial data. Based on the
assumption that the same land type carries the same population
density (Bai et al., 2013; Bakillah et al., 2014; Dong et al., 2016), Land
use/cover data are the most widely used data in population
spatialization. In fact, due to many factors affecting population
distribution, the assumption is not always correct. Nighttime
light can reflect socioeconomic activities and human activities
and has a strong correlation with residential areas (Guo et al.,
2021). However, there is always low accuracy and
underperformance in areas with low brightness when using
nighttime light data alone for population spatialization (Xiao and
Yang, 2019). Therefore, land cover/use data and nighttime light data
are often used together in population spatialization studies (Briggs
et al., 2007; Zeng et al., 2011; Hu et al., 2018; Xiong et al., 2019), to
make up for the shortage of single data. There are many publicly
available nighttime light data, such as DMSP/OLS, NPP/VIIRS, and
Luojia1-01 data, among which Luojia1-01 data has the highest
spatial resolution (approximately 130 m) (Ou et al., 2019), which
is more favorable for fine-scale population fitting (Zou et al., 2020;
Sun et al., 2021; Wang and Zhang, 2021).

In the era of big data, with the rapid development and
availability of social sensing data (e.g., check-in data on social
media, POI data, mobile phone data, etc.), new opportunities
have become available for examining fine-scale populations. POI
data is a kind of big data generated with Internet maps, such as Baidu
Map, AutoNavi Map, and OpenStreetMap (OSM), and can be easily
obtained through Application Programming Interface (API) (Zhang
et al., 2021). POI data includes information on almost all kinds of
facilities and places closely related to the production and life of
urban residents and is characterized by large quantity, easy access,
fast update, and rich information (Yao et al., 2017; Sun et al., 2021;
Zeng et al., 2021). Many scholars have used POI data to map
population distribution. Chun et al. (2018) who proposed a
method for gridding population distribution based on POI data
using quadtree spatial indexing. Zou et al. (2020) who proposed a
method to fuse nighttime light and POI data by multiplying POI
kernel density data with Luojia1-01 nighttime light data processed
by logarithmic transformation, and then normalizing the result to
0~255 after squaring, which provides a new method for processing
population spatialization data. Ye et al. (2019) who weighted the
20 types of POI density layers to combine into one density layer and

calculated the distance to the nearest POI to obtain a raster layer in
the same way, and then two raster layers were involved in modeling.
POI data can represent lots of geographic entities with various types,
such as schools, hospitals, restaurants, shopping malls,
transportation facilities, and enterprises. Different types of POI
represent different human activities within and surrounding
them, and subsequently have different levels of correlation with
population distribution (Bakillah et al., 2014; Ye et al., 2019). For
example, living facilities often appear around residential areas. The
more they are, the denser the local population is. However, the
impact of different types of POIs on the population simulation has
not been paid enough attention to and is often even ignored.
Thereby, further research is needed to study how to use typed
POI data to obtain a fine-grained population distribution.

In this paper, typed POI data coupled with Luojia1-01 nighttime
light data, land cover data, DEM data, and road network data were
used to get fine-scale population distributions, and Zhengzhou city
was set as a case study. Three random forest models were established
to generate the population maps with spatial resolutions of 150 m,
300 m, and 500 m in 2020, respectively. The types of POIs with
significant roles were extracted and analyzed by feature importance.
In addition, the role of typed POIs in population spatialization was
further illustrated by comparing the precision and population maps
of the three sets of experiments conducted around POIs.

2 Materials and methods

2.1 Study area

Zhengzhou, the capital city of Henan Province, is located at
112°42′ ~ 114°14′E, 34°16′ ~ 34°58′N. It has a resident population
of 12.6006 million according to the Seventh National Census,
covering 7,567 km2. It has jurisdiction over 6 districts, 5 cities,
and 1 county, as well as the Airport Economic Zone, Zhengdong
New District, the Economic and Technological Development Zone,
and the HI-TECH Industrial Development Zone, with a total of
200 townships. As a pivotal economic region in central plains and a
crucial transportation hub in China, Zhengzhou is an ideal study
area. Population density (persons/km2) is calculated based on
county-level population data from the Seventh National Census.
The study area and county-level population density are illustrated in
Figure 1. There are eight districts (counties) in central city of
Zhengzhou, including Erqi District, Zhongyuan District, the HI-
TECH industrial development zone, Huiji District, Jinshui District,
Guancheng District, Zhengdong New District, and the Economic
and Technological Development Zone, accounting for 54.25% of the
total population of Zhengzhou. The population density is lower in
the west and higher in the east.

2.2 Data sources

Choosing the appropriate model is the key to population
spatialization, while the auxiliary data with good quality and high
spatial-temporal consistency is an important factor to improve the
accuracy of the population model. The spatial distribution of
population is the result of the joint action of natural
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FIGURE 1
Study area in Henan, China, and county-level population density data.

TABLE 1 List of data sources used in this study.

