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Accurate estimates of glacier surface elevation changes are paramount for
various aspects of the study of the cryosphere, from glacier flow and thickness
estimates to hydrological forecasts and projections of sea-level-rise. We present
a novel probabilistic framework to filter outliers and estimate uncertainties in
glacier surface elevation changes computed from the subtraction of digital
elevation models (DEM). Our methodology frames outlier filtering as a Bayesian
inference problem, thus characterizing the state of knowledge on glacier
surface elevation changes through the posterior distribution as the combination
of glacier volume variation observations and prior knowledge arising from
previously collected data and/or modeled results. We validate this technique
with experiments using Gaussian random fields to generate artificial noise
in glacier surface elevation variation observations and show that the model
satisfactorily culls the simulated outliers. Surface elevation change estimates
are consistent with results computed from widely-used outlier filtering and
uncertainty estimation techniques. The Bayesian framework allows unifying DEM
error models with physical considerations on glacier surface elevation changes
within a simple, statistically coherent model preventing temporal correlation and
additional biases in other techniques. On the basis of these results, we discuss
the implications of DEM uncertainty and offer suggestions for the glaciological
community.
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1 Introduction

The increasing collection of surface elevation datasets has created a vast archive for
the study of the cryosphere. Digital elevation datasets have now become ubiquitous
in the study of glaciers (Hubbard et al., 2000; Bolch et al., 2011; King et al., 2019;
Shean et al., 2020; Hugonnet et al., 2021), ice caps (Bingham and Rees, 1999; Moholdt
and Kääb, 2012; Papasodoro et al., 2015) and ice sheets (Davis and Ferguson,
2004; Whitehead et al., 2013; Shean et al., 2019; Simonsen et al., 2021) and present a
significant opportunity to further our understanding of ice dynamics, cryosphere/climate
relationships, and future sea level rise (Gardner et al., 2012). Lately, efforts have
primarily focused on producing new and more accurate digital elevation models
(DEMs) from the air- and space-borne optical or radar sensors (Muskett et al.,
2009; Moholdt and Kääb, 2012; Neckel et al., 2014; Leinss and Bernhard, 2021;
Knuth et al., 2023) and widespread processing techniques (Noh and Howat, 2015;
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Mertes et al., 2017; Mölg and Bolch, 2017; Bhushan et al., 2021;
Janowski et al., 2021). This has resulted in studies quantifying
glacier elevation changes on longer timescales (Bolch et al., 2011;
King et al., 2020; Bhattacharya et al., 2021), broader spatial scales
(Brun et al., 2017; Shean et al., 2020; Hugonnet et al., 2021), and
with higher temporal and spatial resolutions (Brun et al., 2016;
Hugonnet et al., 2021).

Studies estimating glacier surface elevation change rely on
DEMs of disproportionate quality as their initial data originate from
different sensors (Toutin, 2008; González-Moradas and Viveen,
2020), are processed using various algorithms (Futamura et al.,
2002; Beyer et al., 2018; Bhushan et al., 2021), collected at
inconsistent spatial resolutions (Bolch et al., 2011; Shean et al.,
2020; Bhattacharya et al., 2021) or contain spurious elevations
due to cloud coverage (Bolch et al., 2005; Brun et al., 2017). These
limitations can introduce substantial bias and uncertainties in
the information derived from glacier surface elevation changes
computed by differencing two or more DEMs (Paul et al., 2017;
Podgórski et al., 2019; Hugonnet et al., 2022). Typical biases
affecting DEMs generated from radar and optical sensors are
described in greater detail in Section 2. Mitigating biases on the
information derived from DEM differences has recently been the
focus of substantial efforts (e.g., Hugonnet et al., 2022).

The first step in an accurate surface elevation change analysis
is the removal of 3-dimensional shifts between input DEMs by
aligning the datasets. The co-registration algorithm proposed by
Nuth and Kääb (2011) is the most widely used means of eliminating
3D shifts when differencing DEMs (Paul et al., 2017). Although the
robustness of registration techniques addresses grid-wide elevation
shifts, coregistration alone cannot filter isolated residual biases in
DEMs. Residual biases typically arise from atmospheric conditions
at data acquisition (Vaze et al., 2010; Gardelle et al., 2012), sensor-
specific biases (Oksanen and Sarjakoski, 2005; Girod et al., 2017),
as well as physical properties of the observed terrain (Dall et al.,
2001; Li et al., 2021b) all of which require removal. There are a wide
variety of outlier filtering methodologies and most rely on statistical
thresholds using different metrics or accuracy measures: Pieczonka
and Bolch (2015) use an elevation-dependent sigmoid function,
Gardelle et al. (2013); Shangguan et al. (2015) use hypsometric
(100 m elevation band) standard deviation, Brun et al. (2017);
Braun et al. (2019); Hugonnet et al. (2021) rely on the hypsometric
normalized median absolute deviation (NMAD) (Höhle and Höhle,
2009); Shean et al. (2020) remove outliers from input datasets using
triangulation error and absolute elevation difference compared to a
reference DEM (Wang and Kääb, 2015).

