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Convolutional Neural Network (CNN) is widely used in seismic data denoising due
to its simplicity and effectiveness. However, traditional seismic denoisingmethods
based on CNN ignore multi-scale features of seismic data in the wavelet domain.
The lack of these features will decrease the accuracy of denoising results. To
address this barrier, a seismic denoise method based on the wavelet-inspired
invertible network with atrous convolutions spatial pyramid (WINNet_ACSP) is
proposed. WINNet_ACSP follows the principle of lifting wavelet transform. The
proposed method utilizes the redundant orthogonal wavelet transform to obtain
frequency multi-scale information from noisy seismic data. Then predict update
network (PUNet) extracts spatial multi-scale features of approximate and detailed
parts. The sparse driven network (SDN) learns the complex multi-scale
information and obtains sparse features. These sparse features are processed
to eliminate random noise. Compared to standard convolution, the atrous
convolutions spatial pyramid (ACSP) can extract more features. The redundant
features are the key to ensure the precision of multi-scale information. Therefore,
the introduction of ACSP in PUNet can guarantee the denoising effect of the
network. WINNet_ASCP combines the characteristics of wavelet transform and
neural network and has a high generalization. Besides, transfer learning is used to
overcome the difficulty caused by the training sample size of seismic data. The
training process includes pre-training and post-training. The former is trained to
obtain the initial denoising network by natural image samples. The latter is trained
with a small sample of seismic data to enhance stratigraphic continuity. Finally, the
proposed method is tested with synthetic and field data. The experimental results
show that the proposedmethod can effectively remove random noise and reduce
the loss of detailed information in prestack seismic data. In the future, wewill make
further improvements on this basis and conduct experiments on 3D prestack data.
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1 Introduction

Random noise can affect the signal-to-noise ratio (SNR) of
seismic data. Suppressing random noise and improving the SNR
of seismic data is a critical step in seismic signal processing (Kong
and Peng, 2015; Saad and Chen, 2020; Zhong et al., 2021). So far,
researchers have come up with many methods to suppress random
noise. Common methods include predictive filtering (Chen and Ma,
2014; Liu et al., 2020; Wang et al., 2021), mode decomposition (Han
and van der Baan, 2015; Gómez and Velis, 2016; Long et al., 2021),
low-rank constraints (Anvari et al., 2017; Chen et al., 2017; Huang,
2022), and transform domain (Kesharwani et al., 2022; Xie et al.,
2022; Zhang et al., 2022).

Predictive filtering exploits the predictability of seismic data to
suppress random noise. Canales and Lu (1993) first time proved the
feasibility of predictive filtering technology in seismic data denoising
field. Chen and Sacchi (2017) proposed a predictive filtering
approach to simultaneously suppress mixed noises. This
approach utilizes the hybrid L1/L2 norm to design a robust
M-estimate of a special autoregressive moving-average model.
The experimental results show that the model can effectively
remove the mixed noise. Besides, Liu and Li (2018) proposed an

adaptive predictive filtering method for non-stationary seismic
signals. This method utilizes streaming characteristics to speed
up the computation and uses signal-to-noise orthogonalization to
enhance the denoising ability. Experiments on field data
demonstrate the superiority of the method.

Mode decomposition-based denoising methods use
correlation to separate seismic data into signal and noise
components. Cai et al. (2011) utilized empirical mode
decomposition to denoise seismic record. The denoising result
showed that mode decomposition can suppress random noise.
Zhang and Hong (2019) proposed a random noise suppression
method based on the complete ensemble empirical mode
decomposition. The results show that complete ensemble
empirical mode decomposition has high feature recognition
ability in complex random desert noise. Wu et al. (2022) uses
multivariate variational modal decomposition on the segmented
seismic data. This method significantly improves the lateral
continuity and SNR of the seismic data.

Low-rank constrained denoising methods utilize seismic
data’s low-rank property to remove random noise. Wang et al.
(2018) proposed a Hankel low-rank approximate denoising
approach. Hankel structure can enhance the seismic low-rank

FIGURE 1
The network structure of WINNet_ACSP.

