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The prediction of reservoir parameters is the most important part of reservoir
evaluation, and porosity is very important among many reservoir parameters. In
order to accurately measure the porosity of the core, it is necessary to take cores
for indoor experiments, which is tedious and difficult. To solve this problem, this
paper introduces machine learning models to estimate porosity through logging
parameters. In this paper, gated recurrent unit neural network based on quantile
regression method is introduced to predict porosity. Porosity measurement is
implemented by taking cores for indoor experiments. The data is divided into
training set and test set. The logging parameters are used as the input parameters
of the prediction model, and the porosity parameters measured in the laboratory
are used as the output parameters. Experimental results show that the quantile
regression method improves the accuracy of the gated recurrent unit neural
network, and the RMSE (Root Mean Square Error) of the unoptimized GRU neural
network is 0.1774, after optimization, the RMSE is 0.1061. By comparing with the
most widely used BP neural network, the accuracy of themethod proposed in this
paper is much higher than that of BP neural network. This shows that the gated
recurrent neural network method based on quantile regression is excellent in
predicting reservoir parameters.
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1 Introduction

Nowadays, with the development of oil and gas exploration to deep layers, oil and gas
exploration is becoming more and more complex (Tao et al., 2010). Using new technologies
to study reservoir identification and prediction has become more and more important (Sun
et al., 2011). As an important reservoir parameter, porosity (Sun, 1995) is the basis and key
to interpret the reservoir. Therefore, it is very important to accurately predict porosity. The
determination of porosity can be divided into direct determination methods [core analysis
(Yakimchuk et al., 2019) and cuttings analysis (Siddiqui et al., 2005)] and indirect
interpretation methods [seismic data (Angeleri and Carpi, 1982), logging data (Zhang
et al., 2019)]. Among them, logging data is the geological data with the highest resolution
(Serra and Serra, 2004). Under the circumstances of less coring and the resolution of
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seismic data cannot meet the requirements, it is very necessary and
important to use logging data to predict reservoir parameters such
as porosity, permeability and saturation, which has always been an
important topic for researchers (Serra and Abbott, 1982).

In terms of porosity prediction using logging data,
conventional methods mainly include inversion method (Leite
and Vidal, 2011), empirical formula method (Li et al., 2004),
multiple regression (Adegbite et al., 2021) and other linear
methods. Although these methods are simple in principle and
easy to operate, interpretation results are poor. Machine
learning methods such as artificial neural networks (Gamal and
Elkatatny, 2021), support vector machines (Varol et al., 2008),
decision trees (Erofeev et al., 2019) and so on cannot only solve
complex non-linear problems, but also have stronger learning
ability, adaptive ability and information processing ability than
conventional methods, and the accuracy of interpretation results is
higher, so they are widely used in prediction.

Fuzzy logic and neural network technology were used to
determine reservoir physical properties from logging data (Lim
and Kim, 2004; El-Shahat et al., 2010). Porosity and permeability
predication could be carried out by feedforward back propagation
artificial neural network optimized by imperialist competition
algorithm (ICA). The results showed that this model was
superior to the traditional neural network in accuracy and
efficiency (Jamshidian et al., 2015). Singh et al. (2016) used back
propagation artificial neural network (BP-ANN) to predict
porosity, setting acoustic, density and resistivity logging data as
input and porosity as output. The results showed that there was a
good correlation between the calculation results of empirical
formula and predication results of neural network.

FIGURE 1
Internal structure of GRU.

FIGURE 2
Flow of gated recurrent unit neural network based on quantile
regression.
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In this paper, GRU network is used for porosity prediction, GRU
as a powerful tool for time series forecasting, and the logging curve of
the formation has relatively good time series characteristics, which has
strong advantages in predicting porosity. This network has a relatively
good improvement in prediction accuracy.

2 Methodology

2.1 GRU

GRU (Gated Recursive Unit) network (Fu et al., 2016) is a special
kind of recurrent neural network, which solves the problem of gradient
explosion and gradient vanishing in the training process of traditional
recurrent neural network with unique threshold strategy and state
memory, and has excellent generalization performance when
analyzing and processing time series data. Compared with the long
short-term memory network structure, GRU combines the cell state
and gate structure to realize data transmission and state memory. The
internal structure of the GRU is shown in Figure 1.

Figure 1 shows two important gate structures, namely the update
gate and the reset gate. GRU forward transmission is:

zt � σ Wzxt + Uzht−1( ) (1)
rt � σ Wrxt + Urht−1( ) (2)

ht � tanh Whxt + Uh r°tht−1( )[ ] (3)
ht � 1 − zt( )°ht−1 + z°tht (4)

where: xi and ht are the inputs and outputs of the GRU at the current
t-moment, respectively; zi and rt are the outputs of the update gate
and reset gate, respectively; ht is the output of the hidden state; σ(*) is
an activation function; ° is Hadamard product. W and U are the
trainable network weights. z, r, and h are the corresponding update
gates, reset gates, and candidate hidden states, respectively.

2.2 QRGRU

QRGRU (Quantile Regression Gated Recursive Unit) retains the
original network structure and function of GRU, aiming to achieve
non-linear quantile regression by optimizing the objective function.

