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Transport of melt, pressure and
heat through a magma mush

Yang Liao*

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA,
United States

Prior to intrusion, magma migrates through the crustal plumbing system that
likely contains layers or columns of crystal mush. To better understand the
behavior of the crustal magmatic system during magmatic unrest, it is important
to examine the process of melt migration within the crystal mush and the
associated evolution in pressure and temperature. In this study I use an analytical
model to explore the characteristics of transport of melt, pressure, and heat
through an idealized crystal mush layer/column under uniaxial strain condition.
The model invokes a thermo-poro-viscoelastic rheology and uses a frequency-
domain method to explore two scenarios of magmatic unrest: harmonic
perturbation of fluid pressure, and step-rise in fluid pressure at a source location.
Several factors influence the transport of melt, pressure and heat, including the
thermal-mechanical coupling arising from the mush rheology, the advection of
heat by melt flows, the competition between thermal diffusivity and poroelastic
diffusivity, and the viscoelastic relaxation of the crystalline framework. One
key finding is the development of transport asymmetry: when a background
temperature gradient exists, the transport properties become different for
propagation along the background thermal gradient and propagation against
the background thermal gradient. Analysis on an endmember case shows
that the transport asymmetry is associated to the competition between the
diffusion and advection of pore pressure, which determines a Peclet number
that depends on the temperature difference across the mush and the thermal
expansion coefficients. Because the temperature in magma mushes in the crust
likely increase with depth, the observed propagation asymmetry suggests some
intrinsic difference between a bottom-up vs. a top-down triggering mechanism
for magmatic unrest. The results from this study highlight the importance for
further exploration for a more complete description of the transport properties
in the crystal mush.

KEYWORDS

magma mush, crystal mush, melt migration, transport properties, heat tranfer, thermal
mechanical coupling

1 Background and introduction

Crystal mush is an important component in the current paradigm of crustal igneous
architecture, and plays important roles in the mechanical, thermal, and chemical evolution
of the crustal magmatic system (Gelman et al., 2013; Bachmann and Huber, 2016;
Barboni et al., 2016; Cashman et al., 2017; Karakas et al., 2017; Sparks and Cashman, 2017;
Szymanowski et al., 2017; Jackson et al., 2018; Singer et al., 2018; Edmonds et al., 2019;
Sparks et al., 2019; Caricchi et al., 2021; Weinberg et al., 2021). Some deformation models
suggest that the crystal mush in an individual magmatic reservoir could noticeably
influence the reservoir’s response tomagmatic events and the resulting surface deformations
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(Liao et al., 2021; Alshembari et al., 2022; Mullet and Segall, 2022).
A recent numerical study by Mullet and Segall (2022) extended the
concept of mushy magmatic reservoir to a mush column containing
a crystal-poor fluid region, deriving more implications on volcano
geodesy. The vertically extensive crystal column explored in Mullet
and Segall (2022) has been implied by geophysical observations.
For example, under Axial Seamount, seismic reflections suggested
the existence of mush layers between melt rich lenses, and geodetic
observations led to hypothesis that fluid transport in the mush
layers could be responsible for the features in post-eruption seafloor
deformation data (Carbotte et al., 2020; Chadwick Jr. et al., 2022).
One key feature of a vertically extensive crystal mush column/layer
is that it allows for the transport of melt, pressure and heat in the
crust, even in the absence of dikes and channels. The transport
properties of a mush column could lead to several consequences:
For example, melt-rich reservoirs/lenses separated by a crystal mush
could become hydraulically connected; if a mush column spans
across large temperature difference, convective heat transfer by
melt transport could become significant; local perturbations (e.g.,
change in fluid pressure) could be transmitted along a crystal mush
column either upward or downward, allowing for both bottom-
up and top-down triggering of magmatic unrest. The physical
processes involved in the above-mentioned scenarios could depend
on intrinsic or external factors, such as the local tectonic setting,
the existence of boundaries and barriers, the physical properties
and rheologies of the mush, and the time and spatial scale of the
magmatic event.

Here, I explore the transport properties of crystal mush
layer/column that result from the intrinsic mush rheology and its
physical properties. Following earlier studies, I consider a crystal
mush as a continuous system consisting of a contiguous solid
phase and a viscous fluid phase (melt) residing in the interstitial
pore spaces of the crystalline framework. The migration of melt
and transport of pressure and heat in the mush layer occur
while retaining the structural integrity of the crystalline framework
(i.e., no disaggregation or re-melting). Following Liao (2022), I
assume a thermo-poro-visco-elastic mush rheology that describes
the deformation, pressurization, melt migration, and temperature
evolution in the mush. The quantitative framework centering
around the chosen rheology incorporates several physical processes,
including the coupling between pore fluid pressurization and solid
deformation, the viscoelastic relaxation of the crystalline framework
under deviatoric stresses, the generation of thermal stress and pore
pressure due to thermal expansion/contraction of fluid and solid, the
diffusion of heat, and the advection of heat by porous flows. These
physical processes have been studied to limited extent in physical
models on mushy magmatic reservoirs, which are now examined in
the new context of vertically extensive crystal mush column/layer
(Liao et al., 2018; 2021; Liao, 2022).

An endmember of the thermo-poro-viscoelastic rheology is
poroelasticity, which has been a popular choice for modeling
mushy magmatic reservoirs (Gudmundsson, 2015; Liao et al., 2018;
Alshembari et al., 2022; Mullet and Segall, 2022). The concept
of poroelastic layer/column has been widely adopted in models
on hydrothermal circulation occurring in the water-saturated
rock/sediment below the seafloor, which provide a starting point
for us to explore the transport properties of crystal mush (Jupp
and Schultz, 2004; Crone and Wilcock, 2005; Barreyre et al., 2014;

2022). Poroelastic medium is diffusive, resulting in decaying of
perturbations (pressure and fluid velocity) away from their sources
(Segall, 2010; Cheng, 2016). This diffusive nature is conveniently
represented by a frequency-dependent “skin depth,” which is an e-
folding decay length of oscillatory signals (Turcotte and Schubert,
2002). In the context of sub-seafloor hydrothermal systems, the skin
depth has been used for estimating the depth of non-negligible
fluid transport in response to tidal loading on the seafloor (Jupp
and Schultz, 2004). In my analysis, I adopt a similar frequency-
domain perspective and begin the exploration by examining the
transport of melt, pressure and heat in response to harmonic fluid
pressure perturbation at a source location. I then explore one
example of broad-band perturbation where fluid pressure at the
source evolves in time as a step function. One key finding from our
analysis is the non-negligible role of background thermal gradient
along the mush column, which could be advected by porous melt
flows and result in asymmetric transport of melt, pressure and heat
(top-down propagation vs. bottom-up propagation). Section 3.1.1
shows a simplified case of thermo-poro-elasticity, which is used
to elucidate the root cause for the observed asymmetric transport
of harmonic magmatic signals; Section 3.1.2 shows the effects of
additional factors (viscoelastic relaxation and thermal diffusion)
on the transport properties; Section 3.2 explores the case of step-
rise pressure perturbation and show the effects of viscoelastic
relaxation and non-vanishing background temperature gradient.
The quantitative approaches are briefly summarized in the next
section, and detailed in the Supplementary Appendix S1.