FIGURE 2
Lifting scheme wavelet transform.
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property. The enhanced low-rankness effectively removes
random noise. Feng et al. (2021) proposed a denoising method
using low-rank tensors. This method applies low-rank
constraints to the seismic data tensor and improves the
structural similarity of seismic data.

Transform domain-based denoising methods utilize the
characteristics of seismic data in different transform domains to
attenuate random noise. Zwartjes and Gisolf (2007) used Fourier
transform to reconstruct seismic data. The high SNR reconstruction
results demonstrate the feasibility of this method. Liang et al. (2018)
proposed a denoising method based on the non-subsampled shearlet
transform. The results show that the non-subsampled shearlet

transform can suppress random noise and retain effective signals.
Chen and Song (2018) used wavelet decomposition to decompose
seismic data into multiple components. Then different threshold
methods are applied to different seismic data components to achieve
random noise suppression.

Predictive filtering, mode decomposition, low-rank
constraints, and transform domain use the prior information
of seismic data to construct suitable optimization strategies.
Though these methods have good denoising ability and
generalization abilities, denoising results are easily affected
by human factors because of their large number of
hyperparameters. To reduce the interference of human
factors, researchers proposed the learning-based denoising
method (Beckouche and Ma, 2014; Chen, 2017; Richardson
and Feller, 2019; Yu et al., 2019). Dictionary learning and
deep learning are commonly used strategies. Dictionary
learning-based denoising methods train appropriate
dictionary elements and linearly combine the elements to
suppress random noise. Beckouche and Ma (2014) proposed
a step-decomposable dictionary learning denoising method.
The field data denoising result show that this method has a
good denoising performance. Wang and Ma (2019) used the
variation of noise variance in space to design a dictionary
learning method with adaptive threshold parameters. The
introduction of self-adaptation can realize blind denoising of
seismic data and obtain signals with a high SNR. Kuruguntla
et al. (2021) introduced a double sparse dictionary learning
constraint to improve the denoising performance. This method
combines the strength of the analytical transform and adaptive
transform to suppress mixing noise. Chen et al. (2023) proposed
a robust dictionary learning denoising method to reduce the
loss of effective signal. This method retrieves leaked seismic
signals by introducing a Huber-norm sparse coding model.
Synthetic data and field data demonstrate the effectiveness of
this method.

The denoising method based on deep learning distinguishes
random noise from effective seismic signals by extracting the
implicit features of seismic data through a neural network.
Zhang et al. (2018) proposed a fast and flexible denoising
convolutional neural network (FFDNet) to suppress noise.
Numerous experimental results prove that FFDNet can
flexibly and efficiently suppress random noise. Yu et al.
(2019) attenuated the random and linear noise of complex

FIGURE 3
The process of predict and update.

FIGURE 4
The structure of PUNet.

FIGURE 5
Atrous convolution with different dilation rates. (A) Dilation rate of 1; (B) Dilation rate of 2; (C) Dilation rate of 3; (D) Dilation rate of 4.

Frontiers in Earth Science frontiersin.org03

He et al. 10.3389/feart.2023.1090620

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1090620


seismic data using CNN. Experimental results prove the
potential applications of CNN in suppression of random,
linear, and multiples noise. Guo et al. (2019) proposed a
convolutional blind denoising network (CBDNet) to eliminate
random noise. The experimental results show that CBDNet can
flexibly remove different levels of random noise by introducing a
noise level estimation subnetwork. Sang et al. (2020) proposed a
denoising method for multidimensional geological structure
features based on the end-to-end deep denoising
convolutional neural networks (DCNNs). DCNNs have a
good denoising ability for complex geological structures, by
extracting the characteristics of seismic data in different
directions. Yang et al. (2021) proposed a denoising approach
for 3-D seismic data by deep skip autoencoder. This approach
uses the deep skip autoencoder to extract the waveform features
of each seismic data patch. Feng and Li (2021) combined
singular value decomposition (SVD) and neural networks to
suppress noise interference in distributed acoustic sensing. The
introduction of SVD improves the network’ generalization and
can accurately represent complex features in seismic data. Dong
et al. (2022) utilized a spatial attention mechanism and
convolutional neural network to distinguish weakly reflected
seismic signals from strong random noise. The spatial attention
further strengthens the denoising ability of the convolutional
neural network.

