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The debris flows in the Taihang Mountain region in North China are basically
triggered by rainstorms. Firstly, the debris flow susceptibility of the Shaling Gully,
Lingshou County, Hebei Province, China was analyzed in this paper to evaluate its
hazard and effect on the downstream proposed structures. Secondly, the maximum
flow depth and velocity of the potential debris flow in Shaling Gully were numerically
simulated based on the FLO-2D model, and the simulation results indicate that the
flow depths under the 50-year and 100-year rainstorms will have some effect on the
downstream proposed structures. With debris flow intensity classification, the hazard
of potential debris flow in Shaling Gully was classified. According to the flow depths
and velocities simulated by FLO-2Dmodel, the ARCGIS10.8 software was adopted to
optimize the hazard zones, and therefore the hazard zonation map was established.
With consideration of simulation results under natural conditions and other factors
such as gully feature, a 4 m high and 40m wide retaining dam was designed. The
numerical simulation results show that the retaining dam may decrease the debris
flow hazard to a negligible level, which offers some beneficial reference to the
subsequent engineering design for Shaling Gully.

KEYWORDS

hazard of potential debris flow, FLO-2D, ArcGIS, retaining dam, numerical simulation

1 Introduction

Debris flows are considered to be very dangerous mass movement in the world (Lee and
Widjaja, 2013). In China, the debris flows basically occur in the Loess Plateau region and
northern and southwestern mountains, and those in the northern mountains generally result
from rainstorm. Therefore, the research in the debris flow hazard is important to the hazard
mitigation and prevention due to the wide distribution and severe damage of debris flow.

Researchers in different countries have established various numerical models to interpret,
simulate and predict the debris flow events (Zegers et al., 2020). FLO-2Dmodel based on the non-
Newtonian fluid and central finite difference (O’Brien et al., 1993), and this model was proven to be
effective in terms of Omega parameter (Chang et al., 2017). FLO-2D model as used to numerically
simulate the discharges of debris flow in Huaxi Gully under operational and dam-failure
conditions, respectively (Fang et al., 2019). FLO-2D model was also applied to precisely
simulate the movement and deposition processes (Stancanelli et al., 2017) and estimate the
maximum depth of moving debris flow on the base of NAM model (Wei et al., 2017). FLO-2D
model is also used to simulate terrain changes caused by debris flow caused by rainstorm during
typhoon period (Chen and Wang, 2017). The FLO-2D PRO model is used to analyze the
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sedimentation, velocity, impact force and influence area of debris flow
based on SCS-CNmethod (Zhang et al., 2014). In addition, the sediment
yield of debris flow in Sulin Town, Hualian County, China was estimated
with the FLO-2D model (Hsu et al., 2012). Many scholars also evaluated
the debris flow hazard by the FLO-2Dmodel. For example, the numerical
simulation on the Chengbei Gully in Shanxi Province, China was carried
out with FLO-2D model, and then the hazard zonation was conducted
(Tang et al., 2022). Numerically estimated the depth and scope of debris
flow of Boshui Gully with FLO-2D model under the 100-year and 50-
year rainfall conditions, and provided a method to assess the debris flow
hazard with consideration of solid source and water (Zhang et al., 2022).
Estimated the debris flow hazardwith FLO-2Dmodel, and then classified
the debris flow hazard in Anzhou City, Sichuan Province, China (Deng
et al., 2021). The FLO-2D model was also applied to simulate the
movement process of debris flow of Hou Gully in Shimian County,
Yaan City, China under different cycles, and then the intensity
classification of slag debris flow was established (Deng et al., 2021).
Additionally, the FLO-2D model was used to determine the intensity of
Zhouqu debris flow (Zhang et al., 2018) and obtain the hazard zonation
map of debris flow in Songhe Stream region (Lin et al., 2011).

The hazard of debris flow in Shaling Gully was assessed in this
paper. Firstly, the susceptibility of debris flow was analyzed according
to the field survey data. Secondly, the debris flow was numerically
simulated with FLO-2D model. Thirdly, the hazard zonation at
various rainstorm frequencies was determined by
ARCGIS10.8 software. Finally, the retaining dam for debris flow
mitigation was evaluaged by numerical simualtion, which provided
technical support for the safety of downstream structures.

