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Epicenter locations are generally adjacent to active faults and past seismicity regions.
Past earthquake catalogs and the geometry of the active faults can provide key prior
knowledge concerning earthquake forecasts. In this study, we first introduce two
straightforward dedicated models, the proximity-to-past-earthquakes (PPE) and
proximity-to-mapped-faults (PMF) models, to fit the seismicity in the Sichuan-
Yunnan region, China. The hybrid proximity-to-known-sources (PKS) model with
the optimized model parameters is then used to estimate the probability of
earthquake occurrence. Second, to compare the PKS forecast efficiency to those
of different models, retrospective tests are applied to a dataset located in the
Sichuan-Yunnan region. The results show that the probability maps derived from
PPE, PMF, and PKS have non-uniform Poisson distribution features and that there is
forecasting significance for past cases of moderate earthquakes in the test region.
Finally, using Molchan error diagram tests, we find that the hybrid PKS model
performs better than the other models in the testing region. The unsatisfactory
performance of the PMF model for earthquake forecasting may lie both in the
incompleteness of the fault database and the lack of consideration of co-seismic
ruptures. Therefore, one of the three models can be used as a base model for
comparing and evaluating earthquake forecast strategies.
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1 Introduction

More than one-third of the global population experiences earthquakes, with frequent slight
or greater damage to lives and property from such events (Marti et al., 2019). However, at
present, earthquake forecasting remains a major unsolved scientific problem and is not
sufficiently reliable to rapidly predict earthquakes. Seismologists can also contribute to
society by performing long-term probabilistic seismic hazard assessments. As a basic input
for building codes, such assessments are crucial to ensure good building practices to save lives
(Hiemer et al., 2013).

Mapped faults and past earthquakes have historically been the two main types of data used by
seismic hazard models to estimate the likelihood of earthquake occurrence (Rhoades et al., 2017).
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Some short-termmodels have been built using only cataloged earthquakes,
including the short-term earthquake probability (STEP) (Gerstenberger
et al., 2005) and epidemic-type aftershock sequence (ETAS) (Ogata, 1988;
Ogata, 1998; Gerstenberger and Rhoades, 2010) models, which are based
on the decay of aftershock rates and the Omori–Utsu law (Utsu, 1961).
Other usefulmedium- or long-termmodels, such as the proximity-to-past-
earthquakes (PPE) (Kagan and Jackson, 1994; Jackson and Kagan, 1999)
and the every-earthquake-a-precursor-according-to-scale (EEPAS)
(Rhoades and Evison, 2004; Rhoades and Evison, 2005; Rhoades, 2007)
models, rely only on past earthquakes. Meanwhile, long-termmodels such
as the proximity-to-mapped-faults (PMF) model (Rhoades and Stirling,
2012) often use mapped faults with their slip rates. In addition, the
increasing availability of crustal movement observational data, such as
Global Positioning System (GPS) network data and derived models of
crustal strain rate (Bird et al., 2015; Rhoades et al., 2017) are important to
estimate the earthquake occurrence rate (Rhoades et al., 2015).

A parallel development is that of hybrid methods, which combine
two ormore different models to gain predictive skills from a single idea
or data source. The results of retrospective and pseudo-prospective
analyses have shown that some multiplicative ensembles provide
statistically better forecasts than their constituent forecasting
models (Rhoades and Stirling, 2012; Rhoades 2013; Gerstenberger
et al., 2014; Rhoades et al., 2015; Rhoades et al., 2016). Therefore, the
international Collaboratory for the Study of Earthquake Predictability
(CSEP) supports methods to evaluate combinations of two or more
individual models or to assimilate new gridded covariates into existing
models (Schorlemmer et al., 2018).