Dataset Year Format Resolution Source

POI 2021 Excel — AutoNavi Map Services

Nighttime light 2018 Raster 130 m Luojia1-01

Land cover 2020 Raster 10 m Esri Land Cover

Road network 2021 Vector — OpenStreetMap

ASTER GDEM V2 2015 Raster 30 m Geospatial Data Cloud

WorldPop 2020 Raster 100 m The official WorldPop project website

GPWv4 2020 Raster 1 km NASA SEDAC, United States of America

LandScan 2020 Raster 1 km Oak Ridge National Laboratory, United States of America

County-level demographic data 2020 Excel — Seventh National Census, China

Administrative boundaries 2021 Vector — Digitization based on AutoNavi Map
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environmental factors and socio-economic factors in the region.
Considering the above two factors, the details of the data sources
used in this study are shown in Table 1.

The distribution of the multi-source data in the study is
illustrated in Figure 2. It can be seen that Luojia1-01 nighttime
light data can clearly distinguish the structure and scope of the city,
and the roads. The topography of Zhengzhou is high in the
southwest and low in the northeast. Xingyang City, Shangdi
District, Gongyi City, Dengfeng City, and Xinmi City are
classified as the western region, while other districts and counties
are classified as the eastern region. There are many high mountains
and hills in the west, with the built area accounting for 32.93% of its
total area, and the trees and scrubs/shrubs accounting for 23.16%.
The eastern area is flat, with the built area accounting for 48.98% of
its total area, and the trees and scrubs/shrubs accounting for 3.18%.
Meanwhile, the road network density is high (4,520.95 km/km2) in
the east and low (1,448.14 km/km2) in the west. Kernel density
estimation of all POI data shows that the POI data display point-like
aggregated distribution. Meanwhile, the overall trend of spatial
distribution of nighttime light data and POI data is consistent.
The density of POI is 138.08 points/km2 in the east, 32.84 points/
km2 in the west.

2.3 Data processing

(1) Population data. Gridded Population of the World (GPW)
(https://sedac.ciesin.columbia.edu/) proportionally allocated
total population to grid cells based on the assumption that

population is distributed evenly over administrative units (Tian
et al., 2005). LandScan (https://landscan.ornl.gov/) relied on
ancillary data to spatially weighted population density within a
given administrative unit (Stevens et al., 2015). These two
datasets were chosen as validation data for accuracy
assessment. WorldPop (https://www.worldpop.org/) used
county-level census data for population redistribution and
provided gridded population datasets with high accuracy at
the finest spatial resolution (i.e., 100 m) in China (Stevens et al.,
2015; Ye et al., 2019). Census work is conducted every 10 years
in China. Township-level demographic data for the Seventh
National Census data (China, 2020) in Zhengzhou are
unavailable because they have not been released by
government departments. Meanwhile, the data from the Sixth
National Census (China, 2010) is too outdated, and after a
decade of development, both the city’s administrative
boundaries and population have changed considerably. The
county-level population value was extracted from WorldPop
data (mainland China dataset), and then the WorldPop data
were linearly corrected based on the seventh county-level census
data. Then, the township-level population was counted from the
corrected WorldPop data by zoning statistics as township-level
statistical population data, and then the population density of
each township was calculated.

(2) Administrative boundary data. The 2020 district codes
published by the China National Bureau of Statistics (http://
www.stats.gov.cn/tjsj/tjbz/) and Baidu search were used to
access information on the adjustment and renaming of
townships (streets) and counties (districts) in Zhengzhou.

FIGURE 2
The distribution of the multi-source data in the study.
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Then, administrative boundary data were processed to match
them with the seventh census data.

(3) POI data. Through API, POI data were obtained from the
AutoNavi Map Services (https://lbs.amap.com/), one of the
most commonly used navigation map services in China. Each
POI contains information such as name, type, latitude and
longitude, address, etc. There are 23 types of POI in total,
which are consistent with the classification standards of the
AutoNavi Map (https://lbs.amap.com/api/webservice/
download). The POI data were filtered and checked, and
596,330 effective POI records were obtained. Kernel density
estimation (KDE), with a bandwidth set as 2000 m, was adopted
to convert each type of discrete POI point data to continued and
smooth density surfaces in ArcGIS software. The density
surfaces were presented as raster data at 150 m, 300 m, and
500 m resolutions for each type of POI, respectively.

(4) Nighttime light data. The data were downloaded free from the
Luojia1-01 website (http://59.175.109.173:8888). The data were
subjected to radiance calibration and were resampled to 150 m,
300 m, and 500 m by bilinear interpolation. The radiance
calibration formula is as follows:

L � DN3/2 × 10−10 (1)
where L is the radiation correction value after absolute radiation
calibration, the unit isW/(m2 · sr · μm), DN is the image gray value.