2 Study area

The Shaling Gully is located in Lingshou County, Shijiazhuang
City, Hebei Province, China, with 18 dendritic branch gullies on two

banks. The main gully is 3.876 km long, and the catchment area is
approximately 4.91 km2. Abundant alluvial, colluvial and man-made
deposits are found in these gullies, and a little residual deposit in some
gullies. Some structures of the lower reservoir of Lingshou pumped-
storage station are just located in the study area, as shown in Figure 1.

The study area is situated in the Taihang Mountain uplift zone, and
25 pre-Quaternary faults are found within 25 km of the study area. These
faults mostly have NE- and NW-strike, partly with NS and EW strike.

The lithology in the study area consists mainly of the Archean biotite
plagioclase-feldspar gneiss of Fangli Formation (Fgn), plagioclase-feldspar
amphibolite of Chejiangou Formation (Ca), andArchean granite gneiss of
Gangnan Formation (Ggn). The Quaternary strata consist basically of the
1 m–2 m thick residual (Q4

edl) gravel soil on themountain peak and slope,
1 m–3 m thick alluvial (Q4

pal) sandy gravel on the gully bottom, 1 m–5 m
thick diluvial (Q4

pl) 0.2 m–0.5 m-diameter gravel soil on the gully banks,
and 1 m–3 m thick (partially about 5 m thick) man-made (Q4

ml) gravel
soil on the upper terrace and gully bottom. The well developed gneissoid
structures are widely found on the gully banks, generally with attitude of
NE60°-80°, SE∠60°–80°.

The warm continental monsoon dominates the study area, with
distinct wet and dry seasons. The average annual precipitation is
497 mm, 64% of which occurs during the period from June to August,
and the average annual evaporation is 1,685.3 mm.

The human activities in the study area involve the abandoned open
mining and artificial deposit on the gully bottom. The mining activities
result in not only some colluvium due to rock cracking but also abundant
slag. The terraces, which are generally located in the midstream and
downstream Shaling Gully, have large scale and loose structure, providing
abundant source for triggering the debris flow during flood season.

3 Methodology

Firstly, the susceptibility of debris flow was analyzed according to
the field survey data and remote sensing interpretation. Secondly, the
FLO-2D model was applied to evaluate the maximum flow depths and

FIGURE 1
Drainage pattern of potential debris flow and location of
engineering structures in Shaling Gully.

FIGURE 2
Flowchart of Hazard assessment of potential debris flow.
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velocities at various rainstorm frequencies. Thirdly, the hazard
zonation at various rainstorm frequencies was determined based on
the debris flow intensity classification, and the effect of debris flow on
the downstream proposed structures was estimated. Finally, the
retaining dam for debris flow mitigation was designed, and the
operational effect of the dam was numerically simulated with FLO-
2D model. The flowchart of hazard assessment is shown in Figure 2.

3.1 Data acquisition

The sophisticated UAV oblique photography is frequently applied
to obtain the data about contour line (Li et al., 2021b, 2021c; Almalki
and Angelides, 2022; Trepekli et al., 2022; Zan et al., 2022). High
definition photos about the region concerned can be taken by high
resolution cameras attached to the UAV, and then the real terrain and
landform about the study area will be achieved by image processing
and information extraction. The UAV behaves better in field survey
due to its high definition, wide survey range, easy operation, few site
limitations and good suitability. In this paper, the 1:5,000 contour lines
obtained by UAV was imported into ARCGIS10.8 to create and
process the DEM data. The distribution and volume of debris flow
source in Shaling Gully were determined by field survey and UAV
technique.

3.2 Susceptibility evaluation

The susceptibility of debris flow is commonly referred to as the
occurrence probability of a debris flow. Currently, the susceptibility is
basically evaluated by the direct index evaluation method, which is a
subjective judgement, or indirect index evaluation method, which is
widely used by most scholars (Li et al., 2020; Sujatha, 2020; Mehmood
et al., 2021; Jingbo et al., 2021). In this paper, the indirect index
evaluation method was selected to estimate the susceptibility of debris
flow in Shaling Gully.

