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The validity of magnetotelluric time-series processing methods has been lacking
reasonable testing criteria. Since the time series synthesized by existing techniques
are not fully derived from a given model, they are not reliable. In this paper,
we present a novel approach to synthesize magnetotelluric time series based on
forward modeling and the correspondence between frequency and time domain
electromagnetic fields. In this approach, we obtain the electromagnetic response of
two orthogonal polarization sources for a given model by magnetotelluric forward
modeling, and simulate the randomness of the polarization of the natural field
source by a linear combination of the two polarization sources. Based on the
correspondence between the frequency and time domain electromagnetic fields,
the electromagnetic fields obtained by forward modeling in the frequency domain
are transformed into the time domain, and finally the time series are synthesized.
The test results on 1D and 3D models validate the effectiveness of the proposed
method and the correctness of the procedure. After adding noise to the synthesized
time series, we can test the performance of each method by comparing the results
of the time series processing methods with the response of the given model.
Therefore, the method presented in this paper can be used to construct standard
magnetotelluric time series, which can be used as a carrier to construct synthetic
data satisfying various noise distributions, and for the study of related methods.
This method can also be used to synthesize time series of other frequency-domain
electromagnetic methods.

KEYWORDS
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Introduction

The magnetotelluric (MT) method is widely used in the surface geological survey, mineral
resources exploration, earthquake, volcano, and continental dynamics by detecting subsurface
electrical structures (Cai et al., 2017; Jiang et al., 2022). The time series of the electric and
magnetic fields are collected simultaneously at the surface and theMT response is subsequently
obtained by Fourier transform and transfer function estimation. High quality transfer function
estimation is a prerequisite for reliable detection of subsurface structures.With the development
of industrialization, MT hardware devices have been perfected to collect reliable raw data.
However, industrialization also makes artificial noise increase, which seriously affects the
quality of measurement data and limits the application of MT method (Szarka, 1988; Junge,
1996; Banks, 1998). Existing time series processing techniques, such as the least-square
method (Sims et al., 1971), remote referencemethod (Goubau et al., 1978; Gamble et al., 1979b;
Gamble et al., 1979a), robust estimation method (Egbert and Booker, 1986; Chave et al., 1987;
Larsen et al., 1996; Smirnov, 2003; Chave andThomson, 2004),maximum likelihood estimation
method (Chave, 2014; Chave, 2017), and others methods based on wavelet transform,
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Hilbert-Huang transform, variationalmode decomposition, and inter-
station transfer function (Kappler, 2012; Cai, 2014; Campanya et al.,
2014; Cai and Chen, 2015; Carbonari et al., 2017; Wang et al., 2017),
have different processing performance for different kinds of noise. For
example, the least-square method performs poorly in the presence of
outliers (Egbert and Booker, 1986), and the remote reference method
does not work when noise is correlated at the local and remote sites
(Shalivahan and Bhattacharya, 2002; Pomposiello et al., 2009), and the
robust estimation method usually fails to work when MT data are
contaminated by persistent or coherent noises (Escalas et al., 2013;
Carbonari et al., 2017; Li et al., 2020a; Li et al., 2020c; Zhou et al.,
2022; Zhang et al., 2022). New time series processing methods for
various types of noise are the focus of current research, but there is
a lack of criteria to evaluate the effectiveness of various MT time series
processing methods in existing studies. The traditional evaluation
method based on curve continuity is proved to be unreliable (Sutarno,
2005). Many studies take the measured low-noise data as the standard
data, but because the real response is unknown, it is insufficient
to prove the effectiveness of the time series processing method
(Li et al., 2020a; Li et al., 2020b; Guo et al., 2022; Zhou et al., 2022).
Therefore, reliable standard time series are urgently needed to test the
effectiveness of various time series processing methods.