Uncertainties in remotely-sensed glacier quantities (thickness
or velocity changes, for example,) are usually estimated through
pixel-wise or spatially integrated geostatistical methods over a
specific spatial domain. The most widely used methodology for
spatially-integrated uncertainty estimation (see, e.g., Fischer et al.
(2015); Dehecq et al. (2020); King et al. (2021)) was proposed
by Rolstad et al. (2009) and describes the uncertainty associated
with the rate of elevation change as proportional to the root of
the standard deviation of elevation change over static reference
surfaces. The estimation of pixel-wise uncertainties often relies
on the use of terrain morphometrics such as slope (Carlisle,
2005; Milan et al., 2011) or ruggedness (Kyriakidis et al., 1999)
as a descriptor of error. Hugonnet et al. (2022) characterize and

propagate uncertainty through a spatial inference framework,
relying on off-glacier “stable terrain” as a proxy for error analysis.
Most frameworks for culling outliers and estimating uncertainties
rely on the implicit assumption that glacier surface elevation changes
vary smoothly and are normally distributed in space and time.
Gaussianity in glacier surface elevation changes is, however, more
often than not an unrealistic assumption, since most glacier volume
variations measurement-error distributions are either positively
skewed (Brun et al., 2016) or present heavy tails (Vincent et al.,
2016; Vijay and Braun, 2018), due, for example, to the unstable
flowing regime of surge-type glaciers. Surge-type glaciers typically
show abrupt variations in their flowing regime, alternating between
periods of high velocity (up to 5 m/day, lasting months to years)
and quasi-stagnant (years to decades) flow (e.g. Truffer et al.,
2021). Therefore, accounting for non-Gaussian elevation changes
and errors in the DEM differencing process and quantifying the
uncertainties on the surface elevation changes is crucial.

Bayesian methods have recently gained significant momentum
in the glaciological community as they allow the combination
of various sources of information within a single statistically
coherent framework (see, for example, Zammit-Mangion et al.,
2015; Brinkerhoff et al., 2016; Guillet et al., 2020; Werder et al.,
2020; Zhang and Cressie, 2020; Gopalan et al., 2021). This paper
presents a method to derive probabilistic estimates of glacier
surface elevation changes by conditioning glacier volume variation
observations on previously available knowledge of glacier surface
elevation changes (i.e., previously published data and/or surface
mass balance model outputs). We present the estimation of glacier
thickness change as a Bayesian inference problem, which allows for
quantifying uncertainties resulting from DEM errors. By unifying
physical knowledge of glacier surface elevation changes with simple
DEM error modeling within a statistically coherent probabilistic
framework, we produce pixel-wise probability distributions of
glacier surface elevation change to measure glacier surface elevation
change uncertainty. We present validation results that test key
aspects of the proposed methodology, with an emphasis on study
zones where surge-type glaciers are likely to severely alter the
elevation change signal.

2 Digital elevation measurements and
their uncertainties

The broad range of satellite sensors allows for generating an
ever-increasing volume of glacier digital elevation products. Most
products used in glaciology are either point clouds acquired by
altimeters (either laser or radar, such as ICESat and ICESat-2 or
Cryosat-2) or gridded elevation products generated from optical
(ASTER, Pléiades, WorldView) or radar sensors (SRTM C/X-bands,
TanDEM-X). In this work, we focus on deriving estimates of glacier
surface elevation changes, relying solely on the subtraction of
DEMs and not considering products from radar or laser altimeters.
However, wewish tomention that themethod presented throughout
this paper can readily be extended to glacier changes measured
from altimeters, provided that sensor-related uncertainties can be
modeled satisfactorily.

In addition, we stress that this paper proposes a method to
unify DEM post-processing steps within a consistent probabilistic
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framework, further emphasizing the use of widely available
products. Uncertainties in DEM generation and pre-processing
steps cannot be expected to be included. For more information
regarding this topic, we refer the reader to the works of Paul et al.
(2017), Hugonnet et al. (2022) and Berthier et al. (2023) for
example, as well as individual documentation for specific DEM
generation pipelines.