3.3 FLO-2D simulation

FLO-2D, evolved from the diffusive hydrodynamic model, is a
two-dimensional finite difference model that numerically simulates
flood and debris flow (O’Brien et al., 1993). The model discretizes the
surface topography into uniform square-grid elements in terms of
central finite difference routing scheme, and the each grid has
corresponding elevation and Manning’s coefficient. The continuity
equation and motion equations govern the conservation of mass and
momentum, which are expressed as
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where h is the flow depth, i is the rainfall duration, t is fluid movement
time, Vx is the average velocity along x coordinate, Vy is the average
velocity along y coordinate, g is the gravity acceleration, Sfx is the

friction slope component along x coordinate, Sfy is the friction slope
component along y coordinate, Sox is the bed slope along x coordinate,
and Soy is the bed slope along y coordinate.

Besides, the solid particles in the debris flow may collide against
each other during movement, increasing the inertial stresses, and
therefore the effect of particle collision on debris flow movement
should be considered by the following equation:

Sf � Sy + Sv + Std � τy
γmh

+ Kη]
8γmh

2
+ n2]2

h
4
3

(4)

where Sf is the friction slope, Sy is the yield slope, Sv is the viscous
slope, Std is the turbulent-dispersive slope, τy is the yield stress, η is the
viscosity coefficient, γm is the specific gravity of fluid, K is the
resistance parameter for laminar flow, ] is the flow velocity, and n
is the equivalent Manning’s coefficient.

4 Susceptibility assessment of potential
debris flow in Shaling Gully

The indirect index evaluation method always selects the terrain,
source and rainfall as evaluation factors, and then the selected factors
are normalized and weighted (Jun et al., 2017; Li et al., 2021a). In this
paper, the AHP (Analytic Hierarchy Process) method was used to
evaluate these factors (Mehmood et al., 2021).

4.1 Selection of evaluation factors

The occurrence of debris flow are greatly affected by the terrain,
source and rainfall, and the selected factors should be representative
and easily quantified. According to the gully characteristics in the
study area and other scholars’ achievements (Lin et al., 2012; Niu et al.,
2015; Cao et al., 2017; Xiao et al., 2020; Gu et al., 2021), the
susceptibility of debris flow in Shaling Gully was evaluated by eight
factors, namely, catchment area S1, main gully length S2, maximum
elevation difference S3, ravine density S4, average longitudinal slope
ratio S5, loose material length supply ratio S6, loose material volume
S7, and maximum daily (24 h) rainfall S8.

4.2 AHP model

The AHP model for susceptibility assessment of potential debris
flow in Shaling Gully is shown in Figure 3.

The weight of each factor was determine by the importance to its
parent layer, with S1 = 0.0145, S2 = 0.0258, S3 = 0.0487, S4 = 0.0258,
S5 = 0.0487, S6 = 0.3597, S7 = 0.1799, and S8 = 0.3070.

5 Hazard assessment of debris flow
under natural conditions

5.1 Parameter determination

The contour lines measured in the field were converted into DEM
format and then into ASCII format with ARCGIS10.8. The ASCII
format data were imported into FLO-2D, and then the simulation
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domain and grid sizes were appropriately determined. In this paper,
the grid size is 20 m × 20 m, and the calculation region was
subsequently determined and assigned with elevation values.

5.1.1 Resistance parameter for laminar flow and
Manning’s coefficient

The Manning’s coefficient was applied to represent the effect of
ground roughness on debris flow in FLO-2D, and this coefficient is
greatly influenced by the terrain and vegetation. The Manning’s
coefficient was determined jointly by the field survey results, Eq. 5
proposed byWang Yuyi et al., and some research achievements (Chen
et al., 2021; Deng et al., 2021; Zhang et al., 2022). Finally, the
Manning’s coefficient is 0.1 and the resistance parameter for
laminar flow is 2,285.

nc � 0.033R−0.51
ns exp 0.34R0.17

ns( ) ln h (5)

5.1.2 Volumetric sediment concentration
The volumetric sediment concentration was calculated with Eq. 6.

CV � γC − γW
γS − γW

(6)

where CV is the volumetric sediment concentration, γC is the unit
weight of debris flow (g/cm3), γS is the unit weight of solid particles of
debris flow (g/cm3), and γW is the unit weight of water (g/cm3).

Here the calculated CV is 0.35.

5.1.3 Viscosity coefficient
In terms of η � α1eβ1Cv and τy � α2eβ2Cv , if α1, β1, α2, and β2 are

determined, the viscosity coefficient and yield stress Ty will be
achieved. According to field survey results and empirical relations

(Wang et al., 2007; Zhang et al., 2014; Stancanelli et al., 2017; Wei
et al., 2017), these parameters were determined, as listed in
Table 1.