In geophysical inversion, the validity of the inversion method is
assessed by comparing the inversion results with a given evaluation
model. Similarly, if the time series of the evaluatedmodel are available,
they can be used to test the performance of different time series
processing methods. Several studies have proposed techniques for
synthesizing time series of simplemodels. For example, Varentsov and
Sokolova (1995) and Loddo et al. (2002) realized the synthetic time
series techniques based on inverse Fourier transform and convolution.
These techniques take the measured low-noise magnetic field data
or random number sequences as the synthetic magnetic field time
series, and then use the impedance of a one-dimensional (1D) or
two-dimensional (2D) model to calculate the electric field time series.
However, the given time series may be noisy and its true model
is unknown or even non-existent, so their synthetic time series are
unreliable.Moreover, these techniques are also difficult to simulate the
variability of the actual natural sources of the electromagnetic field.
Kelbert et al. (2017) predicted the geoelectric field from the impedance
of the 3D model and the time series of the magnetic storm, which was
highly consistent with the measured data. This is a nice advance for
synthesizing time series of complex models, but the method also relies
on a given time series.

In this paper, we propose a method to synthesize MT time series
based on forward modeling. All five-channel time series are generated
by forwardmodeling, which accurately reflects the spatial distribution
and temporal variability properties of the electromagnetic fields in the
model. The transfer function can be obtained by processing synthetic
time series using common software, so that the actual observed
time series can be adequately simulated. In the following paper, the
basic principles and implementation of the method are detailed. The
time series of the 1D and 3D models are then synthesized in this
way. Commercial and open-source software is used to process and
analyze the synthetic time series. The processing results of the time
series and the response of a given model are compared to verify
the reliability of the synthetic time series. Finally, noise is added to
the synthetic time series to test the performance of different data
processing methods, demonstrating that the synthetic time series can
be used as an evaluation criterion for data processing techniques.

Methodology

Theory of synthesizing time series

The time domain form of the single-frequency electromagnetic
field is (detailed derivation is in the Supplementary Material S1):

{
e (ω, t) = Ae cos(ωt+Φe)
h (ω, t) = Ah cos(ωt+Φh)

, (1)

where ω denotes the angular frequency. Ae = |E(ω)|,
Ah = |H(ω)|,Φe = Arg(E(ω)),Φh = Arg(H(ω)). E(ω) and H(ω) are
the electromagnetic fields in the frequency domain, which can be
calculated by MT forward modeling. Thus, Eq. 1 provides a new
approach to synthesize MT time series. By MT forward modeling,
E(ω) and H(ω) is calculated, which is substituted into Eq. 1 to
calculate the time series of single frequency. Time series containing
N frequencies can be synthesized according to the superposition
principle of electromagnetic fields:

{
{
{

e (t) = ∑N
k=1

e (ω, t)

h (t) = ∑N
k=1

h (ω, t)
. (2)

Following the above theory, we can design any complex model
and synthesize time series by forward modeling. The synthesized time
series can be used to test the effectiveness of data processing methods.

MT forward modeling

In the approach of this paper, MT forward modeling is a
prerequisite for synthesizing time series. MT forward modeling has
become highly mature after several decades. Numerical simulation
methods such as finite difference, finite element, integral equation,
and even deep learning can solve the forward calculation of various
complex models (Wang et al., 2021). Kelbert et al. (2014) developed
ModEM, an open-source 3D magnetotelluric and controlled-source
electromagnetic forward and inversion system, which was used for
forward modeling of the 3D model in this method. We have made
minor modifications to ModEM by adding an output interface for the
electromagnetic field.

The transfer functions include the impedance and tipper, which
are defined as follows:

{{{
{{{
{

Ex (ω) = Zxx (ω)Hx (ω) +Zxy (ω)Hy (ω)
Ey (ω) = Zyx (ω)Hx (ω) +Zyy (ω)Hy (ω)
Hz (ω) = Tzx (ω)Hx (ω) +Tzy (ω)Hy (ω)

. (3)

Eq. 3 can be abbreviated as E = ZH and Hz = TH, where Z is the MT
impedance tensor and T is the tipper vector. E and H is horizontal
electric and magnetic field component. Hz is vertical magnetic field.
The above three equations are independent and solving them requires
at least two linearly independent sets of electromagnetic fields. In the
forward modeling of MT, we solve the governing equations with two
different polarization sources as boundary conditions and obtain two
sets of fields:

Polarization 1: E1
x(ω), E

1
y(ω), H

1
x(ω), H

1
y(ω), H

1
z(ω),

Polarization 2: E2
x(ω), E2

y(ω), H2
x(ω), H2

y(ω), H2
z(ω).
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FIGURE 1
TimeQ17 series splice diagram of a single frequency. The frequency is 10 Hz, the direction of source polarization is X, and the sampling rate is 2,400 Hz. (A)
Window function time series, (B) original time series, and (C) windowed time series.

Then combined into transfer functions:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

Zxy (ω) =
E2
x (ω)H

1
x (ω) −E

1
x (ω)H

2
x (ω)

H1
x (ω)H2

y (ω) −H2
x (ω)H1

y (ω)

Zxx (ω) =
E1
x (ω)H2

y (ω) −E2
x (ω)H1

y (ω)

H1
x (ω)H2

y (ω) −H2
x (ω)H1

y (ω)

Zyx (ω) =
E1
y (ω)H

2
y (ω) −E

2
y (ω)H

1
y (ω)

H1
x (ω)H2

y (ω) −H2
x (ω)H1

y (ω)

Zyy (ω) =
E2
y (ω)H1

x (ω) −E1
y (ω)H2

x (ω)

H1
x (ω)H2

y (ω) −H2
x (ω)H1

y (ω)

Tzx (ω) =
H1

z (ω)H2
y (ω) −H2

z (ω)H1
y (ω)

H1
x (ω)H

2
y (ω) −H

2
x (ω)H

1
y (ω)

Tzy (ω) =
H2

z (ω)H1
x (ω) −H1

z (ω)H2
x (ω)

H1
x (ω)H2

y (ω) −H2
x (ω)H1

y (ω)

. (4)

In practical MT, the time series of electromagnetic fields are
collected, and divided into segments (L). For a given frequency, L
groups of electromagnetic fields are obtained by Fourier transform of

the time series segments. And the transfer functions can be estimated
from this L groups of electromagnetic fields by estimation methods,
such as the least-square method. The purpose of MT data processing
is to obtain transfer functions for multiple discrete frequencies.
Therefore, only time series containing the given frequencies need
to be synthesized for the study of data processing methods. MT
transfer function estimation requires that these sets of electromagnetic
fields to be linearly independent, which is easily satisfied by the fact
that the polarization direction of the natural electromagnetic field
source varies with time. And this time-varying polarization needs be
simulated in synthetic time series by segmentation and concatenation.

Source simulation

In the forward modeling, only the fields of two different
polarization sources are calculated. The natural sources are time-
varying, and the sources at different moments can be simulated by
combining the two sources described above.

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2023.1086749
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2023.1086749

FIGURE 2
Synthesis a single frequency time series. The frequency is 10 Hz, the
sampling rate is 2,400 Hz, and the field component is Hx.

Any source (denoted as S) can be derived by a linear combination
of two orthogonal sources (denoted as S1 and S2): S = C1S1 +C2S2.
The fields of source S, S1 and S2 are A = (Ex,Ey,Hx,Hy,Hz),
A1 = (E1

x,E1
y,H1

x,H1
y,H1

z) andA2 = (E2
x,E2

y,H2
x,H2

y,H2
z), respectively.The

linear combination consistent with the source also holds in the fields:
A = C1A1 +C2A2. For the 1D model, the two field components (E1D

andH1D) can be calculated by forward modeling. The fields of the two
orthogonal sources are:

{
A1 = (E1D, 0, 0, H1D, 0)
A2 = (0, E1D, −H1D, 0, 0)

. (5)

For the 2D model, ETEx , HTE
y and HTE

z can be calculated by the
forward modeling of the TE polarization, ETMy and HTM

x can be
calculated by the forward modeling of the TM polarization, and the
two polarization sources are orthogonal. The fields are:

{
A1 = (ETEx , 0, 0, HTE

y , HTE
z )

A2 = (0, ETMy , HTM
x , 0, 0)

. (6)

For the 3D model, the full field components can be calculated by
forward modeling with two orthogonal polarization sources.