2 Model and approach

Figure 1 shows the geometry of the model. A crystal mush
column/layer is modeled as a thermo-poro-viscoelastic material
with uniform porosity, permeability, viscosity, and elastic moduli.
The model assumes an uniaxial strain condition, where the
displacements and fluid velocities only have vertical components.
I use the term “magmatic signals” to refer to anomalies in melt
content, pore pressure, and temperature that deviate from their
background values. Magmatic signals are generated at the source
location z = 0 and propagate away from the source into z→±∞.
To elucidate the intrinsic transport characteristics of the crystal
mush resulting from its physical properties and rheologies, I do not
model the processes that generate magamtic signals, and assume no
boundaries in the domain. The material properties of the mush and
melts are assumed to be steady in time, hence thermal and chemical
processes which could alter these properties (such as crystallinity)
are neglected.

In the absence of perturbations, the crystal mush column is
assumed to be in a state of equilibriumwith steady state temperature
profile, no fluid flows, and balanced forces. This state is considered
the background state signifying the absence of magmatic unrest.
The background temperature profile is linear and has a zero or
negative temperature gradient for our choice of the direction for
̂z (i.e., hotter at the bottom and colder at the top, see Figure 1).
I refer to the propagation of magmatic signals from the source
into the upper domain (z > 0) as bottom-up transport, and the
propagation from the source into the lower domain (z < 0) as top-
down transport. A bottom-up propagation is relevant to scenarios
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FIGURE 1
Schematic of the 1D crystal mush column. The direction of ẑ points upward, from hot to cold, against the background temperature gradient. Dashed
arrows show top-down and bottom-up transport. Anomalies in temperature and pressure (i.e., magmatic signals) are generated at the source location
z = 0, which could propagate in the upper (z > 0) domain or in the lower (z < 0) domain. In the single frequency analysis, results for propagation along
both directions are shown; in the broadband perturbation case, one example of bottom-up propagation in the z > 0 region is considered.

such as melt injection in the base of the crystal mush; a top-
down propagation is relevant to scenarios such as eruption of a
melt lens above a mush column/layer. In the current model, the
bottom-up transport and top-down transport are independent from
each other, but are shown in the same figures in both the cartoon
and the result section for convenience. Lithospheric stresses and
gravitational effect are assumed to only contribute to the background
state and do not influence the transport of melts, pressure and
temperature perturbations.

The quantitative framework is detailed in the
Supplementary Appendix S1 and briefly summarized here. The
thermal-mechanical couplings stated above are reflected by the
constitutive relations and evolution equations for melt velocity
and temperature, which are similar to those in Liao (2022). The
strain-stress relations are (Biot, 1941; Cheng, 2016).

σ̇ij +
μ
η
σij =

μ
η
(Kmϵ− αP) I+ 2μ ̇ϵij +(Km −

2
3
μ) ̇ϵI− αṖI−KmβsṪI

(1a)

ζ = αϵ+ α2

Ku −Km
P− (ϕβpore + (α−ϕ)βs)T (1b)

Where the overhead dot ⋅ denotes partial derivative in time,
I denotes identity matrix. σij and ϵij are stress and strain tensors
of the ensemble material, ϵ is the volumetric strain, P is the pore
pressure, T is the temperature variation from its reference value. ζ is
the variation of fluid content, defined as the increment of pore fluid
volume per un-deformed volume of the mush. μ and η are the shear
modulus and shear viscosity of the crystalline framework, α is the
Biot coefficient of poroelasticity, and ϕ is the porosity in themush. βs
is the volumetric thermal expansion coefficient for the solid crystals.
The thermal expansion coefficient of the gas-rich pore magma βpore
encodes the content of exsolved gas, which is assumed to be in
the formof disconnected bubbles [see Supplementary Appendix S1
and (Liao, 2022)].

The equilibrium condition, Darcy’s law, mass conservation, and
energy conservation are

∇ ⋅ σij = 0 (2a)

q⃗ = − κ
η f
∇P (2b)

∂ζ
∂t
+∇ ⋅ q⃗ = 0 (2c)

∂T
∂t
+

ρ fc f
ρmcm

q⃗ ⋅∇T− κT∇2T = 0 (2d)

Where q⃗ is Darcy’s flow velocity (assumed to only have the
vertical component), κ is the permeability of the mush, ηf is magma
viscosity. (ρf ,cf ) and (ρm,cm) are the density and specific heat of the
fluid phase and of the whole mush ensemble, respectively. The value
of

ρfcf
ρmcm

goes not significantly change the results and assume it to be
1 in the rest of the study. κT is the thermal diffusivity in the mush.

Following the linear thermo-poro-viscoelastic constitutive
relations, Darcy’s law, mass conservation, energy conservation
and stress equilibrium condition similar to (Liao, 2022), I derive
the evolution equations for pore pressure, fluid velocity, and
temperature in the mush column. The perturbations are considered
to be small, allowing the evolution equations to be linearized
(Kaviany, 2012). The linear equations are then analyzed in
frequency space where all quantities are represented by their
Fourier transforms. A set of boundary conditions (pressure and/or
temperature anomalies at the source, fluid-loading condition
at z = 0 and implicit conditions at z = ±∞) allows for the full
frequency-domain solutions (i.e., Fourier transforms) for pressure,
velocity, and temperature at any given locations. Our frequency-
domain approach shares some similarities to approaches based
on Laplace transform—a method widely used for studying magma
chamber deformation (Dragoni andMagnanensi, 1989; Segall, 2016;
Liao et al., 2018; 2021). For the 1D crystal mush problem, a Fourier-
transform-based approach has some advantages: first, there are
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evidence suggesting that some magmatic signals are cyclic/periodic
in nature, hence would be easily represented by a superposition of
one ormultiple harmonic functions (Murphy et al., 2000; Rout et al.,
2021); second, a frequency-domain approach could potentially
predict characteristics of frequency spectra for key quantities, hence
allowing observational data (time series) to be examined under new
lenses. Overall, Fourier transform and Laplace transform do not
contradict but complement each other, and have been shown to
have converging results (Liao et al., 2023).

Two types of perturbations that generate melt migration are
explored: single-frequency perturbations generated by harmonic
oscillations at z = 0, and broadband perturbations generated by a
step increase in fluid pressure at z = 0. In the case of harmonic
perturbations, all quantities (velocity, pressure, temperature) are
periodic oscillations in time, and the transport properties are
characterized by the profiles of oscillation amplitudes and phase
lags for −∞ < z <∞. In the case of broad-band perturbations, time-
dependent solutions at specific locations for 0 < z <∞ are obtained
from inverse Fourier transform of the frequency-domain solutions.

3 Findings

3.1 Transport properties of an unbound
mush column for harmonic perturbations

In this section, both the top-down and bottom-up transport
of harmonic perturbations are shown. The perturbation signals
are generated at z = 0 and represented by sinusoidal functions,
for example, in pressure P(t,0) = P̂oe

iωt, where ω is the oscillation
frequency and P̂o is a complex amplitude (Fourier transform).
The linearity of the system determines that all magmatic signals
(pressure, temperature, melt velocity) also oscillate under the same
frequency, for example, for pressure P(t,z) = P̂(z)eiωt. The transport
properties in the mush column are represented by the amplitudes
and phase lags of the frequency-domain solutions (e.g., P̂(z)). For
a poroelastic column, the skin depth for the decay of pressure and
fluid velocity is λP = √2c/ω where c is the poroelastic diffusivity; for
thermal diffusion along a column, the thermal skin depth is λT =
√2κT/ω where κT is the thermal diffusivity. The skin depths apply
for transport from the source into both directions (i.e., from 0 to∞
and from 0 to −∞), hence the oscillations symmetrically decay away
from the source. For a purely diffusive mush column (i.e., governed
by poroelasticity and thermal diffusion with no thermal-mechanical
coupling), therefore, the top-down transport and bottom-up
transport are symmetric, with the same decay length, amplitude,
and phase. Our findings in the following section are organized
around the feature of transport asymmetry, which distinguishes a
mush column with more complex rheology from a purely diffusive
medium. Because of this asymmetry, the bottom-up transport and
the top-down transport of magmatic signals are different in their
decay length, amplitude, and phase. In Section 3.1.1, the effect of
thermal-mechanical coupling is analytically demonstrated by an
endmember casewhere thermal diffusion and viscoelastic relaxation
are infinitely slow; in Section 3.1.2, the roles of thermal diffusion
and viscoealstic relaxation on the transport asymmetry are further
explored. The results are scaled by ω and λP, which are self-similar
and depend on a minimum number of dimensionless parameters.