The robustness of various earthquake forecast models cannot be fully
described without first being assessed in diverse regions with distinct
seismic features. The Sichuan-Yunnan region provides a natural
earthquake forecast experiment because, following the MS

8.0 Wenchuan earthquake, it became more seismically active. For
example, two earthquakes of magnitude ≥7.0, the MS 7.0 Lushan and
MS 7.0 Jiuzhaigou earthquakes, have occurred in this region in the last
10 years since theMS 8.0Wenchuan earthquake; however, no earthquakes
had occurred over the same time period before the MS 8.0 Wenchuan
earthquake. Moreover, substantial infrastructure, such as reservoirs,
railway networks, and electricity grids, is spread throughout the
Sichuan-Yunnan region. While earthquakes of great intensity
occurring due to natural processes cannot be avoided, forewarning can
help minimize their often catastrophic and damaging impacts (Herrera
et al., 2022). Muchwork is required regarding probabilistic seismic hazard
assessments in this area. Therefore, we introduce individual probabilistic
models based on past earthquakes or mapped faults and a hybrid model
based on both to estimate the probability of earthquake occurrence; we
then take a statistical approach to evaluate the efficiency of earthquake
forecasting in the Sichuan-Yunnan region.

Section 2 includes a full description of the mapped faults and
cataloged earthquakes that were used in this study. The two individual
models and the hybrid model are introduced in Section 3. Section 4
and Section 5 present, successively, the results of the estimated
seismicity rate for each model, along with an evaluation of their
predictive effectiveness.

2 Data

We chose the Sichuan-Yunnan region for testing because of the
good monitoring capability in this region with respect to seismicity

and fault movement. In the test area of the Sichuan-Yunnan region,
which is marked in Figure 1, 1,234 earthquakes with
magnitudes ≥4.0 and depth ≤50 km were recorded in the China
Earthquake Networks Center (CENC) catalog from January 1,
1970, to September 10, 2022, including the MS 8.0 Wenchuan
earthquake, the largest earthquake in the test region. Of these,
14 target earthquakes in the test region with M ≥ 6.0 and depth ≤
50 km that occurred during the three periods of May 20, 2008–May 20,
2011; January 1, 2013–January 1, 2016; and September 10,
2019–September 10, 2022, listed in Table 1, were used to evaluate
the forecast efficiency of the three different models. Figure 1 shows the
epicenters of the earthquakes that occurred in the test region.

The Chinese Earthquake Administration (CEA) and other groups
launched the Project Crustal Movement Observation Network of
China (CMONC) to monitor the crust dynamics using various
techniques including GPS. Based on the GPS measurements and
the fault locations in the test region, the Second Monitoring and
Application Center of CEA calculated the fault rates in the Sichuan-
Yunnan region and provided the fault-model datasets for this study
(Figure 2). Figure 2 shows the higher slip rates in the Ganzi-Yushu
fault (F5), the fault intersection segment of the Xianshuihe fault (F13),
the Longmenshan fault (F10), the Jinpingshan fault (F15), the

FIGURE 1
Epicenters of the earthquakes in the research area in the Sichuan-
Yunnan region, China. The circle sizes represent the earthquake
magnitudes. The red stars indicate the target earthquakes. The blue lines
show the faults in the fault-model database. The gray line encloses
the test area in the Sichuan-Yunnan region. Fault numbers
F1–F25 indicate the Lijiang-Xiaojinhe, Hanmuba-Heihe-Mengzhe,
Nandinghe, Chuxiong-Jianshui, Ganzi-Yushu, Longriba, Songgang,
Tazang, Huya, Longmenshan, Mabian, Daliangshan, Xianshuihe,
Anninghe, Jinpingshan, Litang, Deqin-Zhongdian-Daju, Yuanmou-
Xigeda, Lancangjiang, Weixi-Qiaohou, Chenghai, Longling-Ruili,
Honghe, Menglong, and Xiaojiang faults, respectively.
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Anninghe fault (F14), and the Daliangshan fault (F12). The Qinghai-
Tibet Plateau Block moves eastward continuously, blocked by the
relatively stable Sichuan Basin, and the South China Block in the
Sichuan-Yunnan region moves from east to south along these faults at
a relatively high slip rate. In Figure 2, four aftershocks of the MS

8.0 Wenchuan earthquake with magnitudes of MS 6+ occurred near
the northern segment (latitude >32°N) of the Longmenshan fault
(F14), however, the segment of the fault does not have the expected
relatively high slip rate (Shen et al., 2009; Xiong et al., 2021).

3 Method

3.1 Proximity-to-past-earthquakes model

According to the assumption that future earthquakes are more
likely to occur near past earthquakes, Jackson and Kagan (1999)
proposed the PPE forecasting model, in which the contribution
from every earthquake is inversely proportional to the epicentral
distance and is directly dependent on the earthquake magnitude.