After obtaining the forward modeling fields, we can use them to
synthesize the time series. The synthesis procedure is described below
by taking an example of a particular site, a particular frequency, and a
particular time series slice of polarization 1.

First, the intensities of natural field sources in different frequency
ranges is simulated. Loddo et al. (2002) used a smoothed natural
source horizontal magnetic field curve to simulate the intensity. In

FIGURE 3
Synthesis of multi-frequency time series. The frequency ranges from 320
to 1.125 Hz, with 18 frequencies, of which only four are plotted in the
figure. The sampling rate is 2,400 Hz, and the field component is Hx. The
last subplot is a superimposed time series of 18 frequencies.

the proposed method, the forward fields of each frequency are scaled
by a uniform coefficient to be near the natural field intensity (e.g.
A1
s = S1A1, S1 is the scaling coefficient of polarization 1).

Second, we use pseudo-random numbers to simulate the field
source intensity and polarization variations. The r1a and r1p are
randomly generated amplitude coefficients and phase shift. The
electromagnetic field of a random field source is:

A1
r = r1ae

ir1pS1A1. (7)

Finally, by substituting Eq. 7 into Eq. 1, the synthetic time series
of polarization 1 at the given frequency at the given site in the given
segment can be generated. The time series of other sites in the model
can be synthesized with the same coefficient (r1ae

ir1pS1).

Splicing time series segments

We simulate the time-varying MT signal by splicing a large
number of time series segments, each generated following the
procedure described above. The segmentation, synthesis, and splicing
of each frequency and each polarization are performed independently
before the final superposition.The length of each segment is randomly
generated and needs to be long enough to preserve valid spectral
information to make the transfer functions stable. After many tests,
we found that stable transfer functions are obtained only when the
segment length exceeds four times the period. In this approach, the
segment length is generated randomly and ranges from 0 to 8 times
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FIGURE 4
Flow chart of synthesis magnetotelluric time series based on forward modeling.

the period by default. It can also be adjusted manually. Excessly short
segments are considered noise, which is allowed in this approach.

We randomly generate the amplitude and phase of each segment,
and the splice of the two segments is discontinuous.This discontinuity
can be ignored as noise or suppressed by windowing at the splice. We
design a Hanning window of length half a period and flip the window
such that the two endpoints of the window are 1 and the midpoint is 0
(Figure 1A).After adding the window, the two segments are smoothly
connected. For example, the original time series (Figure 1B) is divided
into four segments. The time series after windowing (Figure 1C) is
continuous and smooth.

Figure 2 shows the synthesizing process of the time series of single
frequency of Hx channel. The time series of the X-direction source is
divided into four segments, whereas that of the Y-direction source is
divided into two segments. The amplitude and phase of each segment
are randomly generated by Eq. 7. The original time series is calculated
by Eq. 1. The original time series is multiplied by the window function
to obtain the windowed time series. And the windowed time series of
the two sources were superimposed to get the total time series of the
single frequency. The time series of multi-frequencies is the sum of all
single frequencies, as shown in Figure 3.

Synthesizing time series workflow

According to the above theory, the complete workflow of
synthesizing magnetotelluric time series based on forward modeling
is shown in Figure 4.

All the processes except forward modeling in Figure 4 have been
implemented using Delphi language programming. The 3D forward
modeling was performed using the modified ModEM code described
above.