3.1.1 The nature of propagation asymmetry
arising from thermal-mechanical coupling

In this Section 1 examine how thermal-mechanical coupling
in the crystal mush gives rise to asymmetric propagation (bottom-
up vs. top-down) of magmatic signals. The nature of propagation
asymmetry is elucidated in a simplified end-member case where
there is neither thermal diffusion nor viscoelastic relaxation. This
scenario is likely for rapid transport of porous melt occurring on
timescales much shorter than thermal diffusion and viscoelastic
relaxation. The thermal-mechanical coupling is reflected in two
aspects: first, with temperature change, both crystals and pore fluids
may expandor contract, resulting in thermal stress or pressurization;
second, the background thermal profile is advected by the porous
melt flows.

The constrains above lead to the evolution equation for pore
pressure

∂P
∂t
− c ∂

2P
∂z2
+ cβcDT

∂P
∂z
= −γ

∂σzz
∂t

(3)

where c is the poroelastic diffusivity, βc is the effective thermal
expansion coefficient (see Supplementary Table S1), and DT is
the magnitude of the background thermal gradient in the mush
column. The constant coefficient γ (see Supplementary Table S1)
is determined by the micromechanical properties in the mush.
The last term on the left-hand-side of Eq. 3 indicates the extent
of thermal-mechanical coupling and would vanish if there is no
thermal expansion or no thermal advection (i.e., zero background
thermal gradient).

Assuming harmonic oscillations, I solve the simplified evolution
Eq. 3 togetherwith two constraints: first, fluid pressure is continuous
and the column is loaded by the overpressure at the source
z = 0; second, the mush column is not bounded, hence any
perturbation signal far from the source (z→±∞)must vanish. For
the given source perturbationP(0) = Poeiωt and the abovementioned
boundary conditions, the solution for Eq. 3 is a superposition
of terms in the form of eiωt+kz (referred to as sub-wave). The
wavenumber k is determined by a dispersion relation and the
amplitude for each sub-wave is determined by the boundary
conditions. The dispersion relation resulting from the evolution
equation is

kλP =
Δ
2
±√(Δ/2)2 + 2i (4)

where λP is the poroelastic skin depth, the dimensionless parameter
Δ = βc|DT |λP is the background thermal gradient scaled by β−1c and
λP. I consider the realistic thermal gradient in the crust to be no
more than several hundred °C/km and focus on skin depths less
than 10 km, resulting in estimation of Δ no larger than 2 (see
Supplementary Appendix S1). Observing (4) we can see that there
are twowavenumbers for each frequency, and only one wavenumber
is eligible for each domain (z > 0 or z < 0): for the upper (z > 0)
domain, the wavenumber with negative real part (Re(k) < 0) is
eligible, ensuring vanishing perturbation for z→∞; for the lower
(z < 0) domain, the wavenumber with positive real part (Re(k) > 0)
is eligible, ensuring vanishing oscillation for z→−∞. Because the
perturbation signals originate at z = 0, solutions in the upper domain
describe bottom-up transport, while solutions in the lower domain
describe top-down transport. It is worth noting that the definition
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of propagation direction (bottom-up or top-down) refers to the
transport of perturbations, not the transport of melts: for example, a
mush column could be triggered by a negative pressure, which draws
melts towards z = 0, in which case the propagation of pressure signal
is bottom-up in the upper domain, but themelt in the upper domain
flows downwards into the sink at z = 0.

WhenΔ = 0, (4) recovers the diffusive endmember with solution
kPλP = ±(1+ i), and the decay length 1/Re(kp) = λP for both bottom-
up and top-down transport (Turcotte and Schubert, 2002; Segall,
2010; Cheng, 2016). When Δ ≠ 0, the decay length 1/Re(k) deviates
from λP and becomes different for bottom-up and top-down
propagations: the decay length for bottom-up propagations becomes
larger than the skin depth, indicating slower decay;The decay length
for top-down propagation becomes smaller than the skin depth,
indicating faster decay. With increasing Δ, bottom-up transport is
further promoted with longer decay length and top-down transport
is further suppressed with shorter decay length (Figure 2A).

The actual solution for the magmatic signals, such as pressure
P(z, t), can be expressed using its Fourier transform P(t,z) =
P̂(z)eiωt, where the frequency-domain solution P̂(z) is (see
Supplementary Appendix S1 for derivation)

P̂ (z)/Po = (1− γ)exp(
Δ
2

z
λP
−
|z|
λP
√(Δ

2
)
2
+ 2i)+ γ (5)

The frequency-domain solution Eq. 5 suggests a time-domain
solution, that is a superposition of one decaying traveling wave (first
term on the right-hand-side) and one standing oscillation (γeiωt):
the traveling wave contributes to melt transport, and the standing
oscillation elastically loads the whole column uniformly. When
Δ = 0, the solution P̂(z) = P̂(−z), hence the amplitudes and phases for
the bottom-up propagation and top-down propagation are the same.
For Δ ≠ 0, the solutions for the upper and lower domain become
different, suggesting asymmetric propagation. Figure 2B shows the
amplitude and phase for the pressure signal determined by Eq. 5. For
the diffusive endmember (Δ = 0), the decay of pressure is symmetric
around the source, with the same decay length determined by the
skin depth both for top-down and bottom-up transport. For the case
with thermal-mechanical coupling (Δ = 1), the propagation away
from the source become asymmetric in both oscillation amplitude
and phase. For bottom-up propagations, the amplitude suggests
more wave-like propagation and larger phase difference, which
results from the superposition of the slower decaying wave and the
standing oscillation. For top-down propagation, signals decay faster
and have smaller phase separation from the source.

The solutions suggest that the root for the asymmetric
propagation and the modification of decay lengths lies in the
thermal-mechanical coupling (i.e., Δ) that demands both thermal
advection and thermal expansion. I postulate the following scenario
where pressure increases at the source and expels melt: in
the upper domain, melt migration (from the relatively warmer
source) increases the local temperature and provides additional
pressurization, hence pressure decays slower; for the lower domain,
melt migration (from the relatively colder source) reduces local
temperature and pressure, hence pressure decays faster. Similar
argument can bemadewhen the source depressurizes and sucksmelt
in:meltmigration in the upper domain promotes pressure reduction
and allows the negative pressure to persist for longer distance; in

the lower domain, the pressure reduction is discounted by thermal
expansion and pressurization, hence the negative pressure persists
for shorter distance. In both scenarios, the propagation of melt in
the upper domain (either towards or away from the source) allows
for the pressure anomaly (either positive or negative) to persist for
longer distance, hence the observation of longer decay length.