Learning-based methods can extract various implicit features of
seismic data. Through these implicit features, non-linear mapping of
noiseless seismic data and noisy seismic data can be established.
However, learning-based methods rarely take into account the
advantages of other categories of methods approaches. For

example, the wavelet transform threshold-based denoising
method proved that the multi-scale features of seismic data can
suppress random noise. But learning-based methods do not consider
multi-scale information. The lack of multi-scale information results
in a limited denoising effect of learning-based methods. To extract
more abundant seismic information and improve the denoising
effect, a wavelet-inspired invertible network with atrous
convolutions spatial pyramid (WINNet_ACSP) is proposed for
seismic denoising task. The proposed method consists of the
lifting inspired invertible neural network with atrous
convolutions spatial pyramid (LINN_ACSP) and sparse driven
network (SDN). LINN_ACSP and SDN follow the principle of
lifting wavelet transform and soft threshold operation,
respectively. Therefore, LINN_ACSP inherits the multi-scale
characteristic, sparsity, and perfect reconstruction characteristic
of the lifting wavelet transform. Multi-scale features can ensure
that the network effectively suppresses random noise. Sparsity can
be exploited by soft-thresholding to distinguish random noise.
Perfect reconstruction characteristic ensures that effective signals
are not leaked. LINN_ACSP can obtain the frequency and spatial
multi-scale information of seismic data through the splitting
operator, prediction and update network (PUNet). The detail and
approximate parts of the seismic data can be obtained by using this
multi-scale information. Using the sparse detail part obtained by
LINN_ACSP, the SDN learns to denoise the detail coefficients and
obtains the denoised detail coefficients. Besides, to overcome the
difficulty caused by the training sample size of seismic data, the
proposed method utilizes transfer learning for training. Finally, the
proposed method and other state-of-the-art methods are tested with
synthetic and field seismic data. The experimental results show that
the proposed method can effectively remove random noise and
reduce the loss of detailed information in prestack seismic data.

2 Methods

Noisy seismic data can be expressed as follows

Y � X + N (1)
where Y represents noise-containing seismic data observed in the
field, X denotes seismic data, and N indicates additive white
Gaussian noise.

In this work, we propose a method for attenuating prestack
seismic random noise using WINNet_ACSP. The LINN can obtain
frequency multi-scale features in the wavelet domain (Huang and
Dragotti, 2022). Embedding ACSP in LINN can extract spatial
multi-scale features of the approximate or detail parts. LINN_

FIGURE 6
Atrous convolutions spatial pyramid.

FIGURE 7
Convolution. (A) Standard convolution; (B) Depth-wise separable convolution.
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ACSP combines the characteristics of wavelet transform and neural
networks. The entire network structure of WINNet_ACSP follows
the wavelet threshold principle. At the same time,WINNet_ACSP as
a neural network can realize non-linear mapping. The network
structure of WINNet_ACSP is shown in Figure 1.

In Figure 1, LINN_ACSP represents lifting inspired invertible
neural networks with atrous convolutions spatial pyramid, SDN
denotes the sparse-driven network, D indicates the detail part,
representing the boundary information, A is the approximate
part, representing the smoothing information, n indicates the
n-th scale, and the superscript ~ indicates the part after
denoising.

WINNet_ACSP consists of LINN_ACSP and SDN. The forward
pass of LINN_ACSP learns to perform a non-linear redundant
transform on seismic data to obtain the multi-scale approximation
part and detail part. The SDN learns to denoise the detail coefficients
and obtains the denoised detail coefficients. Finally, using the

backward pass of LINN_ACSP, the approximate part and the
denoised detail part are reconstructed to obtain denoised seismic data.

2.1 LINN_ACSP

The denoising method based on wavelet transform can well
remove the random noise in seismic data (Aghayan et al., 2016). The
lifting scheme is known as the second-generation wavelet transform
(Sweldens, 1998). The second-generation wavelet transform process
can be divided into three steps: split, predict and update. Each step
can be reconstructed by changing the direction and sign of the data
flow. The splitting and merging process of the lifting scheme wavelet
transform is shown in Figure 2.