In addition, synthesizing time series in a measured data format
requires the addition of the response of the observed system. In
fieldwork, the measured electromagnetic field signal is recorded in
a specific format according to the equipment used (e.g. Phoenix

Geophysics, MTU-5A). The natural electromagnetic field signal
measured by the sensor is transmitted to the instrument in the form
of the electrical signals. To facilitate recording, the instrument takes
an analog-to-digital conversion of this electrical signal before saving.
During the conversion process, the analog-to-digital conversion
coefficient (223 in MTU-5A) is multiplied and then rounded and
stored (three-byte integer in MTU-5A). The relationship between the
recorded data and the real signal is stable in the frequency domain,
termed the instrument response (obtained from calibration). The
instrument response is added as:

Ao (ω) = CAr (ω)R (ω), (8)

where Ar is the real signal, Ao is the output record, and R is the
instrument response, C is the analog-to-digital conversion coefficient.
Based on this principle, we implemented the synthesized time series
with MTU-5A format as output.

Numerical experiments

1D model

To validate this approach, we first synthesized a time series of a 1D
model for testing. We designed a three-layer model with resistivity of
10Ωm, 100Ωm, and 1Ωm from top to bottom, with the top two layers
having thicknesses of 1 km and 10 km, respectively. We obtained the
electromagnetic fields of the model through forward modeling, and
the frequencies we used are approximately log-uniformly distributed,
see the vertical grid in Figure 5D.

To avoid excessive data due to a single high sampling rate,
the synthetic time series is divided into high, medium and low
sampling rates of 2,400, 150, and 15 Hz using the parameters of
MTU-5A. The length of the synthetic time series is 48 h, where
the low sampling rate records are continuous while the high and
medium sampling rate records are discontinuous. Each 300 s, a 16 s
medium sampling rate record or a 2 s low sampling rate record is
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FIGURE 5
The synthetic time series and power spectrum density of the 1D model. (A) Time series with 2400Hz sampling rate, (B) Time series with 150Hz sampling
rate, (C) Time series with 15Hz sampling rate, (D) power spectrum of the time series.

synthesized alternately. The synthesizing frequency ranges for high,
medium, and low sampling rates are 320 Hz–1.125 Hz (a total of
18 frequencies), 10 Hz–0.140625 Hz (a total of 14 frequencies), and
0.75 Hz to 0.00001.72 Hz (a total of 32 frequencies), respectively.

Figure 5 shows the synthetic time series and its power spectral
density (PSD). The time series is irregular, random, and resembles
a non-stationary signal. The PSD at the given frequencies is

approximately one order of magnitude higher than at the frequencies
not given, implying that the synthetic time series contains the signal
exactly at the target frequencies. Further, we use the least-squares
method to estimate the impedance. As shown inFigure 6, the apparent
resistivity and phase closely match the theoretical response, indicating
that the time series of the 1D model constructed by this method is
quite accurate.
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FIGURE 6
The apparent resistivity (ρa) and phase (φ) of the synthetic time series of
the 1D model obtained by least square method processing.

3D model

The 3D model is closer to the actual situation. To further
verify our method, we use the 3D model COMMEMI 3D-2A from
(Zhdanov et al., 1997) for the following study. The model background
is a three-layer medium (resistivity of 10, 100, and 0.1 Ωm) with two
anomalous rectangular bodies (resistivity of 1Ωm and 100Ωm) on the
top layer. Eight sites on the model surface were selected to synthesize
time series, as shown in Figure 7.

The synthetic time series using the same sampling rates as above
is shown in Figure 8. For clarity, only a portion of the time series
is plotted for each sampling rate. The time series of the horizontal
magnetic fields (Hx and Hy) at each site are quite similar, which is
similar to the slow spatial variation of the natural horizontal magnetic
field. The horizontal electric fields (Ex and Ey) at each site are quite
similar in morphology but differ in amplitude and phase. This is

because the electric field signal is more easily affected by the electrical
structure under the same natural field source. The resistivity below
site F is much lower than that at site G, so the horizontal electric field
amplitude at site F is always smaller than that at site G with the same
source. Consequently, the morphology of the synthetic time series is
consistent with the given model.

To facilitate processingwith existing software, we add the observed
system responses to the synthetic time series and output them in
MTU-5A format. We processed the time series using the least-squares
method, the commercial software SSMT2000 and the open-source
software EMTF (Egbert, 1997). Figure 9 shows the processing results.
All the results are consistent with the theoretical response, indicating
that the synthetic time series of the 3D model are accurate and can be
processed by existing methods.