3.1.2 Transport of harmonic perturbations in
thermo-poro-viscoelastic mush

The general thermo-poro-viscoelastic mush rheology examined
in this section expands the simplified case in Section 3.1.1
by incorporating thermal diffusion (i.e., κT ≠ 0) and (Maxwell)
viscoelastic relaxation of the crystalline framework. While the
dynamics for the simplified case in Section 3.1.1 is governed by one
dimensionless number Δ, the transport of harmonic perturbations
in the fully thermo-poro-viscoelastic mush (with non-vanishing
thermal diffusivity) is governed by three dimensionless numbers:
Δ, R, and De. The ratio R = c/κT reflects the relative rapidness
of thermal diffusion. The Deborah number De = ωη/μ reflects the
relative rapidness of relaxation (η and μ are the viscosity and
instantaneous shear modulus of the crystaline framework). It is
worth noting that, although the quantities in out problem have
only one degree of freedom and deformation only occurs on
the vertical direction, the stress components under the uniaxial-
strain condition do not vanish on the horizontal plane, hence
the deviatoric stress tensor for the 1D column is not always
zero. The non-vanishing deviatoric stress components prompt the
viscoelastic creeping of the crystaline matrix, further compressing
the pore spaces and increasing the pore pressure. In frequency
domain, the quantitative manifestation of the viscoelastic effect
is a complex rigidity μ* = μ iDe

1+iDe
, which is used for transforming

elastic solutions to viscoelastic solutions under the correspondence
principle (Liao et al., 2020) (see Supplementary Appendix S1). It
can be verified that at high forcing frequency, De→∞ with μ*→ μ
recovering the elastic endmember; at low forcing frequency,De→ 0
and μ*→ 0 approaching the fully relaxed limit (where shear rigidity
vanishes).

For the thermo-poroelastic case (De = R =∞) examined in
Section 3.1.1, the dispersion relation for the wave-form solutions is
(4), which predicts two wavenumbers for each frequency. Assuming
finite values for De and R, the dispersion relation becomes (see
Supplementary Appendix S1 for derivation)

(k2λ2P − 2i
A+ iDe
B+ iDe
)(k2λ2T − 2i) + 2iΔkλP = 0 (6)

where λP is the poroelastic skin depth, λT = √2κT/ω = λP/√R
is the thermal skin depth, the constant coefficients A,B are
constructed from the poroelastic properties of the mush (see
Supplementary Appendix S1; Supplementary Table S1). When
R ≠∞, (6) has four solutions. Some end-members can be found
directly from (6). In the absence of thermal-mechanical coupling
(Δ = 0), two of the roots for (6) are k2λ2T = 2i, which recover the
solutions for the thermal diffusion problemwith decay lengths of λT ;
the other two solutions k2λ2P = 2i

A+iDe
B+iDe

deviate from the poroelastic
diffusion endmembers (k2Pλ

2
P = 2i) by a De-dependent term A+iDe

B+iDe
,

which reduces to 1 when there is no viscoelastic relaxation
(De =∞). It can be verified that in the absence of relaxation and
thermal diffusion (De = R =∞), (6) recovers the thermo-poroelastic
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FIGURE 2
(A) Decay lengths associated to dispersion relation (4) as functions of Δ. For any frequency there are two wavenumbers k, with decay length 1/Re(k).
The decay lengths are normalized by the poroelastic skin depth λP = √2c/ω which has a value of 1 for the poroelastic diffusive endmember Δ = 0. (B)
Shows the magnitude (left panel) and phase (right panel) of the frequency-domain solution for pressure P̂(z). The magnitude and phase are obtained
from Eq. 5 for two Δ values. The perturbations are triggered by a harmonic pressure input at z = 0 with magnitude Po. Vertical distance is scaled by the
poroelastic skin depth λP. Other parameters used for (B) include melt bulk modulus Kl = 1 GPa, shear modulus μ = 1 GPa, solid bulk modulus
Ks = 10 GPa, porosity ϕ = 0.3, and gas volume fraction in pore melt χ = 0.3.

case (4) where Δ determines the dynamics. These observations
suggest that the viscoelastic effect (finite De) serves to deviate the
poroelastic endmembers; the thermal-diffusion (finiteR) introduces
the additional thermal diffusion endmember solutions; the non-
vanishing thermal-mechanical coupling (non-zero Δ) deviates all
solutions from their respective end-members.

With non-vanishing thermal diffusion, the solutions for (6)
are named k1, k2, k3, and k4, in which k2 and k3 deviate from
kP (the poroelastic endmembers with skin depth λP), and k1,k4
deviate from kT (the thermal diffusion endmember). The intrinsic
boundary conditions for unbound mush further determine that the
sub-waves with wavenumber k1 and k2 exist (i.e., having non-zero
amplitudes) in the lower (z < 0) domain, and that the sub-waveswith
wavenumber k3 and k4 exist in the upper (z > 0) domain. Based on
the above observations I therefore refer to the sub-wave ek1z+ωt as the
bottom-up thermal mode, ek2z+ωt as the bottom-up pressure mode,
ek3z+ωt as the top-down pressure mode, and ek4z+ωt as the top-down
thermal mode.

Figure 3 shows examples of the four submodes
ekiz+ωt(i = 1,2,3,4). The submodes all indicate decaying
perturbations away from the source. The decay lengths are
subjected to Δ: when Δ = 0, the four sub-modes recover the
diffusive endmembers and have decay lengths identical to the skin
depths both in the upper and lower domains (black dashlines,
Figure 3). When Δ ≠ 0, the decay lengths deviate from their
respective endmembers and show different characteristics in
different domains: in the upper domain, pressure decay is slower
(longer decay length than λP) and thermal decay is faster (shorter
decay length than λT); in the lower domain, pressure decay is faster
and thermal decay is slower (Figure 3). In the presence of thermal
diffusion and viscous relaxation, the development of asymmetric
propagations is still determined by Δ, as in the simplified case in

Section 3.1.1. The level of asymmetry is reflected by the decay
lengths 1/Re(ki) (i = 1,2,3,4), which suggest that the bottom-up
propagation of pressure and top-down propagation of heat are
promoted by thermal-mechanical coupling, while the top-down
propagation of pressure and bottom-up propagation in heat are
suppressed (Figure 4A). The decay lengths for the thermal modes
(with wavenumbers k1,k4) are further influenced by R (the ratio
between thermal diffusivity and poroelastic diffusivity), especially
for large thermal diffusivity (Figure 4B). The decay lengths for the
pressure modes (with wavenumbers k2,k3) are shortened for both
top-down and bottom-up propagation by viscoelastic relaxation.
The effect of viscoealstic relaxation is most prominent when the
relaxation time is close to the perturbation period, i.e., when
Deborah number is close to 1 (Figure 4C).

The frequency-domain solutions for pressure, temperature, and
melt velocity are expressed as P̂(z)eiωt, T̂(z)eiωt, and q̂(z)eiωt, with
complex amplitudes P̂(z), T̂(z), and q̂(z).The complex amplitudes are
constructed from the sub-modes with the respective wavenumbers
(k1 and k2 for the upper domain and k3, k4 for the lower
domain) under the boundary conditions P̂oeiωt, T̂oe

iωt at z = 0 (see
Supplementary Appendix S1 for the solution method). Figure 5
shows one example of perturbations triggered by pressure oscillation
at the source. The pressure amplitude in Figure 5A is similar to
the simplified case in Figure 2B (in the absence of relaxation
and thermal diffusion), where larger value of Δ results in larger
extent of asymmetry between the upper and lower domains.
Although there is no temperature perturbation at the source, the
transport of melt advects the background thermal gradient and
causes the temperature to deviate from background thermal profile
(Figure 5B). The temperature amplitudes increase away from the
source, reaching maximum values at distance slightly over thermal
skin depth. The peak locations of temperature amplitudes are
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FIGURE 3
Amplitudes of four single submodes ekiz(i = 1,2,3,4) determined by the dispersion relation (6) for a single oscillatory frequency. The amplitudes are
shown as functions of vertical distance z. For pressure modes (A), z is normalized by λP; For thermal modes (B), z is normalized by λT. The wavenumber
k1,k4 deviate from the thermal diffusion endmembers (B); the wavenumbers k2,k3 deviate from the poroelastic diffusion endmembers (A); k1 and k2
determine waves in z > 0 domain (blue curves); k3 and k4 determine waves in lower domain (red curves). For Δ = 0, the wavenumbers recover the
thermal and poroelastic diffusion endmember cases which have skin depths λP and λT.