(5) Land cover data. Land cover data was download from Esri
website (https://livingatlas.arcgis.com/landcover/), which was
produced based on 10 m Sentinel-2 image and depth
learning method. There are a total of eight categories of land
cover in Zhengzhou: water, trees, grass, flooded vegetation,
crops, scrub/shrub, built area, and bare ground. With the
tabulate area tool of ArcGIS, the township-level values of
various land cover areas were counted, and then the
proportion of various land cover areas (the area index) was
calculated. Similarly, the grid-level area indices were obtained.

(6) DEM data. The ASTER GDEM V2 data were downloaded from
the Geospatial Data Cloud (http://www.gscloud.cn/search). The
surface analysis tool was used to perform slope and aspect
analysis to obtain the slope and aspect raster layers in ArcGIS.
Then, the mean elevation, mean slope, and mean aspect of each
township cell and grid cell were counted.

(7) Road network data. The roads were derived from the
OpenStreetMap (https://www.openstreetmap.org/, last
accessed: 23 July 2021), the biggest volunteer geographic
information platform in the world. The length of the roads
in each township cell and grid cell was counted, and then the
road density (km/km2) was calculated.

The data processing in this paper was carried out in ArcGIS
(ESRI, Inc., Redlands, CA, United States of America) software. The
coordinates systems were unified to the Alberts Conical Equal Area
Projection, and the boundary range of all data was matched with the
administrative boundaries. The vector data of administrative
boundaries and grids were overlaid with other multi-source data
to obtain the township-level value and grid-level value of each
feature by the zoning statistics method. Due to the differences in
units and evaluation criteria, the township-level value and grid-level

value of each feature were normalized. For convenience, the types of
features and their codes are shown in Table 2.

2.4 Methods

The flowchart of the population spatialization in the study is
shown in Figure 3. It is divided into four parts.

(1) Data processing: Mosaicking, clipping, extraction by mask,
reprojection, and resampling, etc. were performed on the
acquired multi-source data.

(2) Feature extraction: The township-level value and grid-level
value of each feature were obtained by methods such as
zoning statistics method.

(3) Population mapping: Township-level feature values were used
as independent variables and the township-level population
density was used as the dependent variable, and both were
input to the random forest model for training. Then, the grid-
level feature values were input into the trained model to predict
the population density of the grid cells. Then, the prediction
layer of the grid was used as the weighting layer to disaggregate
the census data into the grid to generate three-scale gridded
population maps.

(4) Accuracy assessment: At the township level, the accuracy of
three population maps was evaluated using statistical
population data and validated against two publicly available
population datasets, GPWv4 and LandScan.

2.4.1 Establishing random forest models
The random forest (RF) algorithm is an ensemble learning

method composed of multiple independent decision trees. Taking
advantage of the bootstrap resampling method, each tree in the
random forest is trained by a random subset of training data, and the
prediction results of all the trees are integrated as the output (Zhao
et al., 2020). The random forest algorithm has the advantages of not
needing to consider the multi-collinearity problem, avoiding the
overfitting problem, having a high tolerance for outliers and noise,
and being suitable for processing high-dimensional feature data
(Chen and Zhao, 2020). The principle of random forest algorithm is
as follows.

(1) There is a dataset D � xi1, xi2, . . . , xiK, yi{ }(i ∈ [1, m]) with m
samples and K features. The training set used by each tree is
randomly sampled m times from the total training set with
replacement according to the bootstrap method, and n rounds
of sampling are performed. At each round of sampling, k
features are randomly selected from the K features to form a
new dataset dj � xi1, xi2, . . . , xik, yi{ }(i ∈ [1, m]), which is used
to build a decision tree. n rounds of sampling generate n decision
trees.

(2) Building a Classification and Regression Tree (CART). The
features of the samples are used as nodes. When constructing
the decision tree, how to select the segmentation variables
(selected features) and segmentation points (segmentation
that divides the feature space into two) is measured by the
impurity of the nodes after segmentation. The mean square
error (MSE) is used as a function to measure the impurity of
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TABLE 2 Types of features and their codes in this study.

Feature Code Feature Code Feature Code

Auto service P1 Governmental organization and social groups P13 Water index WI

Auto dealers P2 Science/culture and education services P14 Trees index TI

Auto repair P3 Transportation service P15 Grass index GI

Motorcycle service P4 Finance and insurance services P16 Flooded vegetation index FVI

Food and beverages P5 Enterprises P17 Crops index CI

Shopping P6 Public facility P18 Scrub/Shrub index SSI

Daily life service P7 Pass facility P19 Built area index BAI

Sports and recreation P8 Normal place name P20 Bare ground index BGI

Medical service P9 Natural place name P21 Mean elevation ME

Accommodation service P10 Transportation place name P22 Mean slope MS

Tourist attraction P11 Address sign P23 Mean aspect MA

Commercial house P12 Mean light intensity MLI Road network density RD

FIGURE 3
Flowchart of the population spatialization in the study.
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nodes in the regression tree. Themean of the decreased impurity
of each feature in all decision trees is used as a measure of the
importance of the feature, which is called Mean Decrease
Impurity. The impurity of this node is the weighted sum
G(xu, vuk) of the impurity of each child node. Its calculation
formula is as follows:

G xu, vuk( ) � nl

Ns
*
1
nl

∑
yi∈Xl

yi − �yl( )2 + nr

Ns
*
1
nr

∑
yj∈Xr

yj − �yr( )2 (2)

where xu is a segmentation variable u , vuk is a segmentation point k
of a segmentation variable u, nl, nr,Ns are the number of training
samples of the left child node, the number of training samples of the
right child node, and the number of all training samples of the
current node, respectively. Xl,Xr are the training sample sets of the
left and right child nodes, respectively. yi, yj are the target variables
of the left and right child node samples respectively, �yl, �yr are the
mean values of the target variable for the left and right child node
samples, respectively. The training process of a node in a decision
tree is to find the segmentation variable and the segmentation point
that minimizes G.

The factors affecting population distribution can be divided into
two categories: natural environmental factors and socio-economic
factors. The natural environmental factors included mean elevation,
mean slope, mean aspect, and 8 types of area indices; and the socio-
economic factors included mean light intensity and road network
density and 23 types of POI average kernel density, with a total of
36 features. The population density of 200 townships in Zhengzhouwas
used as the dependent variable, and the township-level normalized data
for each feature were taken as the independent variables (feature
matrix). The scikit-learn library was used in VSCode (Visual Studio
Code) software based on Python to construct random forest models to
fit the relationship between the population density and various types of
features. Considering the problem that the raster resolution corresponds
to the grid scale, three random forest models were constructed to realize
the population map with three scales.

When training the random forest model, it is necessary to adjust
the parameters of the model to make the model perform optimally
on the given dataset. The performance of the model is evaluated by
averaging the correct rate of ten-fold cross-validation method. The
specific method is to divide the entire dataset into ten subsets and
select one subset as the test set in turn and the remaining nine
subsets as the training set. Then, this process is executed ten times
until all subsets have been used once as the test sample. In this way,
all samples are used as training set and test set, and each sample is
verified once, which can well evaluate the generalization ability of
the model. After adjusting the model parameters based on the above
principles, the optimal parameters of the random forest models
corresponding to the three grids are shown in Table 3 below. The

random_state of all models was set to 10, and other parameters
except the following three parameters remained a default. The term
random_state controls both the randomness of the bootstrapping of
the samples used when building trees. When random_state is fixed,
the random forest generates a fixed set of trees, but each tree is still
inconsistent. The term n_estimators represents the number of base
estimators. Theoretically, the larger the n_estimators, the better the
model effect and the longer the training time, but after it reaches a
certain value, the accuracy of the model will reach a near steady state.
The termmax_depth represents the maximum depth of the tree, and
branches that exceed the maximum depth will be pruned. The term
max_features represents the number of features considered when
limiting branching, and features that exceed the limit will be
discarded. If the model is overfitting, the prediction results
become poor. The depth of the tree is controlled by limiting the
values of max_depth and max_features, which in turn prevents
overfitting.

The dataset for constructing each decision tree is obtained by
sampling with replacement. Some samples may appear multiple
times in the same dataset, and some samples may not be sampled
once. the samples that are not sampled are called out-of-bag data
(OOB), accounting for about one-third of the training samples. A
random forest model with optimal parameters was established by
tuning the parameters. The complete data set was input into the
model for training, and the out-of-bag data were used as the test set
to test the accuracy of the model. The trained model was applied to
the grids to predict the population density of each grid. Then the
gridded population density layer was employed as a weighting layer
for population redistribution.

2.4.2 Dasymetric mapping
Dasymetric mapping is a technique whereby ancillary data is

employed to guide the redistribution of population data at a finer
level of resolution (Chun et al., 2018; Bakillah et al., 2014; Briggs
et al., 2007; Mennis, 2009). The idea is to use the auxiliary data to
generate weight layers and use the weight layers to redistribute the
census data (Sinha et al., 2019). In this study, the water body was
regarded as unpopulated. At the same time, according to the
characteristics of land cover in Zhengzhou City, there were large
areas of trees and shrubs in the western alpine hills, so the grids
containing only two types of land cover, trees and shrubs, were also
regarded as unpopulated. The grid-level population density was used
as the weighting layer to disaggregate the census data into the grid
using Formula 3, as follows:

Pji � Sj/Wj( ) × Wji (3)

Where i stands for a grid and j stands for one county-level
administrative unit. Then, Pji is the predicted value of the grid i in

TABLE 3 Optimal values of parameters for three random forest models.

Parameter Parameter range RF (150 m) RF (300 m) RF (500 m)

n_estimators 1,2,3, /,1,000 99 997 549

max_depth 1,2,3, /,20 4 5 16

max_features 1,2,3, /,36 24 32 36
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county j (integers were retained by rounding), and Wji is the
distribution weight of the grid i in county j. Wj is the weighted
sum of the grid within county j. Sj refers to the demographic data of
county j in the Seventh National Census.