To further analyze the synthetic time series, we divided the time
series into sections (to distinguish the “segment” in synthesizing time
series, “section” is used here). Every two adjacent sections overlap
by 50%. We preform the Fourier transform on each section, and
calculate the frequency domain parameters such as the PSD of the
electromagnetic field, the impedance tensor, the tipper vector, the
ordinary coherence, and the polarization direction. These parameters
were usually used in frequency domain selection techniques for MT
noise separation (Weckmann et al., 2005). The PSD is defined as:

PSD (A) =
√[AA*]2

ΔT
, (9)

where A = Ex(ω), Ey(ω), Hx(ω), Hy(ω) or Hz(ω), ΔT is the length of
the section, A* is the complex conjugate of A.

The ordinary coherence is defined as:

coh (AB) =
|[AB*] |2

[AA*][BB*]
, (10)

where B is the same as A, but can be different field components.
The polarization direction αE and αH of electric andmagnetic field

are:

{{{{{
{{{{{
{

αE = arctan
2∗R([ExE*

y])
[ExE*

x] − [EyE*
y]

αH = arctan
2∗R([HxH

*
y])

[HxH
*
x] − [HyH

*
y]

. (11)

FIGURE 7
Model diagram of COMMEMI 3D-2A, the triangles are the locations of the sites.
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FIGURE 8
Synthetic time series of 8 sites in the 3D model. (A) Time series with 2400Hz sampling rate, (B) Time series with 150Hz sampling rate, (C) Time series with
15Hz sampling rate.
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FIGURE 9
The processing results of the synthetic time series of 8 stations in the 3D model.

FIGURE 10
The distribution of parameters at 2.25 Hz of synthetic time series of site A. The x-axis of most graphs shows the section numbers. The six response function
plots are displayed in the complex plane.
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FIGURE 11
Synthetic time series with noise. The duration of the time series is 20 h.

FIGURE 12
Response of time series with noise. Processed by the least-square method.

FIGURE 13
Comparison of processing results between EMTF and SSMT 2000. SSMT2000+MTEditor is the result processed by SSMT2000 and by MTEditor.
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where R stands for the real part.
Figure 10 shows the MT parameters at 2.25 Hz. The PSD

distribution of electromagnetic field shows a random variation of
signal intensity similar to natural fields.The distribution of the transfer
function estimates exhibit one cluster around the actual value. The
coherence of the orthogonal electromagnetic field is concentrated
near 1. The polarization direction of electric and magnetic fields
are disordered with time. The distributions of all these parameters
follow those of a low-noise natural-field MT signal, suggesting that
the synthetic time series can simulate natural MT signal with a high
signal-to-noise.

Noise test

By adding noise to the synthetic time series, we can test the effects
of various noises on the MT response and verify the denoising ability,
estimation results, and robustness of the data processing methods. For
example, square-wave, triangular-wave, and impulsive noise are three
common types of noise in MT exploration. We generated the three
types of noise by pseudo-random, and added them to the Ex channel
at site A (Figure 11).

We investigated the effect of different noises on the MT response
by processing raw synthetic and noisy time series using the least-
squares method. Figure 12 shows the apparent resistivity and phase
curves. Different noises affect different frequency ranges. Triangular
waves and step noise with large timescales affect low frequencies
below 1 Hz. Impulsive noise has no effect on frequencies below
0.01 Hz, but only affects frequencies between 2 Hz and 0.01 Hz
in a range similar to the dead band. Different noise has different
effects on apparent resistivity and phase curve morphology. The
apparent resistivity and phase, the apparent resistivity and phase
are irregular in all but the case of triangular wave noise, which
causes the apparent resistivity to increase steadily with decreasing
frequency.