FIGURE 4
Decay length 1/|Re(k)| for all solutions for (6) shown as functions of dimensionless parameters. The decay lengths associated with thermal modes are
normalized by the thermal skin depth (left y-axis, blue curves). The decay lengths associated with pressure modes are normalized by the poroelastic
skin depth (right y-axis, red curves). Solid lines are decay lengths for bottom-up sub-waves (i.e., against the background thermal gradient); dash lines
are decay lengths for top-down sub-waves (i.e., along the background thermal gradient). (A) Shows the decay lengths as functions of Δ which reflects
the extent of thermal-mechanical coupling; (B) shows the decay lengths as functions of R, the ratio between poroelastic diffusivity and thermal
diffusivity; (C) shows the decay lengths as functions of Deborah number De. When R =∞, De =∞, Δ = 0, the system recovers pressure diffusion
endmembers with no viscoelastic relaxation, no thermal diffusion, and no thermo-mechanical coupling.

likely linked to the distance over which thermal advection is most
efficient. The pressure propagation leads to discontinuous melt
velocity at z = 0, indicating that the bottom-up transport and top-
down transport results in different rate of melt inflow/removal at
z = 0 (Figure 5C). The asymmetries in the transport of melt (i.e.,
melt velocity) and heat can be rationalized by the asymmetry of
pressure propagation. With thermal mechanical coupling (Δ ≠ 0),
the bottom-up pressure propagation has longer decay length,
which corresponds to smaller pressure gradient and smaller melt

velocity near the source, in contrary to top-down propagation. At
a distance from the source, the decay of pressure for top-down
transport eventually results in the vanish of fluid flows. The higher
fluid velocity near the source for top-down transport results in
higher temperature amplitudes that decay away from the source
more rapidly with distance. These observations suggest that melt
transport and heat advection are enhanced for near-source top-
down propagations, and for far-field bottom-up propagations. It is
worth noting that these findings depend on the nature of source
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FIGURE 5
Examples of pressure, temperature and velocity oscillation amplitudes P̂(z), T̂(z), and q̂(z) as functions of vertical distance z for a system with
De =∞,R = 100 shown for cases with different Δ. The perturbations are triggered at z = 0 by a harmonic oscillation in pressure. Oscillations in the upper
domain (z > 0) result from bottom-up propagation; oscillations in the lower z < 0 domain result from top-down propagation. Black dash lines
correspond to the end-member case with no thermal gradient Δ = 0 where amplitudes for top-down and bottom-up propagations are symmetric with
no temperature change. Other parameters include melt bulk modulus Kl = 1 GPa, shear modulus μ = 1 GPa, solid bulk modulus Ks = 10 GPa, porosity
ϕ = 0.3, and gas volume fraction in pore melt χ = 0.3.

perturbation, which for the example shown in Figure 5 entails
prescription of finite amplitude in pressure oscillation and zero
amplitude in temperature, while velocity is unconstrained. Other
types of source perturbations (e.g., when temperature or pressure
is unconstrained) could result in different characteristics.

3.2 Propagation of pressure and melt
following a step rise in pressure

The frequency-domain approach outlined above can be applied
to broad-band perturbations that are not harmonic in time.
Two assumptions need to be met for this approximation to be
appropriate: first, the perturbations at the source can be represented
by their Fourier transforms (continuous and integrable in time);
second, the advection of first-order temperature deviation is
negligible compared to the advection of the background temperature
profile (i.e., linearization of thermal advection is appropriate).
These two assumptions preclude some scenarios, such as sporadic
magma inputs that are highly discontinuous in time, or large
thermal anomalies that overwhelm the background thermal profile.
For scenarios suitable for my approach, the perturbations are
represented in frequency domain by their Fourier transforms, where
each frequencyω generates twowavenumbers in each domain (z > 0
or z < 0)with their complex amplitudes determined by the boundary
conditions.

While the method (shown in Supplementary Appendix S1)
is generally applicable to source perturbations in both pressure
and temperature, or as more complex time-dependent functions,
here I consider the simplest broad-band example where pressure
is suddenly raised to a constant, positive value while temperature
remains unchanged at the source. The frequency-domain method
is realized numerically with fast Fourier transform. To ensure that
the magmatic signals are integrable, the pressure step increase
is represented by a square pulse time-sequence. The pulse has a
sufficiently long duration, such that a new steady state develops prior
to the end of the pulse. Results are obtained over the time period
near the onset of source pressurization and in the upper domain
(i.e., only bottom-up transport).The individual effects of viscoelastic
relaxation and background thermal gradient on the evolution in
pressure and melt velocity are examined.

The detailed derivation for the analytical and numerical
approach are shown in Supplementary Appendix S1.The system of
equations and dispersion relations are re-derived in dimensionless
space, ensuring consistent scaling among all frequencies (see
Supplementary Appendix S1). Definition forΔ is given by a general
characteristic length (instead of the skin depth for one single
frequency). A discrete numerical Fourier transform is applied
to the pressure perturbation time sequence, where the complex
amplitude for each frequency at the source is then used as a
boundary condition in frequency domain. The complex amplitudes
for pressure, temperature and velocity at any given location are
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FIGURE 6
Example of pressure (A) and fluid velocity (B) evolution with time at multiple vertical locations obtained from the frequency-domain method. Colored
lines show different vertical location (normalized by an arbitrary length scale [l]). Time is normalized by the poroelastic diffusion time [t] = [l]2/c.
Pressure in (A) is normalized by the poroelastic storage coefficient S−1; and Darcian velocity in (B) is normalized by the velocity scale [l]/[t]. At the
source location z = 0, pressure is elevated at t = 0 and instantaneously transmits to the column via a fluid loading boundary condition. The transport of
melt, pressure, and heat are driven by poroelastic diffusion, where there is no background temperature gradient and no viscoelastic relaxation. Other
parameters used for (B) include melt bulk modulus Kl = 1 GPa, shear modulus μ = 1 GPa, solid bulk modulus Ks = 10 GPa, porosity ϕ = 0.3, and gas
volume fraction in pore melt χ = 0.

FIGURE 7
Pressure (A) and melt velocity (B) at z = 1 (normalized) shown as functions of time following a step increase in fluid pressure at z = 0. Solid lines
correspond to a mush column with no background temperature gradient, dash lines correspond to a mush column with a negative background
temperature gradient (hotter at the source). Black lines correspond to a mush column with no viscous relaxation (i.e., infinitely long relaxation time);
blue lines correspond to a mush column with viscous relaxation time τrelax = [t] (the poroelastic diffusion time). Other parameters used for (B) include
melt bulk modulus Kl = 1 GPa, shear modulus μ = 1 GPa, solid bulk modulus Ks = 10 GPa, porosity ϕ = 0.3, and gas volume fraction in pore melt χ = 0.

generated based on the analytical solutions.The resulting frequency-
domain solutions are then inverted by a numerical discrete Inverse
Fourier Transform code to produce time sequence of the outputs.
This frequency-domain approach has been applied in a couple
of recent works and shown to be efficient in computational time
and a powerful alternative method for time-domain approach
(Rucker et al., 2022; Liao et al., 2023).