In China, population and boundary data for villages and
communities (a finer level than township) are unavailable due to the
confidentiality of data, making it difficult to use more granular
population data for accuracy assessment. Therefore, this paper
selected county-level demographic data for population redistribution
and conducted accuracy assessment at the township level.

2.4.3 Assessment method
The simulated population of all grids within each township cell

was counted using the zoning statistics method, and the error
between the township-level simulated population data and the
township-level demographic data was calculated. The indicators
of accuracy assessment are the mean absolute error (MAE), the root
mean square error (RMSE), the relative error (RE), the mean relative
error (MRE), and the coefficient of determination (R2) (Hu et al.,
2018; Xiong et al., 2019; Zhao et al., 2020; Guo et al., 2021). Their
respective formulas are as follows:

MAE � 1
N

∑N
i�1

Pi − Ri| | (4)

RMSE �














1
N

∑N
i

Pi − Ri( )2
√√

(5)

RE � Pi − Ri

Ri
(6)

MRE � 1
N

∑N
i

Pi − Ri| |
Ri

× 100% (7)

R2 � 1 − ∑N
i�1 Ri − Pi( )2∑N
i�1 Ri − �P( )2 (8)

Where i stands for a township andN stands for the total number
of townships. Pi is the simulated population for township i, Ri is the
statistical population of township i. �P is the average of the simulated
population of all townships. MAE is used to reflect the actual
situation of the population simulation error. RMSE is used to
express the degree of deviation between the simulated and
statistical value of the population. RE measures the accuracy of
the simulated population of each township. MRE measures the
overall accuracy of Zhengzhou’s simulated population. R2 reflects
the degree of fit of the simulation values to the statistical values. The
closer R2 is to 1, the better the fitting effect. The smaller the value of
MAE, RMSE, andMRE, and the smaller the absolute value of RE, the
better the accuracy.

3 Results

3.1 Population spatialization

After predicting the value of the grid cells by the trained random
forest model, the value of the grid cells containing only three land
cover types, water, trees, and shrubs, was assigned to 0, and then the
population was corrected at the county level.

Figure 4 shows the three-scale gridded population distribution
maps in Zhengzhou, which are recorded as 150PD, 300PD and
500PD respectively. The population distribution at three scales was
well expressed, and the simulation of the 150PD dataset was more
detailed. The three gridded population maps showed the same
pattern of population distribution. The population distribution of
Zhengzhou City showed the pattern of “one large core, multiple
small core points”. Meanwhile, when compared with the nighttime
light and POI maps (Figure 2), it showed that the high population
area matches the locations of high brightness and high POI density.
The population distribution in the central city was shown as “one
large core.” There were 6,836,412 simulated population in the
central city, with a population density of approximately
5,491 persons/km2, carrying 54.28% of the population in 16.44%
of the area. There were 5,757,926 simulated population in the
remaining districts and counties, with a population density of
approximately 910 persons/km2. The population density was high
in the central city and low in the surrounding area. In the central
city, there are also well-developed transportation networks,
complete urban infrastructures, intensive residential areas,
commercial areas, and schools.

Gongyi City, Dengfeng City, Shangjie District, Xingyang City,
Xinmi City, and Zhongmu County all had a small core point of
population distribution, with main population concentrated in their
county seat. The population of Xinzheng was mainly distributed in
the northern and southeastern parts of the city, the northern part of
which was bordered by the central city and was densely populated by
the radiation of the central city. The population of the Airport
Economic Zone was distributed in a belt from north to south, with
the construction of an urban integrated service area with a denser
population in the north, Xinzheng International Airport as the core
in the center, and a manufacturing cluster in the south. The land
cover type of the core point area with concentrated population
distribution is mainly built area with strong economic activities and
sound infrastructure.

3.2 Accuracy assessment

Considering the availability and operability of the data, the
GPWv4 and LandScan in 2020 were chosen for comparison at
the township level. The errors were calculated according to the above
Formulas 4, 5, 7. Table 4 shows the accuracy assessment indicators
based on the MAE, RMSE, and MRE in five datasets at the township
level. The MAE was 13,942.04 for 150PD, 14,185.81 for 300PD,
14,299.12 for 500PD, 29,290.96 for GPWv4, and 28,080.42 for
LandScan, with RMSE values of 18,807.78, 18,954.64, 19,327.38,
41,927.81, and 40,498.94 attained, respectively. TheMAE and RMSE
of the three population datasets in this study were significantly lower
than those of the GPWv4 and LandScan datasets. When compared
with the MRE of LandScan (45.69%), there was a little greater error
(53.19%) for the 500PD dataset and there were smaller ones for the
150PD and 300PD datasets (42.24% and 45.33%), and all four were
smaller than the GPWv4 dataset (57.78%). The results show that the
error of population simulation was smaller in this study, the degree
of deviation was smaller between the simulated population and the
statistical population, and the overall simulation error was slightly
lower. And as the grid scale decreased, the error decreased,
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indicating that grid scales had different effects on the representation
of the population.