Under the PPE model, the earthquake occurrence-rate density λ at
time t and location (x, y) can be calculated from the earthquakes (ti,mi,
xi, yi), where i = 1, . . ., neq, in the catalog such that

λPPE t, x, y( ) � 1
t − t0

∑
i: ti < t

ae

de
2 + x − xi( )2 + y − yi( )2 + se( ) (1)

where a is a normalization parameter, d is the smoothing distance, and
s is a small spatially uniform background rate of earthquake
occurrence per day per kilometer squared to allow for earthquakes

far from past earthquakes. The seismicity rate λ(t, x, y) is higher near
past earthquakes of greater magnitude.

By maximizing the likelihood function, the three parameters
(ae, de, se) can be computed by fitting the model to the past
earthquake catalog. We used earthquakes with magnitudes of
MS > 4.0 to compute the conditional density, using January 1,
1970, to January 1, 1990, as the learning period. The likelihood
was only calculated for earthquakes with magnitudes of MS >
6.0 over the learning period. The three parameters were optimized
for target earthquakes withMS > 6.0 over the forecast period from
January 1, 1990, to May 20, 2008. Using the same parameters, the
seismicity rates for January 1, 2013, and September 10, 2019, can
also be estimated.

3.2 Proximity-to-mapped-faults model

The PMF model assumes that the mapped fault sources are
frequently affected by earthquakes having the same characteristic
magnitudes (Rhoades and Stirling, 2012). Under the PMF model,
the mapped fault sources are composed of planar segments and each
source has its own slip rate. Some long faults are divided into multiple
segments, which are assigned their own slip rates. Because of
earthquake depth estimation issues or because they are assigned a
fixed depth, every fault is treated as if its dip angle were 90°; therefore,
the distance between the faults and earthquakes has no relevance to the
earthquake depths reported in the earthquake reports. The separated
segments of the mapped faults and the individual associated slip rates

TABLE 1 Target earthquakes (MS > 6.0) in the test area in the Sichuan-Yunnan
region, China, during the three periods of May 20, 2008–May 20, 2011, January 1,
2013–January 1, 2016, and September 10, 2019–September 10, 2022.

No. Date Time MS Location Location name

Long. Lat.

1 2008-05-25 16:21:49 6.2 105.33 32.55 Qingchuan,
Sichuan

2 2008-07-24 15:09:28 6.0 105.48 32.83 Qingchuan,
Sichuan

3 2008-08-01 16:32:42 6.1 104.65 32.08 Pingwu, Sichuan

4 2008-08-05 17:49:15 6.1 105.45 32.77 Qingchuan,
Sichuan

5 2008-08-30 16:30:51 6.1 101.92 26.28 Panzhihua, Sichuan

6 2009-07-09 19:19:13 6.0 101.10 25.60 Yaoan, Yunnan

7 2013-04-20 08:02:46 7.0 103.00 30.30 Lushan, Sichuan

8 2014-08-03 16:30:10 6.5 103.34 27.10 Ludian, Yunnan

9 2014-10-07 21:49:39 6.6 100.46 23.39 Jinggu, Yunnan

10 2014-11-22 16:55:25 6.3 101.69 30.26 Kangding, Sichuan

11 2021-05-21 21:48:34 6.4 99.87 25.67 Yangbi, Yunnan

12 2022-06-01 17:00:08 6.1 102.94 30.37 Lushan, Sichuan

13 2022-06-10 01:28:34 6.0 101.82 32.25 Maerkang, Sichuan

14 2022-09-05 12:52:18 6.8 102.08 29.59 Luding, Sichuan

FIGURE 2
Fault slip rates. The blue lines indicate the faults in the fault-model
database in the test area, with line thicknesses proportional to the fault
slip rate. The gray line encloses the test area in the Sichuan-Yunnan
region. The fault numbers are as indicated in Figure 1.
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are used to fit the PMF model. The seismicity rate λPMF at time t and
location (x, y) is of the form

λPMF t, x, y( ) � 1
nf

∑nf

i�1
afri

π d2
f + x − xi( )2 + y − yi( )2[ ] + sf⎛⎝ ⎞⎠ (2)

where xi and yi are the locations of the individual point fault sources, nf
is the total number of points with associated slip rates ri, and i = 1, ...,
nf. df is the space smoothing distance, which is not sensitive to the
actual spacing between the individual points if it is much greater than
df. sf is a small spatially uniform background rate of earthquake
occurrence per day per kilometer squared, which allows for
earthquakes far from the mapped faults. Therefore, the seismicity
rate λPMF(t, x, y) is greater near mapped faults and lower far from
mapped faults. In addition, the seismicity rate increases with the fault
slip rate of the surrounding identified faults.