Figure 6 shows the examples of pressure and melt velocity as
functions of time measured at multiple locations in the upper

z > 0 domain for a case of isothermal poroelastic mush column
(no background thermal gradient and no viscoelastic relaxation).
A fluid loading boundary condition is assumed at the source, so
the increase in source pressure at time t = 0 instantaneously loads
the mush column elastically, resulting in sudden increase of pore
pressure at t = 0, that is uniform along the column (Figure 6A).
At t > 0, the gradient in pore pressure drives the melt upwards
into the mush column and pore pressure further increases at
all locations. In comparison, melt transport (reflected by the
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FIGURE 8
Distribution of pore pressure and melt velocity along the mush column at (A) t = 0.001, (B) t = 0.5, (C) t = 10, and (D) t = 50. In each sub-figure, left panel
shows to pressure profile, right panel shows melt velocity profile. At time t = 0, the mush column is subjected to a step rise in fluid pressure at the
source z = 0. Black solid lines correspond to a poroelastic mush column with Δ = 0; red dash lines corresdpond to a thermo-poro-elastic mush with
Δ = 0.5. With the proceeding of time, pressure increases faster for the case with Δ = 0.5, resulting in reduction in pressure gradient and decrease of fluid
velocity. Other parameters used for (B) include melt bulk modulus Kl = 1 GPa, shear modulus μ = 1 GPa, solid bulk modulus Ks = 10 GPa, porosity ϕ = 0.3,
and gas volume fraction in pore melt χ = 0.

local fluid velocity) is non-monotonous. For an arbitrary location
zo, the local fluid velocity at zo first increases with the build-
up of fluid pressure from below zo following the onset of the
source pressure increase. With the transport of melt, the pressure
above zo increases, which reduces the local fluid pressure gradient
hence decreasing melt velocity. The arrival time of the maximum
fluid velocity is delayed with increasing distance from the source
(Figure 6B).

The effects of viscoelastic relaxation and thermal coupling
on pressure evolution and melt velocity measured at a specific
location are shown in Figure 7. A mush column with viscoelastic
relaxation (with a relaxation time similar to the poroelastic diffusion
time) has faster pressure increase (Figure 7A) and earlier arrival
of maximum fluid velocity with reduced magnitude (Figure 7B).
The more rapid pressurization in the presence of viscoelastic
relaxation is likely due to the additional compression of pore
spaces. Because the column is assumed to have uniaxial strain
(i.e., no displacement in the horizontal direction), horizontal stress
components are non-zero, resulting in non-vanishing deviatoric

stress. The deviatoric stress drives the crystalline matrix to deform
along the vertical direction, compressing pore spaces.The reduction
of melt velocity is consistent with the transport features seen in
the case of harmonic perturbation, where viscoelastic relaxation
reduces decay length for pressure modes (Figure 4C). The existence
of thermal gradient (i.e., transport of fluid from warmer to
colder area) causes higher pressure and larger maximum velocity,
which are likely due to the additional thermal expansion and
pressurization associated to the advection of hotter melt (Figure 7).
The thermo-mechanical coupling also causes reduction of fluid
velocity in the long term, which indicates a more rapid elimination
of local pressure gradient. I postulate that the rapid decrease of
pressure gradient is achieved by more efficient pressurization of the
whole mush column as shown in Figure 8 and associated movie
(Supplementary Material): In the absence of upper boundary (as
in the examined case), a pressurization front propagates upwards
along the column; below the pressure front, a quasi-steady state
develops in the mush segment close to the source, with a nearly
linear pressure profile that transport melt at a near-constant velocity.
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The length of the quasi-static segment increases with time, and along
the segment, the (quasi-uniform) pressure gradient is determined
by the pressure at the top of the segment and the length of the
segment (because at the base of the column the source pressure
is held constant). The thermal-mechanical coupling causes faster
increase of pressure at the propagation front, and a lengthened
quasi-steady segment, both reducing the local pressure gradient
close to the source, leading to reduced melt velocity observed in
Figure 7B.

4 Summary and discussions

In this study, I present a model for examining the transport
properties of an unbound thermo-poro-viscoelastic mush column
under uniaxial strain. The model is based on first principles in
continuum mechanics and employs a frequency-domain approach.
The mush column is subjected to unrest triggered by harmonic
pressure perturbations or a step-rise pressure increase at the
source region (z = 0). The fluid pressure anomalies transport melt,
pressure and heat from bottom up (from z = 0 to z→∞) or
top down (from z = 0 to z→−∞). If the mush column has a
linear background thermal gradient thermal-mechanical coupling
(thermal stress and advection of heat), the bottom-up transport
and top-down transport become asymmetric, distinguishing a
thermo-poro-viscoelastic mush column from a poroelastic column.
Our preliminary results suggest that the coexisting mechanical
and thermal processes could promote a preferred transport
direction for melt, pressure, and heat. Some assumptions are
made to simplify the problem and to elucidate the intrinsic
transport characteristics resulting from mush rheology. Because of
these simplifications, our results are best interpreted as instrinsic
properties of mush, rather than applications on actual volcanic
systems.

A key finding of the model is the development of transport
asymmetry in themush column,which distinguishes it fromapurely
diffusive endmember. To understand the root of this observation,
I use a simplified case where viscoelastic relaxation and thermal
diffusion are infinitely slow. This simplified case sheds light on
the nature of the role of thermal-mechanical coupling on the
propagation of magmatic signals: together, the background thermal
gradient, fluid advection, and thermal expansion contribute to an
extra term in the otherwise diffusive governing equation for pressure
(e.g., Eq. 3). The pressure and melt velocity evolution hence are
driven by diffusion-advection, instead of diffusion alone. In the
equation of evolution (3), a steady and virtual “flow field” can
be identified, which advects the pressure anomalies at a constant
speed Uadv = cβcDT . The time scale associated to this advection
along a column with length L is L/Uadv = L/cβcDT where c, βc
and DT are the poroelastic diffusivity, effective thermal expansion
coefficient, and magnitude of background temperature gradient.
The timescale for pressure diffusion is L2/c. The ratio between
the advection timescale and diffusion timescale, a Peclet number,
is therefore Pe = 1/LβcDT . This Peclet number is identical to the
dimensionless background temperature gradient (scaled by L and
βc). For a linear temperature profile DT = |δT|/L, where δT is the
temperature difference between the two ends of a segment along the
mush columnwith length L.The Peclet number therefore can also be

written as Pe = (δTβc)
−1, which is the temperature increment scaled

by the thermal expansion coefficient. With a fixed temperature
gradient and thermal expansion coefficient, Pe is therefore length-
dependent: for longer much column segment (large L), Pe is
smaller and advection effect is more prominent; for a thin layer of
crystal mush, Pe is larger and the mechanical process of pressure
diffusion dominates. I further observed effects of viscoelastic
relaxation and thermal diffusion on the transport, which are most
obvious when they have competing timescales as the poroelastic
diffusion.