The simulated population within each township was summed
and linearly fitted with the statistical population at the township
level. Figure 5 shows the correlations between the simulated
population and the statistical population in 200 townships. Each
point stands for the value of the simulated and corresponding
statistical population at the township level. It can be seen that

the data points of the 150PD, 300PD, and 500PD datasets were
more concentrated near the regression line than GPWv4 and
LandScan datasets. Moreover, when compared with the R2 of
GPWv4 (0.2841), and LandScan (0.3668), the 150PD, 300PD,
and 500PD datasets had higher values (0.8333, 0.8295, and
0.8224) between the simulated population and statistical
population. In general, this study can reduce the error and
provide a better fitting effect.

The RE was calculated according to Formula 6 at the township
level. The RE was divided into five ranges, and the number of
townships with different error ranges was counted (Figure 6). The
five ranges are severely underestimated (SUE; RE< − 0.5),
underestimated (UE; −0.5≤RE< − 0.2), accurately estimated
(AE; −0.2≤RE≤ 0.2), overestimated (OE; 0.2<RE≤ 0.5), and
severely overestimated (SOE; RE> 0.5). The number of townships
for GPWv4 and LandScan datasets was evenly distributed in five
ranges, while the number of townships for 150PD, 300PD and
500PD datasets was normally distributed. The percentages of
townships with AE populations in the total sample were 51.5%
for 150PD dataset, 50.0% for 300PD dataset, 49.0% for 500PD

FIGURE 4
The three-scale gridded population distribution maps (datasets) in Zhengzhou: (A) population distribution map at the 150 m level (150PD); (B)
population distribution map at the 300 m level (300PD); (C) population distribution map at the 500 m level (500PD).

TABLE 4 Comparison of accuracy assessment in five population datasets.

Dataset MAE RMSE MRE (%)

150PD 13942.04 18807.78 42.24

300PD 14185.81 18954.64 45.33

500PD 14299.12 19327.38 53.19

GPWv4 29290.96 41927.81 57.78

LandScan 28080.42 40498.94 45.69
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dataset, 24.0% for GPWv4, and 25.0% for LandScan. It can be found
that the number of townships accurately estimated by the three
population datasets in this study was more than twice that of
GPWv4 and LandScan datasets. In the case of SUE, the
percentage of townships was 1.0% for 150PD dataset, 1.0% for
300PD dataset, 1.5% for 500PD dataset, which was significantly
lower than that of GPWv4 (18.0%) and LandScan (27.5%). In the
case of UE, the 150PD, 300PD, and 500PD datasets had fewer
townships than the GPWv4 and LandScan datasets; while in the case
of OE, the opposite was true. In the case of SOE, the GPWv4 dataset
had the highest percentage of townships (21.0%). The percentages of
townships with SOE population were 12.5% for 150PD dataset,

13.5% for 300PD dataset, 14.0% for 500PD dataset, which much
higher than their respective rates of SUE (1.0%, 1.0%, and 1.5%). The
results show that compared with the GPWv4 and LandScan datasets,
the 150PD, 300PD, and 500PD datasets have good simulation
performance and improve the accuracy of population simulation.
Meanwhile, combining the contents of Table 4 and Figure 5, the
population spatialization accuracy can be ordered as follows:
150PD > 300PD > 500PD > LandScan > GPWv4.

To intuitively understand the distribution of relative errors
geographically, the relative error distribution map at the
township level derived from the 150PD dataset is shown
(Figure 7). The underestimation error of population simulation

FIGURE 5
Comparison of the correlations between the simulated population and the statistical population in 200 townships: (A) 150PD dataset; (B) 300PD
dataset; (C) 500PD dataset; (D) GPWv4; (E) LandScan.
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reached a minimum of −0.56, but the overestimation error was
larger in some townships, mainly in Jianshan Scenic Area
Management Committee (Region a, RE was 12.43), Xinzhong
Township (Region b, RE was 7.18), Liuhe Township (Region c,
RE was 3.15), and Guzhishan National Forest Park Management
Committee (Region d, RE was 2.89). These four townships are
located in the western mountainous area of Zhengzhou City, and
their land cover types are mainly trees and shrubs, accounting for
59.14% of the total area of the four townships; the built area only
accounts for 26.90%. However, the built area of the central city
accounts for 71.65% of its total area. The POI density is
278.14 points/km2 for the central city, 39.59 points/km2 for the
rest of the districts and counties, and 78.81 points/km2 for the whole
region. The road network density is 6,527.60 km/km2 in the central
city, 2,055.07 km/km2 in the rest of the districts and counties, and
2,790.46 km/km2 in the whole region. Since there are large
differences in population density, economic development, and
topography between the central city of Zhengzhou and the
western mountainous areas, the overall modeling cannot be well
balanced the situation of each township. The western area has many
high mountains and hills with less population distribution, while
some townships have higher estimated population numbers and
larger relative errors, thus leading to a larger overall mean relative
error.