The test area of the Sichuan-Yunnan region has 25 mapped faults
with known slip rates, as shown in Figure 2. Each mapped fault is
separated into multiple point sources closely spaced at 0.01° intervals
along the fault. To compare the earthquake forecast efficiency of the
PMF model to that of the PPE model, we used the same learning and
forecast periods as used in the PPE model. The three parameters were
optimized for target earthquakes with magnitudes ofMS > 6.0 over the
three periods of January 1, 1990–May 20, 2008; January 1,
1990–January 1, 2013; and January 1, 1990–September 10, 2019.

3.3 Proximity-to-known-sources model

Mapped faults and cataloged earthquakes can sometimes each
contribute differently to the creation of conventional probabilistic
seismic-hazard models. For short periods, the fault data may not play a
worthwhile role in estimating the earthquake likelihood. Accordingly,
Rhoades and Stirling (2012) proposed an optimal model for
earthquake occurrence, called the proximity-to-known-sources
(PKS) model, that combines the fault location and estimated slip
rates with the cataloged earthquake locations and magnitudes. This
model consists of a convex linear combination of the PPE and PMF
models. The seismicity rate λPKS at time t and location (x, y) is of the
form

λPKS t, x, y( ) � μλPMF t, x, y( ) + 1 − μ( )λPPE t, x, y( ) (3)
where μ is an additional parameter to be estimated in the range of 0 ≤
μ ≤ 1, such that seven parameters are needed for the model.

Here, we provide three methods to combine the two models: 1)
Based on the optimized parameters (ae, de, se) of the PPE model and
(af, df, sf) of the PMF model, we calculated the seismicity rate λPKS on
May 20, 2008; January 1, 2013; and September 10, 2019, using an
empirically specified μ; i.e., μ = 0.1 and 0.9, and 2) μ is a liner
dependent on magnitude, as proposed by Hiemer et al. (2013) and
called PKS weighted model (PKSW) in this study. The form is

μ

mc −m

mc − 6

0

⎧⎪⎨⎪⎩ for 6≤m≤ 7
for 7<m≤ 9

(4)

where mc is the upper corner magnitude of the Gutenberg-Richter
relationship (Gutenberg and Richter, 1944). All mc values over the
three time intervals are MS7.0. 3) All seven parameters of the
hybrid model were optimized by maximizing the likelihood

function over the same three time intervals. Finally, we
compared the earthquake forecasting performances of the
various parameter combinations.

4 Results

4.1 Results of the PPE model

Figure 3 shows the results of the fitted seismicity rates for the three
different times: May 20, 2008; January 1, 2013; and September 10,
2019. The black stars represent earthquakes of MS 6+ that occurred
over the 3 years following the above three dates. The spatial
inconsistency of the PPE model is due to its strong event location
density concentration.

Some obvious differences along the Longmenshan fault between
the exceptions of the earthquake occurrence are shown in Figures 3A,
B. The MS 8.0 Wenchuan earthquake and its aftershocks may be the
dominant earthquake source locations contributing to the spatial
variation differences in the rate density. The seismicity rate of the
Lushan region in Figure 3C is higher than that in Figure 3B because of
the MS 7.0 Lushan earthquake. The PPE model gets its strength from
its ability to use data from these huge earthquakes.

As shown in Figure 3, the MS 6.1 Panzhihua, MS 6.0 Maerkang,
and MS 6.8 Luding earthquakes are not located at locations of
relatively higher seismicity rate, which indicates that no earthquake
clustering occurred during the last several decades. This adds to the
difficulty of forecasting earthquakes using the PPE model.