The extent of transport asymmetry observed in the model
depends on the physical parameters and the timescale of the forcing
associated to themagmatic perturbation. Following previous studies
by assuming permeability κ ∈ [10–11,10–8]m2, magma viscocity
ηm = 100 Pa.s, and elasticmoduli of the order of GPa, the poroelastic
diffusivity c ∈ [3× 10−5,0.2]m2/s. For magmatic perturbations with
characteristic time from a day to a year, the skin depth ranges
from 0.5 m to 1.3 km, and the decay length difference between
bottom-up and top-down transport ranges from several cm to
hundreds of meters. For longer period forcing, higher permeability,
lower melt viscosity, and large temperature gradient (i.e., towards
large skin depth), the separation of transport distance is most
significant. It is worth noting that, while the transport asymmetry
found in this study is an intrinsic characteristic of a mush column
with thermal-mechanical coupling, it is unclear if it can manifest
in actual observations, as the several neglected factors in our
model, such as boundaries, could play more important roles in
determine the transport of magmatic signals. It is also worth noting
that the transport asymmetry and associated frequency-dependent
length scales are results from (thermo)poro(visco)elastic rheology,
which is one possible choice of rheology for multi-phase materials;
other continuous or discrete description of multiphase rheology,
which may be suitable for other geological settings, may lead to
differentmanifestation of thermal-mechanical couplings (Liao et al.,
2021).

There are several aspects in the model that request future
implementation before it can be applied to more realistic magmatic
systems at different volcanoes. The current model assumes an
unbound mush column to single out the transport properties
independent from boundary effects. This assumption naturally
introduces a set of intrinsic boundary conditions (at infinities)
that allow only decaying waves in the direction of propagation.
In the presence of boundaries, such as fluid lenses, mush-
rock interfaces, permeability barriers and discontinuities, the
intrinsic boundary conditions are no longer appropriate. In
this scenario, the transport of melt, pressure and heat results
from the combinations of growing waves and decaying waves,
with amplitudes determined by explicit boundary conditions
prescribed at each interface. For a mush column in which
multiple interfaces reside (such as for Axial Seamount), each
segment between adjacent melt lenses needs to be treated with
such an approach. For broadband perturbation, an example of
pressure step increase is used, simplifying the source mechanism.
Some specific examples involving more realistic/complex source
mechanisms, such as injection of magma with finite volume
and heat, can be applied using the model framework presented
here with simple modifications (Liao, 2022). In the current
model, one source location is allowed. For systems incorporating
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multiple source regions, the propagation of magmatic signals
would be a superposition of propagation from each individual
source, with modification based on specific boundary conditions.
The above complexities are potentially more relevant to different
magmatic systems and specific unrest events, which could be
incorporated into the framework presented here to allow for more
comprehensive descriptions on melt assemblage, transport, and
hydraulic interactions between difference reservoirs. Most of the
processes mentioned above linearly relates pressure, deformation,
fluid velocity and temperature, which could be conveniently
incorporated into the efficient frequency-domain based model
framework. Other time-dependent non-linear processes that alter
the crystallinity and/or thermal structure, such as melt-solid
reactions, require more complex and time-domain approach
(Hu et al., 2022).

Data availability statement

The datasets presented in this study can be found
in online repository FigShare at https://doi.org/10.6084/
m9.figshare.21954407.v1.

Author contributions

The author confirms being the sole contributor of this work and
has approved it for publication.

Acknowledgments

The author gives special thank to Paul Segall who helped her
with the development of themodel, presentation of the findings, and
providing editorial suggestions.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can
be found online at: https://www.frontiersin.org/articles/
10.3389/feart.2023.1085897/full#supplementary-material

References

Aguilera, C. A. V., 2022, FourierTransform.m. Available at: https://
www.mathworks.com/matlabcentral/fileexchange/13327-fouriertransform-m.

Alshembari, R., Hickey, J., Williamson, B. J., and Cashman, K. (2022). Poroelastic
mechanical behavior of crystal mush reservoirs: Insights into the spatio-temporal
evolution of volcano surface deformation. J. Geophys. Res. Solid Earth 127 (10),
e2022JB024332. doi:10.1029/2022jb024332

Bachmann, O., and Huber, C. (2016). Silicic magma reservoirs in the earth’s crust.
Am. Mineralogist 101 (11), 2377–2404. doi:10.2138/am-2016-5675

Barboni, M., Boehnke, P., Schmitt, A. K., Harrison, T. M., Shane, P., Bouvier, A.-S.,
et al. (2016).Warm storage for arcmagmas.Proc. Natl. Acad. Sci. 113 (49), 13959–13964.
doi:10.1073/pnas.1616129113

Barreyre, T., Escartin, J., Sohn, R., and Cannat, M. (2014). Permeability of the lucky
strike deep-sea hydrothermal system: Constraints from the poroelastic response to
ocean tidal loading. Earth Planet. Sci. Lett. 408, 146–154. doi:10.1016/j.epsl.2014.09.049

Barreyre, T., Parnell-Turner, R., Wu, J.-N., and Fornari, D. J. (2022). Tracking crustal
permeability and hydrothermal response during seafloor eruptions at the east Pacific
rise, 9 °50’n. Geophys. Res. Lett. 49 (3), e2021GL095459. doi:10.1029/2021gl095459

Biot, M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys.
12, 155–164. doi:10.1063/1.1712886

Carbotte, S. M., Arnulf, A., Spiegelman, M., Lee, M., Harding, A., Kent, G., et al.
(2020). Stacked sills forming a deep melt-mush feeder conduit beneath axial seamount.
Geology 48 (7), 693–697. doi:10.1130/G47223.1

Caricchi, L., Townsend, M., Rivalta, E., and Namiki, A. (2021). The build-up and
triggers of volcanic eruptions.Nat. Rev. 2 (7), 458–476. doi:10.1038/s43017-021-00174-
8

Cashman, K. V., Sparks, R. S. J., and Blundy, J. D. (2017). Vertically extensive and
unstable magmatic systems: A unified view of igneous processes. Science 355 (6331),
eaag3055. doi:10.1126/science.aag3055

Chadwick, W. W. Jr., Wilcock, W. S. D., Nooner, S. L., Beeson, J. W., Sawyer, A. M.,
and Lau, T.-K. (2022). Geodetic monitoring at axial seamount since its 2015 eruption
reveals a waning magma supply and tightly linked rates of deformation and seismicity.
Geochem. Geophys. Geosystems 23 (1), e2021GC010153. doi:10.1029/2021gc010153

Cheng, A. H.-D. (2016). Poroelasticity. New York: Springer International Publishing.

Crone, T. J., and Wilcock, W. S. D. (2005). Modeling the effects of tidal loading
on mid-ocean ridge hydrothermal systems. Geochem. Geophys. Geosystems 6 (7).
doi:10.1029/2004gc000905

Dragoni, M., and Magnanensi, C. (1989). Displacement and stress produced by a
pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Phys. Earth
Planet. Interiors 56 (3), 316–328.

Edmonds, M., Cashman, K. V., Holness, M., and Jackson, M. (2019). Architecture
and dynamics of magma reservoirs. Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci.
377 (2139), 20180298.