2.1 DEMs from optical sensors

DEMs from optical sensors are plagued by data gaps and
artifacts resulting from failed matching during DEM generation
(Paul et al., 2017; Hugonnet et al., 2022), which represent a major
source of aberrant elevation change signal in the DEM of Difference
(DoD).They typically are the consequence of homogeneous surfaces
lacking contrast (shadow, snow, clouds, fog) and mainly affect
DEMs processed from 8-Bit sensors (such as ALOS-PRISM, ASTER
missions (see Raup et al. (2015) for more). Artifacts arise further
when spatial resolution is increased beyond the capabilities of the
original data (Paul et al., 2017). Any artifact affecting one of the
DEMs used to quantify glacier surface elevation at a given time will
be propagated into the gridded thickness change product.

2.2 DEMs from radar sensors

While DEMs derived from radar interferometry are not
restricted by daylight or atmospheric conditions, such as clouds
and fog, they are vulnerable to phase unwrapping errors due
to foreshortening, layover, and shadow effects caused by the
surrounding steep topography (e.g., Eineder, 2003; Shugar et al.,
2010). More prominently, radar signals are known to penetrate
ice and dry snow to varying depths (Dall, 2007; Gardelle et al.,
2012; Dehecq et al., 2016), depending on the physical properties
of the land surface (e.g., snow moisture content) and the signal
(e.g., Berthier et al., 2006; Rott et al., 2021). The Shuttle Radar
Topography Mission (SRTM) DEM is a well-documented example
elevation-dependant of radar penetration, as its global coverage has
been used in numerous studies (Berthier et al., 2006; Gardelle et al.,
2012; Pieczonka and Bolch, 2015; Bolch et al., 2017; Li et al., 2021a).
The DEM was created from C-band SAR data collected in February
2000 and thus has extensive snow cover overmost mountain regions
of the northern hemisphere.

In this paper, we propose a methodology that addresses
uncertainties related to optical sensors and radar penetration. We
do so through a probabilistic approach (see Section 3) relying on the
unification of error modeling for DEMs from both optical and radar
sensors (Section 3.1) with available knowledge on glacier thickness
changes (Section 3.2) within a statistically consistent framework.

3 Bayesian formulation

Let us consider the DEM subtraction problem for two 3-D
aligned DEMs from which we compute the glacier surface elevation
change Z over a given period T as follows:

Z (s,T) = z (s, t = t2) − z (s, t = t1) (1)

Where z(t) is the digital representation of surface elevation, observed
at a finite set of locations s over a spatial domainDwith s ∈D, at time
t with t2 > t1 and T = t2 − t1

Since DEMs are inherently imperfect representations of the
true, exact underlying ground surface (unknown and inaccessible),
Z(s,T) correspondingly carries an uncertainty that propagates in
surface elevation change calculations.The true andunknown surface
elevation change, hereafter denoted X, is thus a latent variable that
we aim to infer from its direct measurement Z:

X (s,T) = Z (s,T) + e (s, t) (2)

where e(s, t) is the unknown difference between the observed
and the “true” surface elevation change. In a recent publication,
Hugonnet et al. (2022) relied on inferential methods from stable
ground to characterize e(s, t). Here, we opt for a different approach
and aim to provide a probabilistic estimate of the “true” glacier
elevation change X from observations of Z, conditioned only on
data- and model-based knowledge on glacier surface elevation
changes.

Any known information available about X before considering
Z is called prior information and is hereafter denoted I. I here
mainly includes assumptions or previous knowledge about glacier
dynamics. The Bayesian DEM subtraction problem amounts to
finding p(X|Z, I) which is the probability density of X conditional
to knowing both Z and I, also known as the posterior probability
density function (PDF) ofX.More formally, applyingBayes’ theorem
to our problem, we can write:

p (X|Z, I) =
p (Z|X, I)p (X|I)

p (Z|I)
(3)

The right-hand side of Eq. (3) comprises three terms playing
distinct roles in the inference process.

p(Z|X, I) is called the likelihood. It represents the probability
density of observing the glacier surface elevation changes as
described by Z and a defined error model (see Section 3.1) if we
assume the true glacier thickness change X and I to be known.
This term captures all the measurement errors related to different
topographic parameters (terrain roughness, slope, aspect, etc.) and
cloud cover (see Section 3.1).

p(X|I) is called the prior and encodes all a priori information
assumed about X, gathered from knowledge on the physics of
glaciers and glacier dynamics. We discuss the prior term in greater
detail in Section 3.2.