4.2 Result of the PMF model

Figures 4A–C show the spatial variation in seismicity rates at three
different dates, May 20, 2008; January 1, 2013; and September 10,
2019, respectively. As shown in Figure 4, the location probability
decreases with distance from the mapped faults. The spatial variations
do not differ obviously in Figures 4A–C because the map of the
seismicity rate is related to the locations of the mapped faults and their
slip rates, which are static on decadal timescales.

As shown in Figure 4B, the seismicity rate at the location where the
MS 6.6 Jinggu earthquake occurred is low because the epicenter of the
earthquake was far from the mapped faults. However, three of the MS

8.0 Wenchuan aftershocks and the MS 6.1 Panzhihua earthquake
(Figure 4A) are not located in relatively high seismicity rate areas, even
though they are near mapped fault sources. One possible explanation
may be that the fault slip rate at these locations is small and that the
seismicity rate did not benefit sufficiently from the fault slip rates, as
seen in Figure 2.

4.3 Results of the PKS model

Based on the various μ values, the varying seismicity rates at the
three dates, May 20, 2008; January 1, 2013; and September 10, 2019,
are illustrated in Figure 5. All the graphs indicate that the rate density
is highest near the greatest concentration of large earthquakes during
the entire history of the catalog, as well as the mapped fault sources to
different extents. The value of μ is related to the proportion of the
contribution of the PPE model used to construct the PKS model.
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Figure 5 illustrates that the smaller the μ value, the more “hot spots”
with high seismicity rates will appear. The estimated seismicity rate of
the PKS model looks like that for the μ value calculated using Eq. 4 at
the three dates.

5 Discussion

A hybrid model may underperform in a separate testing period if
the seismicity rates that contribute to it are not well correlated with the

FIGURE 3
Estimated seismicity rate using earthquakes based on the China Earthquake Networks Center (CENC) catalog. The learning period was from January 1,
1970, to January 1, 1990, based on the proximity-to-past-earthquakes (PPE) model to calculate the conditional density. (A–C) Estimated results using data
before May 20, 2008; January 1, 2013; and September 10, 2019, respectively. The black stars indicate the target earthquakes. The gray line encloses the test
area in the Sichuan-Yunnan region.

FIGURE 4
Estimated seismicity rate using earthquakes based on the CENC catalog and mapped faults. (A–C) Estimated results using data before May 20, 2008;
January 1, 2013; and September 10, 2019, respectively. The black stars indicate the target earthquakes. The gray polygon encloses the test area in the Sichuan-
Yunnan region. The fault numbers are as indicated in Figure 1.
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earthquake locations or if the model is overfitted to a training period in
which the seismicity rates are more closely correlated with the
earthquake locations than those in the testing period (Rastin et al.,

2022). Unaffected by any model fitting, an error diagram is a valuable
tool to illustrate the relationship between the seismicity rate and the
earthquake occurrence during various time periods and is also

FIGURE 5
Estimated seismicity rate based on cataloged earthquakes and mapped faults, showing results for May 20, 2008 (left), January 1, 2013 (middle), and
September 10, 2019 (right, L). (A–C) Spatial variations in estimated seismicity rates. (D–F) Seismicity rate with μ calculated using Eq. 4. Seismicity rate with μ set
to (G–I) 0.9 and (J–L) 0.1. The black stars indicate the target earthquakes.
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commonly used to evaluate earthquake forecast strategies (Molchan,
1991; Zechar and Jordan, 2008).

In this study, we defined the following earthquake forecast
strategy: there will likely be earthquakes of MS ≥ 6.0 occurring in
the subsequent 3-year period at locations with relatively high
seismicity rates based on the PPE, PMF, and PKS models.

The testing region was divided into multiple cells 0.5° × 0.5° in size.
The seismicity rate of each cell was assigned the average of all the
seismicity rates in the cells. A threshold was then specified and an
alarm was generated if the seismicity rate of the cells was higher than
the threshold. The fraction of the space-time occupied by the alarm (τ)
of the Poisson is defined such that

τ � ∑i�1,nI S i( )> slevel( )A i( )∑i�1,nA i( ) (4a)