FIGURE 3
AHP model for susceptibility assessment of potential debris flow in Shaling Gully.

TABLE 1 Parameters for FLO-2D.

Parameter n α1 β1 α2 β2 K

Value 0.1 0.00025 15.48 0.03 14.42 2,280

FIGURE 4
Variations of peak discharge of debris flow with time in Shaling
Gully.
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5.2 Inflow node and peak discharge

It is very important to select appropriate inflow nodes for FLO-2D
simulation (Genevois et al., 2022). The zone with abundant loose
deposit was defined as the inflow node according to the field survey
and rainfall data. Because the capturing and erosion of debris flow was
not considered in the FLO-2D simulation, the bulking factor (BF) was
introduced for compensation (Elci et al., 2017). BF is frequently
calculated with Eq. 7. Before numerical simulation, the peak
discharge - time curves at various rainstorm frequencies were
optimized according to peak discharges, BF and generalized
pentagon method, as shown in Figure 4.

BF � 1
1 − Cv

(7)

5.3 Simulation results

For the method of using FLO-2D to assess the hazard of debris
flow, many scholars have verified and achieved good results (Zhang
et al., 2018; Chang et al., 2020; Tang et al., 2022). As this paper is a
potential debris flow, the numerical simulation results are mainly
based on the field investigation, combined with the gully terrain and
material source conditions, through the comparison of theoretical
calculation and numerical simulation results, to determine the
numerical simulation model.

The debris flow is numerically simulated immediately after the
related parameters were input into FLO-2D. The simulation results are
shown in Figure 5, indicating that the maximum flow depths and
velocities have positive correlation to the rainfall. Under the 10-year
and 20-year rainfall conditions, the velocities and flow depths are
generally small, which has minor effect on downstream structures, and
more than 90% of flow depths are less than 1 m, with velocities of
0.5 m/s–1 m/s. Under the 50-year and 100-year rainfall conditions, the
velocities and flow depths increase, and 18.4% of 50-year flow depths
and 26.7% of 100-year flow depths are greater than 1 m, with most
velocities larger than 1 m/s.

5.4 Hazard assessment of debris flow in
Shaling Gully under natural conditions

The hazard of potential debris flow was assessed according to the
maximum flow depths andmaximum velocities simulated by FLO-2D,
and then the effect of debris flow on the downstream structures is
estimated. The classification standard of debris flow intensity in terms
of maximum flow depth and maximum velocity has good suitability
(Lin et al., 2011; Chang et al., 2017; Zhang et al., 2018; Chang et al.,
2020). Table 2 lists the classification standard of debris flow intensity
in Shaling Gully according to the influence on downstream proposed
structures, site terrain and engineering design data.

The hazard of potential debris flow and its effect on the
downstream proposed structures were evaluated in terms of
rainstorm frequencies. For quantitative analysis, the Vh value of
each grid was calculated by the Spatial Join tool of ARCGIS, and
the zones whose parameters are not listed in Table 2 were marked by
special signs. If the hazard zones by ARCGIS were not identical to
those by Hazard plug-in of FLO-2D, those zones were reasonably
evaluated in a qualitative way according to site conditions, empirical
methods and rainfall frequency. The final hazard zonation map of
debris flow in Shaling Gully at vario is obtained. According to the
intensity classification of debris flow and the qualitative and
quantitative classification standards, the hazard zoning of debris
flow under different rainfall frequencies is obtained. The maximum
flow depth in high-hazard zones is more than 2.5 m. Low hazard zones
are all with velocities less than 0.5 m/s or maximum flow depth less
than 0.5 m. The Hv value of the medium hazard zones are between
0.5 m/s2 and 2.5 m/s2.

The simulation results indicate that, under 10-year rainfall
condition, the high, medium and low hazard zones account for

FIGURE 5
Maximum flow depths and velocities at various rainfall frequencies.
(A)(a) Distribution of 10-year maximum flow depth (m) (B)(b) Distribution
of 10-year velocity (m/s), (C)(c) Distribution of 20-year maximum flow
depth (m), (D)(d) Distribution of 20-year velocity (m/s), (E)(e)
Distribution of 50-year maximum flow depth (m), (F)(f) Distribution of
50-year velocity (m/s), (G)(g) Distribution of 100-year maximum flow
depth (m), (H)(h) Distribution of 100-year velocity (m/s).
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2.9%, 9.4%, and 87.7%, respectively. All the engineering structures are
in the low hazard zones, and thus are safety.