In Figure 2, p represents the predict step, u denotes the update
step, d [ ] indicates the detail part, a [ ] is the approximate part, s [
] represents seismic data or approximate part, and n indicates the
n-th scale.

However, for the split step, the lifting scheme wavelet transform
uses a non-redundant transform. Affected by random noise, the non-
redundant transformation will lose some important seismic
information. For the prediction and update steps, the lifting scheme
wavelet transformutilizes a simple linear formula and cannot accurately
represent complex spatial features. For the above problems, some
researchers use neural networks to complete the above requirements.
LINN_ACSP is an invertible neural network with a structure inspired
by the lifting scheme. LINN_ACSP inherits the sparsifying ability,
perfect reconstruction characteristics, and multi-scale characteristics
of the wavelet transform. Similar to the lifting scheme wavelet
transform, LINN_ACSP consists of a splitting/merging operator, and
a learnable predict and update network (PUNet).

2.1.1 Splitting/merging operator
LINN_ACSP uses redundant linear operators as a splitting

operator, denoted as S. The split operator S is parameterized by a
convolution kernel K∈Rc×1×ρ×ρ, where c denotes the number of
channels and ρ denotes the spatial filter size.

FIGURE 8
The structure of sparse driven network.

FIGURE 9
Training loss.
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Using the redundant split operator to process the seismic data,
the approximate part and the detail part with frequency multi-scale
are obtained, as shown in the following formula

S Y( ) � A1,D1( ) (2)

where A1 represents the approximate part of the first scale, andD1 is
the detail part of the first scale.

To ensure invertible, the merge operatorM is parameterized
by the transpose of the convolution kernel corresponding to
the split operator. The merge operator reconstructs the

FIGURE 10
Synthetic Seismic Data. (A) Noise-free data; (B) Noisy data.

FIGURE 11
Synthetic seismic data denoising results section. (A) DMSSA; (B) SSWT-GoDec; (C) DnCNN; (D) The proposed method; (E) Removed noise by
DMSSA; (F) Removed noise by SSWT-GoDec; (G) Removed noise by DnCNN; (H) Removed noise by the proposed method.
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approximate part and detailed part into seismic data. It can be
defined as

M A1,D1{ }( ) � Y (3)
where { } is the concatenation operation.

Redundant representation can effectively reduce the leakage
of seismic information and improve the stability of
reconstruction results. Considering the waveform
characteristics of seismic records, the sym2 wavelet is used to
construct the convolution kernel K.

2.1.2 PUNet
LINN_ACSP uses a learnable convolutional neural network

with ACSP to imitate the prediction and update operations
in the lifting scheme wavelet transform. This convolutional
neural network is named PUNet. PUNet can adaptively

learn the corresponding non-linear features of the
approximate part and the detailed part. These non-linear
features are used to predict the detail part and update the
approximate part. Completing one prediction and update
process can be called one lifting step. Suppose there are m
pairs of PUNet, in the n-th scale. The m times of lifting steps
are shown in Figure 3.

In Figure 3, P represents the predict network, U denotes the
update network, and the subscript m indicates the m-th lifting
step. This paper sets m = 4.

In the forward transform, the approximate part and the detail
part of the seismic data are non-linearly transformed by the neural
network into a representation that is easier to denoising. For the
approximate part An and detailed part Dn split in the n-th scale, the
predict network uses the correlation between the approximate part
and the detail part to perform prediction operation on the

FIGURE 12
The F-K spectrum of the seismic data. (A) Clean data; (B) Noisy data; (C) DMSSA; (D) SSWT-GoDec; (E) DnCNN; (F) The proposed method.
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approximate part. The m-th pairs predict operation can be
expressed as

Dn,m � Dn,m−1 − Pn,m An,m−1( ) (4)
The purpose of the predict network is to make Dn,m sparser.
The update network act on the detail part to obtain the update

result. Add the updated result and the approximate part to get the
adjusted approximate part. The m-th pairs update operation can be
expressed as