The fraction of earthquakes missed (]) is defined such that

] � ∑i�1,nI S i( )> slevel( )E i( )∑i�1,nE i( ) (5)

where S(i) is the seismicity rate of the ith cell, slevel is the threshold
value of the seismicity rate, A(i) is the area of the ith cell, and E(i) is the
number of the targeted earthquakes at the ith alarm. We used the area
skill score (ASS) and the probability gain to summarize the potential
performance of the earthquake forecast strategy. The region above the
error diagram inside the unit square, called ASS, serves as a summary
of the prospective performance of the seismicity rate in alarm-based

earthquake occurrence forecasting (Zechar and Jordan, 2008; Zechar
and Jordan, 2010). The diagonal line indicates ASS = 0.5. A positive
connection between the seismicity rate and the frequency of
earthquakes is denoted by ASS >0.5, while ASS <0.5 denotes a
negative correlation (Rhoades et al., 2017). The probability gain
(Gain) is defined such that

Gain � 1 − ]
τ

(6)

The sample value of Gain corresponds to the slope of the line
connecting (0,1) to (τ, ν), as shown in Figure 6. The diagonal line
corresponds to a completely random guess, and Gain = 1. A higher
Gain value indicates that fewer cells are needed for the same “hits,”
which means better performance of the earthquake forecast strategy.

In Section 4, the spatial variation of the estimated seismicity rate
under the PPE, PMF, and PKS models was calculated at three dates,
May 20, 2008; January 1, 2013; and September 10, 2019. By adjusting
the threshold of the seismicity rate from the highest to the lowest, the
fraction of the space-time occupied by alarm and alarmed targeted
earthquakes was obtained and their correlations are illustrated in a
Molchan error diagram, as seen in Figure 6. All 14 targeted
earthquakes during the three periods of May 20, 2008–May 20,
2011, January 1, 2013–January 1, 2016, and September 10,
2019–September 10, 2022, are included.

With respect to the individual models, the PPE model slightly
outperforms the PMF model in the efficiency of earthquake forecast
because the ASS value of the PPE model is higher than that of the PMF

FIGURE 6
Molchan error diagram for the PPE (red curves), proximity-to-mapped-faults (PMF) (blue curves), and proximity-to-known-sources (PKS) models with
different weighting schemes (green curves: μ value optimized by maximizing the likelihood function, pink curves: μ value calculated using Eq. 4; short purple
and orange dashed curves: μ values manually specified at 0.1 and 0.9) at three different times: May 20, 2008; January 1, 2013; and September 10, 2019. The
area skill score (ASS); that is, the area above the error diagram inside the unit square, is used to evaluate the efficiency of the earthquake forecast.
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model. However, the PMF model has a more informative probability
gain than the PPE model because when τ < 0.3 and the number of
“alarmed” earthquakes is < 6, which indicates that less than six
targeted earthquakes occur near the mapped faults having a
relatively high slip rate, as seen in Figure 4. Conversely, when τ ≥
0.3, the efficiency of PPE is better than that of PMF. The target catalogs
include surprises; i.e., the MS 8.0 Wenchuan aftershocks (Figure 4A)
and the MS 6.1 Panzhihua (Figure 4A) and MS 6.6 Jinggu (Figure 4B)
earthquakes, which did not correspond to previously mapped faults.

As shown in Figure 6, ASSPMF < ASSPPE; therefore, the PPE model
is more informative than the PMF model. Meanwhile, ASSPMF <
ASSPPE ≈ASSPKS ≈ASSPKSW ≈ASSPKS(μ=0.1), which implies that, when
we specify a low value of μ close to zero, the hybrid PKS model
outperforms the PMFmodel in any combination but does not obtain a
better forecast efficiency than the PPE model.

In addition, we obtained the performance for the two methods of
combining the PMF model with the PPE model. A comparison of the
results reveals that, according to the ASS value, there is no obvious
difference between the two ensemble methods. However, the
combination method in which μ is manually specified has a more
informative gain when τ is in an appropriate range, as shown in
Figure 6.