Under 20-year rainfall condition, the high, medium and low
hazard zones account for 4.9%, 12.9%, and 82.8%, respectively.
Most engineering structures are in the low hazard zones, but few
in medium hazard zones. According to qualitative analysis, the
medium hazard zones have relatively larger deposition depth and
small velocity, and therefore have generally low hazard to the
structures.

Under 50-year rainfall condition, the high, medium and low
hazard zones account for 18.9%, 21.2%, and 59.9%, respectively.
Most engineering structures are in the low hazard zones, partially
in medium hazard zones, and few in high hazard zones. According to

qualitative analysis, the maximum flow depths increase, and therefore
have some hazard to the structures.

Under 100-year rainfall condition, the high, medium and low
hazard zones account for 26.2%, 22.1%, and 51.7%, respectively. A few
engineering structures in gully outlet are in high hazard zones, and
may be highly threatened by potential debris flow according to
qualitative analysis. Under 100-year rainfall condition, the high,
medium and low hazard zones account for 26.2%, 22.1%, and
51.7%, respectively. A few engineering structures in gully outlet are
in high hazard zones, and may be highly threatened by potential debris
flow according to qualitative analysis.

Generally, the proposed structures may be generally subject to low
hazard under 10-, 20- and 50-year rainfall conditions, but to high

TABLE 2 Classification standard of debris flow.

Intensity Maximum flow depth Relation Product of maximum flow depth and velocity

High h > 2.5 m OR Vh > 2.5 m/s

Medium 0.5 m < h < 2.5 m AND 0.5 m/s < Vh< 2.5 m/s

Low h < 0.5 m AND Vh < 0.5 m/s

FIGURE 6
Hazard zonation of debris flow at various rainfall frequencies. (A)(a)Hazard zonation under 10-year rainfall, (B)(b)Hazard zonation under 20-year rainfall,
(C)(c)Hazard zonation under 50-year rainfall, (D)(d)Hazard zonation under 100-year rainfall.
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hazard under 100-year rainfall condition. Therefore, some retaining
measures should be taken under 100-year rainfall condition. As
frequencies is shown in Figure 6.

6 Design of retaining structures

6.1 Type and location

The research on the prevention and mitigation of debris flow is
conducted many year ago. In China, the integrated technique is
frequently applied for hazard mitigation by combinations of
prevention, treatment, engineering measures, biological structures,
and resource utilization (Gao and Tian, 2020; Zhang et al., 2020),
and the retaining structures are predominately used to control the
debris flow in mountains (Lee et al., 2014; Zhang et al., 2021).

The retaining dam scheme was taken to control the debris flow in
Shaling Gully in terms of construction feasibility and cost by deeply
analyzing the its profile, activity and effect according to on-site survey
and simulation results. The retaining dam is located in the straight
gully section with a rural road, which is suitable for construction.
Furthermore, it can prevent the downstream structures from debris
flow because most unstable soil source is in the midstream and

upstream gully. The retaining dam was designed to be 4 m high
and 50 m wide because the effective sediment retaining volume
depends greatly on the dam height, width and upstream terrain.

6.2 Numerical simulation under retaining
structures conditions

Firstly, the dam location was determined and imported into FLO-
2D. Secondly, the dam model was established with Levee module
(Wang, 2019). Thirdly, the maximum flow depths were calculated by
appropriately setting relative parameters, as shown in Figure 7.

The simulation results show that almost 100% potential debris
flow is blocked by the retaining dam under 10-year and 20-year
rainfall conditions, but small amount of debris flow discharges
under 50-year and 100-year rainfall conditions, posing a little
threat to downstream structures. Due to the dam blockage and
riverbed silting, the flow depths and ranges increase in the
upstream of dam and obviously decrease in the downstream of dam.