An,m � An,m−1 + Un,m Dn,m−1( ) (5)
The purpose of the update network is to make the approximate

part An,m smoother.
In the backward transform, the denoised detail part and

approximate part are reconstructed back to the original domain
by the same set ofm pairs PUNet used in the forward transform. The
formula is as follows

Dn,m−1 � Dn,m + Pn,m An,m−1( ) (6)
Cn,m−1 � Cn,m − Un,m Dn,m−1( ) (7)

2.1.3 Structure of PUNet
To accurately predict and update the detail and approximate

parts, PUNet needs to extract spatial multi-scale features of the
detail and approximate parts. So PUNet is constructed by
ACSP, residual blocks with depth-wise separable convolution,
and the soft-thresholding operator approximated as the
activation function. The network structure of PUNet is shown
in Figure 4.

In Figure 4, ACSP represents atrous convolutions spatial
pyramid, RB indicates residual block with depth-wise separable
convolution, Conv2D is the 2D convolutional layer, and the
subscript j represents j-th RB. This paper sets j = 4.

2.1.3.1 Atrous convolutions spatial pyramid
Atrous convolution is also called dilated convolution. Atrous

convolution can change the receptive field by changing the

dilation rate without increasing the number of convolution
kernel parameters. The convolution kernel of atrous
convolution is equivalent to inserting zeros between adjacent
filter values in the horizontal or vertical direction of the
convolution kernel of standard convolution. As shown in
Figure 5, the larger the dilation rate, the larger the receptive
field of the atrous convolution.

ACSP contains multiple parallel branches of the atrous
convolutions with different dilation rates, shown in Figure 6.
ACSP can extract spatial multi-scale features of approximate
part and detail part (Ma et al., 2019). These spatial multi-scale
features are fused by 1 × 1 convolution and input to the residual
block.

2.1.3.2 Residual block with depth-wise separable
convolution

The residual block directly stacks the input on the output
through the skip connection to realize the feature fusion of the
current module and the previous module. Feature fusion can
solve the gradient vanishing problem during neural network
training. Specifically, the residual block converts the original
mappings that need to be learned into residual mappings, as
shown in Eq. 8. And residual maps are easier to optimize for
neural networks.

R z( ) � O z( ) − z (8)
where z represents input features, O(z) indicates original mapping,
and R(z) is residual mapping.

So residual learning can improve the stability of the network and
allow more layers to be stacked to enhance the learning ability of the
network.

Depth-wise separable convolution can reduce residual
block parameters and ensure the accuracy of feature
extraction by dividing the standard convolution operation
into two parts (Chollet, 2017), as shown in Figure 7. The
first part is the depth-wise convolution. The second part is
the 1 × 1 convolution. Depth-wise convolution performs a
separate convolution on each channel. The 1 ×
1 convolution integrates all channel information. When the
number of channels and the size of the convolution kernel are
large, depth-separable convolution can effectively reduce
memory and time costs during training.

2.1.3.3 Soft-thresholding
The soft-thresholding activation function expression is as Eq. 9

STλ z( ) � sgn z( )max z| | − λ, 0( ) (9)
where, ST represents soft-thresholding operations, z is input
features, and λ is a hyperparameters.

The soft-thresholding operator can be regarded as a two-sided
ReLU function. Therefore, for seismic data with peaks and troughs,
the soft-thresholding is more suitable as a non-linearization operator.

2.2 Sparse driven network (SDN)

The sparse driven network (SDN) consists of convolutional
layers and soft-threshold sparse operators. For the detail parts

FIGURE 13
Field seismic data.
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at each scale, the denoising operation of the sparse drive
network does not directly perform simple soft thresholding
on the detail coefficients. The purpose of the sparse-driven
network is to first utilize convolutional layers to transform
the detail parts at each scale into a domain more suitable for
denoising. In this domain, the eigencoefficient of the effective
signal is made larger, and the eigencoefficient of random noise is
made smaller. All feature coefficients are then processed using a
learnable soft threshold operator. Finally, a convolutional layer
is used to convert the feature coefficients back to the domain
corresponding to the detail part. The network structure of SDN
is shown in Figure 8.