6 Conclusion

Predicting the time, location, and magnitude of future seismic events
is possible using information from earthquakes in historical and
instrumental catalogs and geologically mapped active faults, as proven
in multiple studies (Rhoades and Stirling, 2012; Rhoades et al., 2015). In
the present study, we applied the PPE and PMF models to fit the
seismicity in the Sichuan-Yunnan region in China. Using the
optimized parameters, we estimated the seismicity rates of the PPE
and PMF models at three different times: May 20, 2008; January 1,
2013; and September 10, 2019. Retrospective synthetic testing has
consistently shown that both independent and hybrid models can
provide informative forecasts (Rhoades and Gerstenberger, 2009;
Bayona et al., 2022). Next, we introduced the PKS model proposed by
Rhoades and Stirling (2012) to fit the seismicity and to calculate the
seismicity rate for the same dates using the PPE and PMFmodels. Finally,
we collected the earthquakes withMS 6.0+ in the test region during three
time periods, May 20, 2008–May 20, 2011, January 1, 2013–January 1,
2016, and September 10, 2019–September 10, 2022, as target events for
prospective testing. The Molchan error diagram method was used to
evaluate the model performances with respect to earthquake forecasts.
Based on our results, our main conclusions are as follows.

(1) The PPE, PMF, and PKS models show better forecast efficiency
with respect to moderate earthquakes compared to a
homogeneous Poisson distribution in the Sichuan-Yunnan test
region. While the PPE model is straightforward, its earthquake
forecast ability is significant. In some cases, the PMF model has a
more informative probability gain than the PPE model when τ is
below 0.3, which indicates that, in the Sichuan-Yunnan region, the
earthquake forecast is more effective when assigning a relatively
higher threshold. We obtained a poor performance with the PMF
model when τ was high.

(2) The forecast efficiencies differed due to discrepancies in the prior
information or precursors related to the earthquakes and active

tectonic setting. The PMF model, which is derived from the time-
independent slip rate of the active faults, represents features that
are expected to affect the earthquake occurrence over a long-time
frame. The results of the PMF model are also affected by the
intrinsic incompleteness of the fault database (e.g., Basili et al.,
2013), especially any unknown faults in the test region. However,
it is impossible to obtain all of the existing faults. The missed
earthquakes; e.g., the MS 6.6 Jinggu earthquake, may have
occurred in the vicinity of an unknown fault. Moreover, some
large earthquakes can produce higher scaling co-seismic ruptures
equal to thousands of times the slip displacement in a single year.
The highest slip displacement, that of the MS 8.0 Wenchuan
earthquake, was 12–15 m (Li et al., 2009), located at Beichuan,
where three aftershocks occurred that were missed in the forecast
by the PMF model. The unsatisfactory performance of the PMF
model may lie both in the incompleteness of the fault database and
in the lack of consideration of co-seismic ruptures.

(3) The hybrid PKS model can incorporate information from the PPE
and PKS models and consequently maintained the best
performance over the three testing epochs. This is consistent
with previous studies of hybrid short-, medium-, and long-term
components (Rhoades et al., 2016; Christophersen et al., 2017;
Rhoades et al., 2017). The key point may be that the hybrid model
obtains a variety of strengths from the component in ways that
other components do not. However, the PKS model, given any
method of combination, did not outperform the PPE model,
possibly due to the poor efficiency of the PMF model.

(4) Comparisons of the methods of hyper-parameter optimization in
which the seven parameters are fit by maximizing the likelihood
function, calculating the value of μ based on the linear function of
magnitude, or by specifying the value of μ showed an efficiency
difference in the PKS model performance. In particular, the
optimization method with a manually specified μ potentially
obtained a good informative gain for some particular seismic
events, which implies that the earthquake forecast strategy could
be adjusted using an appropriate specified threshold in the test
region.

The retrospective tests in our study also had limitations; for
instance, the earthquake forecast strategy was originally designed
for a specified 3-year interval. The performance may change
somewhat when applied to other periods because of the degree
of time dependence in the data used to generate the models. In
addition, we did not account for location uncertainties when
estimating the seismicity rates of the three models. Because we
calculated their seismicity rates on a rather coarse grid of 0.1° × 0.1°

cells, location errors can naturally be accommodated without
significantly affecting the correlation with the earthquake
locations (Rastin et al., 2022).

The Sichuan-Yunnan region is one of the most active seismic
regions on the Chinese mainland, and various spatial parameters
carrying different types of information have been used to analyze the
seismic activity. The PPE model, which is straightforward, has good
forecast efficiency and can be used as a base model to evaluate the
effectiveness of various earthquake forecast methods. Moreover, the
results of our study indicate that an approach to earthquake
forecasting that is model-driven and hyper-parameter controlled
could be a promising means to implement operational earthquake
forecasting.
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