The objective function is:

minW τ( ),U τ( )
1
T
∑T
i�1

ρτ yi − Q̂yi τ( )[ ]{ } � 1
T
∑T
i�1

τ − I yi − Q̂yi τ( )[ ]{ } yi − Q̂yi τ( )[ ]{ }
(5)

where: T is the number of samples; yi is the actual value of sample;
Q̂y(τ) � g(X,W(τ), U(τ)) is the output of QRGRU under quantile
condition, τ ∈ (0, 1), X is a sample input.

Indicator function I(u) is:

I u( ) � 0 u> � 0
1 u< 0

{ (6)

where: u � yi − Q̂
QRGRU combines the advantages of neural network and quantile

regression, and gives conditional quantiles of corresponding variables
at different quantiles by adjusting the value of τ.

2.3 Improved QRGRU principle

The GRU network structure has the function of state memory of
data flowing to itself, which is more sensitive to the information
feedback of historical moments. Compared with traditional machine
learning, GRU strengthens the feedback adjustment ability of the
intrinsic features of the data, but due to its own sensitivity, it will
inevitably be affected by noise during the training process, reducing
the generalization of the model. In order to overcome the above
problems, the network structure constraint is used as the penalty term
of the objective function, and the deviation degree of network weights
in the iterative correction process is smoothed according to the
correlation between variables, so as to improve the robustness of
prediction. The network structure constraint is a non-negative
quadratic form based on graph theory of the Laplace matrix L, as
shown in Eq. 7.

βTLβ � ∑
1,i< j, p

aij
∣∣∣∣ ∣∣∣∣ βi − sijβj( )2[ ] (7)

where: aij is an element of the adjacency matrix A represented by a
network structure, A � [aij]p×p, aij is used to measure the correlation
between variables; sij � sgn(aij), β is the vector form of the network
weights W and U conversion.

Adding this penalty to the objective function to construct an
improved QRGRU network with network structure constraints, then
Eq. 5 is rewritten as:

minW τ( ),U τ( )
1
T
∑T
i�1

ρτ yi − Q̂y τ( )[ ]{ } + βT τ( )Lβ τ( ) (8)

FIGURE 3
Partial photos of the cores.
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FIGURE 4
Pictures of cores scanning electron microscope.

FIGURE 5
Logging parameters and porosity logging curve.
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2.4 Non-parametric kernel density estimation

Non-parametric kernel density estimation estimates probability
density distributions from observations of a set of random variables
without any prior assumptions. If the QRGRU output is improved, the
conditional quantile estimate is Q̂, (τi), substitution Eq. 9 estimates
the kernel density to obtain the probability density function of y.

f̂ y( ) � 1
nh

∑n
i�1
K

y − Q̂, τi( )
h

[ ] (9)

where: n is the number of quantiles;K(·) is a kernel function. Gaussian
kernel functions are used in this paper; h is the window width, and a
rule of thumb is used to select the appropriate window width value.
After the kernel density estimation is completed, the upper and lower
bounds of a certain confidence interval are calculated according to the
obtained probability density function.

U2 � min U1, U{ }
L2 � max L1, L{ }{ (10)

where: U1 and L1 are the upper and lower limits of porosity,
respectively; U2 and L2 are the upper and lower limits of the
adjusted confidence interval, respectively.

3 Data interpretation and analysis

The logging data comes from oilfield in western China, the cores are
taken from the data of three wells, the cores are subjected to indoor
porosity experiments, and the accurate porosity values are obtained, and
then it is related to the logging parameters (acoustic AC, gamma GR,
resistivity RD, resistivity RS, resistivity RL, resistivity RN, spontaneous
potential SP, neutronCNL, resistivity RT, resistivity RXO). The number of
sample points for porosity experiments in this paper is 315 (Due to the
porosity chamber experiment consuming a lot of manpower and material
resources, only these samples were used in the sample points used in this
paper). Of these, 200 sample points were used to train machine learning
models and 115 sample points were used to test machine learningmodels.
The data of the three wells are all in the same formation, the lithology of
the formation is mainly mudstone, some of the rock is mixed with
sandstone, the color of the formation in this section is mainly gray and
gray-purple, and the sandstone development of this section of the
formation is general. The thickness of the single layer is up to 8.00 m,
the sedimentary environment is a weak oxidation environment, and
combined with the results of regional sedimentary facies division, it is
believed that the stratigraphic sedimentary facies in this section belong to
the coastal shallow Lagophase sedimentation. Figure 2 shows the QRGRU
optimization flow chart. Figure 3 shows a photo of the cores from the
three wells, which are those used for porosity experiments. Figure 4 shows
a picture taken by a scanning electronmicroscope of the core, and it can be
observed that the main type of porosity in the core is intergranular pores.
Figure 5 shows the graph of logging parameters and porosity values. In
order to further explore whether the output parameters are sensitive to the
input parameters, the Pearson (Benesty et al., 2009) and Spearman (Myers
and Sirois, 2004) correlation coefficients are selected in this paper. Figure 6
is a heat map of the correlation, and it can be seen from the figure that the
correlation between porosity and AC is the best and the correlation with
CNL is the worst. Table 1 shows the statistics of logging data.