Table 3 indicates that the percents of flow depths greater than 1 m
increase remarkably at the back of dam due to riverbed silting. The
dam completely blocks the debris flow under 10-year and 20-year
frequencies and no debris flow occurs at the front of the dam, which

FIGURE 7
Distribution ofmaximum flow depths (m) with retaining dam at various rainfall frequencies (A)Hazard zonationwith dam under 10-year rainfall, (B)Hazard
zonation with dam under 20-year rainfall, (C)Hazard zonation with dam under 50-year rainfall, (D)Hazard zonation with dam under 100-year rainfall.
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has no threat to the downstream structures. In addition, the percents
of flow depths less than 0.5 m increase obviously. Furthermore, the
flow depths are almost less than 1 m at the front of the dam, indicating
that the dam can effectively block the debris flow. Due to the existence
of retaining dam, the debris flow has little hazard to the downstream
structures. The hazard zonations with retaining dam at various rainfall
frequencies are shown in Figure 8.

7 Discussion

Based on FLO-2D model, the hazard zoning of potential debris
flow is obtained by simulating the maximum flow depth and velocity
of potential debris flow. In recent years, as a two-dimensional dynamic
simulation model, FLO-2D has been widely used in the hazard
quantification of debris flow disasters, and has shown satisfactory

TABLE 3 Percent of flow depth before and after retaining dam.

Return period/year Condition < 0.5 m (%) 0.5 m–1 m (%) 1 m–2.5 m (%) > 2.5 m (%)

10 Natural 77.1 17.9 4.0 0.0

Remedial 67.9 21.7 8.0 2.4

20 Natural 67.8 24.9 7.0 0.3

Remedial 42.6 37.6 11.6 8.2

50 Natural 42.4 37.2 16.4 4.0

Remedial 50.4 23.1 17.2 9.3

100 Natural 32.5 34.7 18.6 9.9

Remedial 45.1 26.4 20.8 12.0

FIGURE 8
Hazard zonations with retaining dam at various rainfall frequencies. (A)(a)Hazard zonation with dam under 10-year rainfall, (B)(b)Hazard zonation with
dam under 20-year rainfall, (C)(c)Hazard zonation with dam under 50-year rainfall, (D)(d)Hazard zonation with dam under 100-year rainfall.
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results (Deng et al., 2021; Tang et al., 2022). In the study of regional
debris flow hazard, FLO-2D simulation program can determine the
temporal and spatial distribution of debris flow fluid depth and
velocity. However, in the study of potential debris flow, although
the reasonable velocity and flow depth can be simulated, there is no
debris flow, so the simulation of potential debris flow cannot be
verified in reality. For FLO-2D numerical simulation,
ARCGIS10.8 can be used for correction in hazard zoning. But in
the simulation of FLO-2D, the following assumptions needs to be
done.

(1) Assume that the water pressure distribution is hydrostatic;
(2) The debris flow is stable in the time interval of difference

calculation;
(3) The debris flow satisfies the steady flow retardation equation;
(4) Assume that each grid point has a unique elevation value and

Manning coefficient;
(5) It is assumed that the roughness of debris flow movement surface

in the grid is an average value.

Therefore, grid selection is also very important in FLO-2D
simulation. Based on the existing computer tools and considering
the accuracy requirements of this paper, choose 20 m × 20 m grid size.
If the computer conditions permit, you can also choose a finer grid size
of 20 m. In addition, the erosion and entrainment of debris flow
cannot be considered due to the assumption problem, which is worth
further studying.

8 Conclusion

The debris flow may be triggered in Shaling Gully under
rainstorm due to abundant loose sediment, and its hazard was
assessed in this paper. The maximum flow depths and velocities
under 10-year, 20-year, 50-year, and 100-year rainfall conditions
were numerically simulated, and then the hazard zonations at
various rainfall frequencies were determined according to
the intensity classification standard. Some conclusions are as
follows:

(1) Abundant residual, alluvial and diluvial gravel soil as well as
artificial deposit of mining slag and terraces, which provides solid
material source for triggering debris flow.

(2) The susceptibility of debris flow was estimated to be medium
by direct and indirect methods. Additionally, the maximum
flow depths and velocities were numerically simulated with
FLO-2D.

(3) The hazard of debris flow at various rainfall frequencies were
assessed according to the intensity classification standard of debris
flow. Furthermore, the hazard zonation maps at various rainfall
frequencies were completed by ARCGIS and Hazard module of
FLO-2D, which is beneficial for the design and construction of
downstream structures.

(4) The retaining dam was designed to be 4 m high and 40 m wide
according to the simulation results under natural conditions and
gully features. The numerical simulation by FLO-2D indicates that
the potential debris flow may pose little hazard to downstream
structures under the existence of retaining dam.
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