Gelman, S. E., Gutiérrez, F. J., and Bachmann, O. (2013). On the longevity of large
upper crustal silicic magma reservoirs. Geology 41 (7), 759–762. doi:10.1130/g34241.1

Gudmundsson, A. (2015). Collapse-driven large eruptions. J. Volcanol. Geotherm.
Res. 304, 1–10. doi:10.1016/j.jvolgeores.2015.07.033

Hu, H., Jackson, M. D., and Blundy, J. (2022). Melting, compaction and reactive
flow: Controls on melt fraction and composition change in crustal mush reservoirs.
J. Petrology 63 (11), egac097. doi:10.1093/petrology/egac097

Jackson, M. D., Blundy, J., and Sparks, R. S. J. (2018). Chemical differentiation,
cold storage and remobilization of magma in the earth’s crust. Nature 564, 405–409.
doi:10.1038/s41586-018-0746-2

Jupp, T. E., and Schultz, A. (2004). A poroelastic model for the tidal modulation
of seafloor hydrothermal systems. J. Geophys. Res. Solid Earth 109, B03105.
doi:10.1029/2003jb002583

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2023.1085897
https://doi.org/10.6084/m9.figshare.21954407.v1
https://doi.org/10.6084/m9.figshare.21954407.v1
https://www.frontiersin.org/articles/10.3389/feart.2023.1085897/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2023.1085897/full#supplementary-material
https://www.mathworks.com/matlabcentral/fileexchange/13327-fouriertransform-m
https://www.mathworks.com/matlabcentral/fileexchange/13327-fouriertransform-m
https://doi.org/10.1029/2022jb024332
https://doi.org/10.2138/am-2016-5675
https://doi.org/10.1073/pnas.1616129113
https://doi.org/10.1016/j.epsl.2014.09.049
https://doi.org/10.1029/2021gl095459
https://doi.org/10.1063/1.1712886
https://doi.org/10.1130/G47223.1
https://doi.org/10.1038/s43017-021-00174-8
https://doi.org/10.1038/s43017-021-00174-8
https://doi.org/10.1126/science.aag3055
https://doi.org/10.1029/2021gc010153
https://doi.org/10.1029/2004gc000905
https://doi.org/10.1130/g34241.1
https://doi.org/10.1016/j.jvolgeores.2015.07.033
https://doi.org/10.1093/petrology/egac097
https://doi.org/10.1038/s41586-018-0746-2
https://doi.org/10.1029/2003jb002583
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liao 10.3389/feart.2023.1085897

Karakas, O., Degruyter, W., Bachmann, O., and Dufek, J. (2017). Lifetime and size
of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10 (6),
446–450. doi:10.1038/ngeo2959

Kaviany, M. (2012). Principles of heat transfer in porous media. New York: Springer
Science and Business Media.

Liao, Y., Karlstrom, L., and Erickson, B. A. (2023). History-dependent volcanic
ground deformation from broad-spectrum viscoelastic rheology around magma
reservoirs. Geophys. Res. Lett. 50 (1), e2022GL101172. doi:10.1029/2022gl101172

Liao, Y., Nimmo, F., and Neufeld, J. A. (2020). Heat production and tidally driven
fluid flow in the permeable core of enceladus. J. Geophys. Res. Planets 125 (9),
e2019JE006209. doi:10.1029/2019je006209

Liao, Y., Soule, S. A., Jones, M., and LeMével, H. (2021).Themechanical response of
a magma chamber with poroviscoelastic crystal mush. J. Geophys. Res. Solid Earth 126
(4), e2020JB019395. doi:10.1029/2020jb019395

Liao, Y., Soule, S. A., and Jones, M. (2018). On the mechanical effects of poroelastic
crystal mush in classical magma chamber models. J. Geophys. Res. Solid Earth 123 (11),
9376–9406. doi:10.1029/2018JB015985

Liao, Y. (2022). The roles of heat and gas in a mushy magma chamber. J. Geophys.
Res. Solid Earth 127 (7), e2022JB024357. doi:10.1029/2022jb024357

Mullet, B., and Segall, P. (2022). The surface deformation
signature of a transcrustal, crystal mush-dominant magma system.
J. Geophys. Res. Solid Earth 127 (5), e2022JB024178. doi:10.1029/
2022jb024178

Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., and Brewer, T.
S. (2000). Remobilization of andesite magma by intrusion of mafic magma at
the soufriere hills volcano, Montserrat, west indies. J. Petrology 41 (1), 21–42.
doi:10.1093/petrology/41.1.21

Rout, S. S., Blum-Oeste, M., and Wörner, G. (2021). Long-term temperature
cycling in a shallow magma reservoir: Insights from sanidine megacrysts at

taápaca volcano, central andes. J. Petrology 62, egab010. doi:10.1093/petrology/
egab010

Rucker, C., Erickson, B. A., Karlstrom, L., Lee, B., and Gopalakrishnan, J.
(2022). A computational framework for time-dependent deformation in viscoelastic
magmatic systems. J. Geophys. Res. Solid Earth 127 (9), e2022JB024506. doi:10.1029/
2022jb024506

Segall, P. (2010). Earthquake and volcano deformation. United States: Princeton
University Press.

Segall, P. (2016). Repressurization following eruption from a magma chamber
with a viscoelastic aureole. J. Geophys. Res. Solid Earth 121 (12), 8501–8522.
doi:10.1002/2016jb013597

Singer, B. S., Le Mével, H., Licciardi, J. M., Córdova, L., Tikoff, B., Garibaldi,
N., et al. (2018). Geomorphic expression of rapid holocene silicic magma reservoir
growth beneath laguna del maule, Chile. Sci. Adv. 4 (6), eaat1513. doi:10.1126/sciadv.
aat1513

Sparks, R. S. J., Annen, C., Blundy, J. D., Cashman, K. V., Rust, A. C., and Jackson,M.
D. (2019). Formation and dynamics of magma reservoirs. Philosophical Trans. R. Soc. A
Math. Phys. Eng. Sci. 377 (2139), 20180019. doi:10.1098/rsta.2018.0019

Sparks, R. S. J., and Cashman, K. V. (2017). Dynamic magma systems: Implications
for forecasting volcanic activity. Elements 13 (1), 35–40. doi:10.2113/gselements.
13.1.35

Szymanowski, D., Wotzlaw, J.-F., Ellis, B. S., Bachmann, O., Guillong, M., and von
Quadt, A. (2017). Protracted near-solidus storage and pre-eruptive rejuvenation of large
magma reservoirs. Nat. Geosci. 10 (10), 777–782. doi:10.1038/ngeo3020

Turcotte, D. L., and Schubert, G. (2002). Geodynamics. Cambridge: Cambridge
University Press.

Weinberg, R. F., Vernon, R. H., and Schmeling, H. (2021). Processes in mushes
and their role in the differentiation of granitic rocks. Earth-Science Rev. 220, 103665.
doi:10.1016/j.earscirev.2021.103665

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2023.1085897
https://doi.org/10.1038/ngeo2959
https://doi.org/10.1029/2022gl101172
https://doi.org/10.1029/2019je006209
https://doi.org/10.1029/2020jb019395
https://doi.org/10.1029/2018JB015985
https://doi.org/10.1029/2022jb024357
https://doi.org/10.1029/2022jb024178
https://doi.org/10.1029/2022jb024178
https://doi.org/10.1093/petrology/41.1.21
https://doi.org/10.1093/petrology/egab010
https://doi.org/10.1093/petrology/egab010
https://doi.org/10.1029/2022jb024506
https://doi.org/10.1029/2022jb024506
https://doi.org/10.1002/2016jb013597
https://doi.org/10.1126/sciadv.aat1513
https://doi.org/10.1126/sciadv.aat1513
https://doi.org/10.1098/rsta.2018.0019
https://doi.org/10.2113/gselements.13.1.35
https://doi.org/10.2113/gselements.13.1.35
https://doi.org/10.1038/ngeo3020
https://doi.org/10.1016/j.earscirev.2021.103665
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