EMTF and SSMT2000 are the two most commonly used MT
time series processing software. SSMT2000 is commonly used in
conjunction with the frequency domain data selection software
MTEditor to improve estimation quality. We used EMTF and
SSMT2000 to process the noisy time series, and use MTEditor to
select the spectral data processed by SSMT 2000. The final results are
shown in Figure 13. Both EMTF and SSMT2000 provided accurate
impedance estimation for synthetic time series with triangular
and step noise at frequencies above 0.002 Hz. For low frequencies
below 0.002 Hz, accurate impedance estimates were not obtained
by either method due to insufficient stacking. For time series
with impulsive noise, EMTF was able to accurately estimate the
impedance in the frequency band affected by the noise, while
SSMT2000 was unable to accurately estimate the impedance in a
few frequencies. However, careful selection of spectral data using
MTEditor improved the estimation of these frequencies. Moreover,
in the low-frequency, the MTEditor result had three or four more
effective frequencies than the other two results, so that SSMT2000
combined with MTEditor achieves the best performance in this
test.

The above test results show that the synthesized time series of the
proposed method can be used not only as the carrier of noise signals
to study the influence of different noises on MT response, but also as

a test standard to study the processing performance of different data
processing methods to specific noises.

Conclusion

We propose a synthetic MT time series method based on forward
modeling. First, the electromagnetic response of two orthogonal
polarization sources for a given model is calculated using MT forward
modeling.Then, the electromagnetic responses of the two polarization
sources are randomly combined to simulate the random polarization
properties of the natural field sources. Next, the electromagnetic fields
are transformed from the frequency domain to the time domain
according to the correspondence between the time and frequency
domains. Finally, the time-varying source polarization is simulated
by segmentation and concatenation to generate time series. We use
this method to synthesize time series of 1D and 3D models. The
spectral analysis of the synthetic time series shows that the distribution
of the parameters in the frequency domain is similar to that of
the measured low-noise natural field data. Commercial software and
open-source software were used to process the synthetic time series,
and the apparent resistivity and phase closely match the forward
modeling response of the given model, confirming the correctness
of the proposed method. By adding different types of noise into the
synthetic time series, the effect of noise on MT response is analyzed,
and the performance of different time series processing methods is
tested and compared, which proves that the synthetic time series
can be used as the evaluation criterion of time series processing
methods.

The time series of all channels synthesized by the proposed
method are directly derived from MT forward modeling, which
is more reasonable than previous techniques that require a pre-
determined time series of the magnetic fields. As shown in the 3D
model example, time series of complex models can be synthesized to
provide an effective study sample for analyzing the spatial distribution
and temporal variability of MT time series of specific models.
Synthetic time series can be used for single- and multi-site data
processing studies. This method can be used to synthesize not only
MT time series, but also time series of other frequency-domain
electromagnetic methods. Therefore, various artificial source noises
can be synthesized and added to the synthetic MT time series to
investigate the signal-to-noise separation method, which is also the
focus of our future study. Synthetic time series can provide rich
and diverse learning samples for deep learning techniques, which
can help apply artificial intelligence techniques in MT time series
processing.

In summary, the method presented in this paper provides a
technical basis to transform the forward modeling of electromagnetic
responses from the frequency domain to the time domain. We can
obtain time series for any model, which amounts to providing a
standard signal generator for the study of time series processing
techniques. In addition to testing the effectiveness of the time series
processing method, it can be applied to other aspects. For example,
to analyze the effect of different types of noise on the MT response,
we can synthesize time series containing different noises, and then
compare the processing results of noisy time series with the forward
modeling response. In a practical MT application, after obtaining the
inversion model of the studied region, we can attempt to extract the
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actual natural source information through time series of low-noise
sites.Wemay then be able to construct random sources that are highly
correlated with the true natural sources and synthesize time series
for the inversion model. Moreover, time series not derived from the
inversion model can be separated to study the distribution of noise.
In this way, we can extract the source of the remote reference station
and synthesize the time series highly correlated with the observation
station, which can be used as the reference channels to improve the
quality of themeasured data. In otherwords,manynew and interesting
studies can be carried out based on the synthetic time series method
proposed in this paper.
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