3.3 Feature importance analysis

The Feature Importance Index (FII) output from the random
forest model was used to evaluate the degree of influence of each
feature on the population simulation. Figure 8 shows the ranking of
FII from the output of the random forest model corresponding to the
150 m scale. The higher the value of the FII, the greater the influence
of the feature. The total value of all the FII is 1. The top ten features

were displayed in the red box. It can be seen that the top ten features
were all derived from POI data. The spatial distribution of the top
ten POI-related features is shown in Figure 9. These ten types of
POI-related features had a similar spatial distribution pattern to the
population, showing “high in the central city and multiple cores in
the periphery.” There was high POI density and high population
density in the central city.

The total FII of the top ten POI-related features was 0.96049,
while the total FII of all POI-related features was 0.98907,
indicating that POI-related features contributed significantly
to the population simulation compared to other features.
Commercial House (P12, 0.46592) had a much higher FII than
other features. Commercial House (P12, 0.46592) contains the
information of building and residential area; Pass Facility (P19,
0.24935) contains the information of the gates of buildings and
street houses; Address Sign (P23, 0.11918) contains the
information of building number. These three features reflected
the building and residence information and ranked in the top
three. Meanwhile, the sum of the FII of these three features was
0.83445, which indicates that the features related to residence
information had greater contributions to the population
simulation. Daily Life Service (P7, 0.02687), Public Facility
(P18, 0.02427), Transportation Service (P15, 0.02168), Science/
Culture and Education Services (P14, 0.01220), and Medical
Service (P9, 0.00093) are part of infrastructure construction.
The FIIs of these five infrastructure constructions ranked 4th,
5th, 6th, 8th, and 20th, respectively, which can be concluded that
infrastructure construction was more correlated with population
distribution. The density of POI for infrastructure construction
was 73.58 points/km2 in the central city and 9.32 points/km2 in
the remaining districts and counties. The high concentration of
infrastructure construction in the central city will attract the
population to gather, and the population gathering will promote
the improvement of infrastructure construction. Some types of

FIGURE 6
The number of townships with different error ranges based on relative error.
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POIs are highly correlated with the population, while some types
of POIs are less correlated with the population. The FIIs of Auto
Service (P1, 0.00058), Motorcycle Service (P4, 0.00045), Auto
Dealers (P2, 0.00036), and Shopping (P6, 0.00017) ranked 22nd,
24th, 26th, and 31st respectively, indicating that they could
reflect the population distribution to some extent, but their
contribution to the population simulation was low compared
to other types of POI-related features. Geographical name is the
exclusive name people give to each different geographic entity.
Common place names (P20, 0.00048) are the names of
administrative divisions at all levels, while natural place names
(P21, 0.00055) are the names of mountains, rivers, lakes, and
other natural geographic entities, which have a weaker
relationship with population distribution.

Topographic features include mean aspect (MA, 0.00036), mean
slope (MS, 0.00035), and mean elevation (ME, 0.00030), which were
ranked 27th, 29th, and 30th, respectively, in terms of FII. The
topography of Zhengzhou is high in the southwest and low in
the northeast, but the FIIs of topographic features are ranked low.
The influence of topographic features is more pronounced at the
provincial level and above, while less at the municipal level (Dong
et al., 2016). Population distribution is closely related to land. While
population distribution is affected by land cover types, human
activities are also changing land cover types. In Zhengzhou, crops
cover 42.02% of the total area, and built areas cover 39.94% of the
total area. Among the features extracted from land cover data, the
crops index (CI, 0.00383) and the built area index (BAI, 0.00275)
had a greater impact on population simulation. The accuracy of

FIGURE 7
Relative error distribution at the township level (150PD dataset). (A-D) indicate regions, echoed in the figure.
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population spatialization results based on nighttime lighting data is
higher in densely populated urban areas, while the fit is poor for
rural areas with low population density (Zeng et al., 2011; Wang and
Zhang, 2021). The mean light intensity (MLI, 0.00067) could reflect
the distribution characteristics of the population to some extent, but
it was not expressive enough for the population distribution. The
results indicate that the POI-related features contribute more to the
population simulation compared to other features, which can cause
the FIIs of other features to rank lower with smaller values.

4 Discussion

To understand the role of POI data on population spatialization,
two groups of supplementary experiments (groups A and B) were
done to generate two 150 m-level population maps for comparison
with the 150PD dataset (group C) already generated in Figure 4A. In
the case of retaining 13 features other than POI-related, group A is
without POI-related features; group B is combining all POI data
without considering the types of POI and calculating the average
kernel density of POI as a feature; group C is considering 23 types of
POI features. The experiment went well. Table 5 shows the
comparison of the accuracy assessment indicators in the three
groups of experiments. From A to C, the R2 was improved from
0.5497 to 0.7950 after introducing untyped POI data, and the R2 was
improved to 0.8333 after introducing typed POI data. The degree of
population fitting kept improving, and the three errors (MAE,
RMSE, and MRE) also decreased significantly from A to C in
order, indicating that the introduction of POI data with finer
spatial granularity could greatly improve the accuracy of
population spatialization, and typed POI data were more
favorable for population spatialization.