4 Result analysis

First, initialize the parameters of the QRGRU, GRU and BP neural
networks, and set the values as shown in Table 2. After the model
parameter setting is completed, the model is tested, and the sample is
divided into the training set and the test set, and the experimental
results are shown in Figure 7.

The model used in this article runs on the processor of the
machine that is Inter Core i5-7200U, the running memory is 24G,
and the system type is a 64-bit operating system.

In this paper, R2 and RMSE evaluation criteria were used. R2

represents the percentage of variance in the model that the dependent
variable can be explained by the independent variable, and the closer the
value of R2 is to 1, the better the model performs. RMSE is the root mean
square error, representing the error of themodel, the smaller RMSE is, the
smaller the error is, the higher the model accuracy is.

FIGURE 6
(A) is algorithm correlation heat map based on Pearson between
the various parameters (B) is algorithm correlation heat map based on
Spearman between the various parameters.
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Figure 7 shows a scatter plot of the true and predicted values of the
four prediction models, where the closer the scatter points are to the
center line, the better the prediction accuracy of the model is. It can be
clearly seen from Figure 7 that the scatters predicted by the gated
recurrent unit neural network based on quantile regression are

basically distributed near the center line, indicating that the effect
of the model is better in the four prediction models. R2 and RMSE are
also introduced to evaluate the effect of prediction. The higher R2 is,
the better the quality of the model is. The quality of QRGRU is the
highest of the four prediction models and the R2 is 0.9669, followed by
GRU (R2 = 0.9168). The worst is the LR model, with R2 only 0.7385.
RMSE can reflect the prediction accuracy of the model, and the smaller
RMSE is, the higher the accuracy is. Among them, the model accuracy
of QRGRU is the highest among the four models, and RMSE is only
0.1061. LR’s model accuracy is the lowest (RMSE = 0.6028). It can be

FIGURE 7
(A) is a scatter plot of the prediction results of QRGRU model (B) is a scatter plot of the prediction results of GRU model (C) is a scatter plot of the
prediction results of BP model (D) is a scatter plot of the prediction results of LR model.

FIGURE 8
Boxplot of the distribution of predicted and true value data of four
predictive models.

FIGURE 9
Forecast model evaluation index histogram.
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seen from the results that the quantile regression method introduced
in this paper improves the accuracy of GRU. By comparing with
traditional predictive models (BP neural networks and linear
regression methods), QRGRU outperforms traditional predictive
models.

Figure 8 shows boxplots of the distribution of predicted and true
data. It can be seen from the figure that the distribution of the
predicted data of the QRGRU method is consistent with the true
data, and the agreement degree of other models is not as good as that
of QRGRU. Figure 9 shows the bar chart of four predictive model
evaluation indicators, from which it can be clearly seen that the R2 of
QRGRU is the highest and RMSE is the lowest.

5 Conclusion

In this paper, the prediction model is tested based on real logging
data and porosity data measured in the laboratory, and a new method
(gated recurrent unit neural network based on quantile regression) is
proposed to predict the parameters of the reservoir. By comparing the
new method with the traditional gated recurrent unit neural network,
it is shown that the introduction of the quantile regression method
greatly improves the prediction accuracy of the traditional gated
recurrent unit neural network. In the test set, the model accuracy
of QRGRU is the highest of the four models, and the RMSE is only
0.1061. Themodel accuracy of GRU is lower than that of QRGRU, and
RMSE reaches 0.1774. This paper also introduces two of the most
widely used prediction models (BP neural network and linear
regression), which can be compared with QRGRU to show that the
QRGRU method is superior to BP neural networks and linear
regression.
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TABLE 1 Statistical values of various logging parameters.

Parameter Min Max Median Std Average Skew

PE 3.381 8.81 4.5945 1.05139 4.806981 1.187732

AC 58 84 65 5.576611 66.29936 1.095437

GR 45 65 55 4.205052 55.36306 .045874

RD 43 574 254 107.4041 261.4172 .578302

RS 45 530 218 96.35508 232.7389 .851054

RL 1 10 4 1.551294 4.398089 1.134851

RN 2 8 5 1.028545 5.251592 .100691

CNL 9 17 11 1.632578 11.52866 .839811

RT 43 574 254 107.4041 261.4172 .578302

RXO 45 530 218 96.35508 232.7389 .851054

POR 4.893 8.383 6.0045 .682511 6.132602 .832339

TABLE 2 Model and model parameter setting table.

Model Parameter Value

QRGRU Number of hidden layer neurons 10

Activated function ReLU function

Optimization algorithm Adam algorithm

Number of trainings 1,000

Quantile points τ [.01, 1] The interval is .01

GRU Number of hidden layer neurons 10

Activated function ReLU function

Optimization algorithm Adam algorithm

Number of trainings 1,000

BP Number of hidden layer neurons 10

Activated function ReLU function

Solver Lbfgs

Learning rate .1

L2 regularization term 1.0

The number of iterations 1,000
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