2.3 Network training

To overcome the problem of the training sample size of
seismic data, transfer learning (Pan and Yang, 2009) is used in
this paper. The training process is divided into pre-training and
post-training. In the pre-training step, a dataset of natural images
is used to train the network. The pre-training can teach LINN_
ACSP and SDN how to predict updates and denoising,

respectively. In the post-training step, a small sample of
seismic data is used for training to fine-tune the network. To
reduce computer consumption, the dataset size is divided into
50 × 50 as the input of the neural network. The optimizer uses
Adaptive Moment Estimation with a learning rate of 0.001 in the
pre-training and 0.0001 in the post-training. Figure 9 is the
training loss.

3 Examples and results

3.1 Evaluation of denoising performance

The SNR can directly reflect the quality of denoising results, it is
defined as

SNR � 10log10
X‖ ‖2F

X − Xdenoise‖ ‖2F
(10)

where Xdenoise is the estimated or denoised seismic data.
SNR can evaluate the denoising effect of various methods

as a whole. However, calculating SNR requires noise-free
seismic data. So the SNR cannot be calculated in field

FIGURE 14
Field seismic data denoising results section. (A)DMSSA; (B) SSWT-GoDec; (C)DnCNN; (D) The proposedmethod; (E) Removed noise by DMSSA; (F)
Removed noise by SSWT-GoDec; (G) Removed noise by DnCNN; (H) Removed noise by the proposed method.
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seismic data tests. To comprehensively evaluate the denoising
results, the F-K spectrum is utilized to evaluate the denoising
effect of various methods, too. F-K spectrum can analyze the
advantages and disadvantages of various methods in terms of
frequency.

3.2 Synthetic two-dimensional (2-D) seismic
data

The marmousi2 P wave velocity model was used as the
forward model. Combined with the first-order stress-velocity-
sound wave equation, 31 shot synthetic data that conform to the
law of field seismic data are obtained. The synthetic seismic data
of each shot contains 277 traces, each trace has 3,000 sampling
points, the sampling interval is 0.5 ms, and the domain

frequency range is 20–30 Hz. The 30 shot synthetic seismic
data were randomly selected as the post-training dataset. The
selected seismic data of each shot is divided into datasets of size
50*50, as the input of the neural network. The remaining one-
shot synthetic seismic data, shown in Figure 10, was used to test
the denoising effect of the proposed method and other methods.
Then AWGN was added to seismic data to generate noisy
seismic data with SNR = −2 dB.

To evaluate the denoising effect of the proposed method,
three state-of-the-art seismic denoising methods are used for
comparison. Figures 11A–D are the denoising results of f-x
damped multichannel singular spectrum analysis (DMSSA),
SSWT-GoDec method, DnCNN and the proposed method,
respectively. Figure 11A shows that the random noise in the
sanction of the denoising results based on DMSSA is effectively
suppressed. And this method does not cause the waveform

FIGURE 15
The F-K spectrum of the field seismic data. (A) Noisy data; (B) DMSSA; (C) SSWT-GoDec; (D) DnCNN; (E) The proposed method.
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distortion of the seismic effective signal. The SNR of the
DMSSA is 6.9 dB. Figure 11B contains a lot of random
noise, and the waveform of the seismic signal is distorted.
The SNR of the SSWT-GoDec is 3.3 dB. Figure 11C shows that
DnCNN can suppress random noise, but also weaken the
continuity of effective seismic signals. The SNR of the
SSWT-GoDec is 4 dB. Figure 11D shows that the proposed
method can effectively suppress random noise without causing
distortion of the effective seismic signal waveform, nor
weakening the continuity of the signal. The SNR of the
proposed method is 7.3 dB. This result proves that the use
of multi-scale features can improve the denoising effect of the
neural network.

The removed noise section of the above method is shown in
Figure 11E–H. Comparing Figure 11E–H the results show that
there is obvious seismic reflection information in the whole
removed noise section based on SSWT-GoDec and DnCNN.
The denoising method based on DMSSA, when affected by
random noise, will leak effective signals when recovering high-
amplitude seismic signals. Finally, the seismic signal leakage
cannot be observed in the removed noise section
corresponding to the proposed method. This result
demonstrates that the use of multi-scale features can prevent
the leakage of valid seismic signals.