Four regions in the three groups of gridded population maps
were selected for comparative analysis (Figure 10): Region a with

high population density and clustered distribution, region b with
medium population density and small nucleation point
distribution, region c with low population density and
scattered population distribution, and region d with more
concentrated population distribution along the valley.
Meanwhile, the accuracy of the population spatialization
results in this study was verified by combining Landsat-8
images. As can be seen from Figure 10, group A could
simulate the geomorphic contours of population distribution,
but could not reflect the density of population distribution in
detail. After adding POI-related features (B and C), in regions a
and b, the population distribution changed gradually from more
to less from urban center to urban edge, and the simulated
population in the grid increased, which reduced the
underestimation of urban population; In region c, the
population distribution did not change much because in rural
areas with low population density and scattered distribution, the
number of various types of POIs is small, while even the recorded
POI data are incomplete; In region d, the population distribution
expanded. The asymptotic distribution of the population in
group C could be better represented compared to group B.
From the above analysis, it can be concluded that adding POI-
related features can not only simulate the geomorphic contour of
population distribution but also can more reflect the spatial
heterogeneity of population distribution, which can greatly
enhance the change of population distribution and reduce the
underestimation of the population in urban areas.

Although the introduction of POI can greatly improve the
accuracy of population spatialization, as a typical volunteer
geographic information (VGI) data, more POI data are collected
in urban areas than in rural areas, and many POI data in rural areas
are unrecorded; this is beneficial for population simulation in urban
areas and less useful for population simulation in rural areas (Neis
and Zielstra, 2014; Ma et al., 2015; Zhao et al., 2020). Themain factor

FIGURE 8
The ranking of feature importance index (FII).
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describing the distribution of the population in rural areas is land
cover data. In addition, there are some POIs for public facilities,
accommodations, and restaurants in unpopulated landscapes, which
bring errors to the population simulation. From the above analysis of
FII, it was shown that POI features related to residence information
play a larger role in population simulation. Humans inhabit the
buildings. The building footprint data are used as a unit to simulate

the population distribution, which will improve the accuracy of
simulation and the level of detail of the simulated population
distribution. The use of building footprint data for population
spatialization will require more research in future studies,
considering information on the location, profile, floor level, and
usage of buildings, however detailed building footprint data are not
readily available.

FIGURE 9
The spatial distribution of the top ten POI-related features.
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FIGURE 10
Regional comparison of three 150 m-level gridded population maps. (A-D) indicate the codes for each of the three groups of experiments.
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5 Conclusion

In this study, POI, LuoJia1-01 nighttime light, land cover,
road network, and DEM data were selected as the factors that
describe the population distribution. Random forest models were
constructed to simulate the population distribution at three
scales of 150 m, 300 m, and 500 m in Zhengzhou in 2020. The
accuracy of the three population datasets of this study was
assessed at the township level and compared and evaluated
with the GPWv4 and LandScan datasets. The degree of
contribution of each type of feature to the population
simulation was analyzed based on the FII of the random forest
model. Experimental analysis was then conducted around the
POI data to explore the role of POI data and its types on the
spatialization of the population. The main conclusions are as
follows.

(1) The results of population spatialization in this study were in line
with the actual situation of population distribution in
Zhengzhou. The population distribution showed the pattern
of “one large core, multiple small core points”, forming cores
that break through the administrative boundaries and show a
trend different from the distribution of administrative regions.
The population density was high in the central city and low in
the surrounding area.

(2) Compared with the GPWv4 and LandScan datasets, the simulation
accuracy and performance of the three datasets in this study were
better. And the smaller the scale of the grid, the higher the accuracy
of population spatialization, with an accuracy ranking of 150PD >
300PD > 500PD > LandScan > GPWv4.

(3) POI data were proven to be important factors indicating
population distribution, and those related to residence
information had greater contributions to population
spatialization. Meanwhile, the introduction of POI can
greatly improve the accuracy of population spatialization and
reduce the underestimation of the urban population, and typed
POI data were more favorable for population spatialization.

Although the effect of population spatialization in this study is
good, there are still some limitations. 1) The same random forest
model was used for the entire study area in each experiment, which
resulted in large overestimation errors for some townships in the
mountainous areas of western Zhengzhou. In future studies, zonal
modeling will be carried out to reduce the errors caused by large
differences in regional conditions. To further improve the
simulation accuracy of population distribution, the integration of
other factors with finer scales, such as building footprint data, could
also be considered. 2) The Sixth Census data is too outdated, and

township-level population data from the Seventh Census has not
been published. Therefore, township-level population data were
obtained by correcting WorldPop dataset and then counting it.
This data has a certain deviation from the actual township-level
census data, which has a certain impact on the accuracy of the
simulation results. After the release of the township-level population
data of the Seventh National Census, this data can be used for the
research of population spatialization to make the accuracy
assessment more reliable.
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