Figures 12A, B shows the F-K spectra of clean and noisy
seismic data, respectively. Figure 12C–F are the F-K spectrum of
the denoising results of the above methods. Figure 12C is the F-K
spectrum obtained by DMSSA denoising. Comparing Figures
12A, C, when the frequency is higher than 30 Hz, the amplitude
of the F-K spectrum shown in Figure 12C is smaller than the
corresponding F-K spectrum of the noise-free seismic data. This
result shows that the DMSSA-based denoising method loses
high-frequency information, that is, leakage occurs when the
seismic signal changes from low amplitude to high amplitude.
Figure 12D is the F-K spectrum obtained by SSWT-GoDec
denoising. Comparing Figures 12A, D, when the frequency is
lower than 20 Hz, the F-K spectrum shown in Figure 12D is less
consistent with Figure 12A. This result shows that the denoising
method based on SSWT-GoDec will change the low-frequency
information, that is, the waveform of the seismic signal is
distorted. Figure 14E is the F-K spectrum obtained by
DnCNN denoising. Comparing Figures 12A, E, the overall
magnitude of the F-K spectrum shown in Figure 12E is lower
than that in Figure 12A. The results show that the denoising
method based on DnCNN will leak the effective seismic signal.
Figure 12F is the F-K spectrum obtained by the proposed
method for denoising. Comparing Figures 12A, F, the F-K
spectrum shown in Figure 12F has the highest similarity with
Figure 12A. The results show that the proposed method can
effectively remove random noise and protect critical seismic
signals.

3.3 Application on field seismic data

To verify the effectiveness of the proposed method in field
seismic data, the single shot data shown in Figure 13 are used for

testing. This single shot data contains 180 traces, each trace has
500 sampling points, and the sampling interval is 0.005 s.

Figure 14 shows the denoising results and removed noise
section of the proposed method and other methods,
respectively. Observing Figure 14, the results show that the
DMSSA-based denoising method will seriously leak the effective
signal. SSWT-GoDec-based denoising approach cause
waveform distortion and lateral discontinuities. DnCNN-
based denoising methods lose effective signals. The proposed
method can effectively suppress random noise and retain valid
signals.

Figure 15 shows the F-K spectrum of the field single shot
seismic data and denoising results. The F-K spectrum
amplitudes of DMSSA and DnCNN denoising results are low,
again indicating that the effective signal will leak. The F-K
spectrum of the SSWT-GoDec denoising results has a small
amplitude in the low frequency part, which confirms the
waveform distortion. The amplitude of the F-K spectrum of
the denoising result of the proposed method is appropriate and
focused. This result proves that the proposed method can
effectively suppress random noise and retain important
seismic signals.

4 Conclusion

This paper proposes a denoising method for prestack seismic
data using WINNet_ACSP. This method can effectively suppress
random noise and prevent the leakage of important seismic
information. In the forward pass of WINNet_ACSP, the first
step uses a redundant transformation to split the seismic data to
obtain frequency multi-scale approximate and detail parts. The
second step utilizes a learnable neural network with ACSP to
extract spatial features for the approximate or detail parts. The
third step uses the sparse drive network to process the coefficients
of the detail part. Finally, the denoised seismic data is
reconstructed using the backward pass of WINNet_ACSP. The
whole denoising process follows the principle of wavelet
transformation. The combination of redundant transformation
and ACSP can obtain richer multi-scale information. These
multi-scale features can effectively suppress random noise and
retain important seismic information. Transfer learning divides
the training process into pre-training and post-training. The
former is trained using natural images. The latter is trained
using a small amount of seismic data. Synthetic and field
seismic data are utilized to test the proposed method and
other methods. The results show that the proposed method
can effectively suppress random noise, improve the SNR of
seismic data, and prevent the leakage of effective signals. In
the future, we will make further improvements on this basis
and conduct experiments on 3D prestack data.
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