Finally, p(Z|I) is a normalizing constant independent fromX and
ensuring ∫p(X|Z, I)dX = 1. Its value is of no practical significance for
this work. We shall thus neglect it and remember that the posterior
PDF (Eq. (3)) is defined up to a normalizing constant.

3.1 Likelihood

Thefirst ingredient of Bayesian inference is the likelihood, which
captures the DEM-related errors by describing the probability of
observing Z under a given error model and prior information
I: p(Z|X, I). In the present case, the likelihood aims to model
measurement error sources in digital elevation datasets.

In this work, we want to be able to deal with mixed radar and
optical datasets and will construct simple empirical models for 3
sources of errors:
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• Terrain morphology
• Radar penetration for radar datasets
• Low-contrast areas and cloud obscuration for optical datasets

For both radar and optical sensors, terrain morphology and
sample density have been documented as first-order controls
of DEM error and uncertainty (Aguilar et al., 2005; Wise, 2011;
Mukherjee et al., 2013; Hubacek et al., 2016; Hugonnet et al., 2022).
We thus follow the findings of Heritage et al. (2009); Wheaton et al.
(2010); Milan et al. (2011) documenting the effect of terrain
morphology on DEM errors and use terrain roughness (largest
inter-cell difference for a central pixel and its surrounding cell
(Darnell et al., 2008)–hereafter denoted r) as the main parameter
for the DEM error model. We assume that the DEM errors are
uncorrelated across pixels, increasing with roughness r such that
their standard deviation is described by an increasing function g(r).
Given a true elevation changeX, we therefore set for sources of errors
coming from terrain morphology only:

Z| {X,Terrainonly, I} ∼ Student (X,g (r) , k = 5) (4)

i.e., Z follows Student’s scaled t-distribution with mean X,
standard deviation g(r), and degrees of freedom k = 5. Using
a Student instead of Gaussian distribution follows the well-
established practice for robust inference as they present similar
properties, but the Student-t features heavier tails and is thus
more robust to outliers (Gelman et al., 2013). In this context,
the parameter k can be freely chosen to set the weight of the
tails. In practice, 3 ≤ k ≤ 10 values are recommended for inference
problems (Gelman et al., 2013); we here choose to use k = 5 since it
provides a good balance between mass around the mean and in the
tails.

g(r) encodes the dependence of the standard deviation of DEM
errors on the local terrain roughness r. For simplicity, we use the
same g(r), whether the DEMs sources are radar or optical, as a
first approximation of the general form and value of the error. We
calibrate g(r) as described in Supplementary Appendix SA.1.1 based
on empirical data and general estimates of DEM uncertainties; we
stress that the goal is not to obtain a very accurate model but to
capture the main uncertainties and overall dependence on terrain
morphology.

As mentioned in Section 2.2, another common source of biases
in glacier surface elevation changes is the penetration of C-band
radar beams into snow/firn/ice in DEMs derived from radar
sensors. We here model radar penetration depth at each pixel
s as a Gaussian distribution, with elevation-dependent median
PDD(z) and constant standard deviation σPDD. We use the empirical
equations of Li et al. (2021a) as a functional form of the elevation-
dependent median (see Section 4.4 for more). To account for snow
penetration depth (PDD) in datasets coming from radar sensors, we
modify Eq. 4 to:

Z| {X,Terrain&PDD, I} ∼ Student(X+ (ϵ1 − ϵ2)PDD (z) ,

√g(r)2 + (ϵ1 + ϵ2)σ2
PDD, k = 5) (5)

where ϵ1 = 1 if DEM1 has snow penetration (e.g., a radar
dataset), and 0 otherwise; and ϵ2, is similarly defined for
DEM2. This amounts to shifting the expected value of Z to

account for the mean penetration PDD(z) at the pixel s in the
two DEMs, and increasing the standard deviation to account
for the standard deviation σPDD in radar penetration. We
set a constant σPDD = 0.5 m and define PDD(z) according to
results from Li et al. (2021a) (e.g., Equation 14 for the Western
Kunlun Shan); some models for PDD(z) are presented in
Supplementary Appendix SA.1.2.

Finally, for DEMs derived from optical sensors, low-contrast
areas or clouds are an additional source of errors, as mentioned
in Section 2.1. These cannot be captured using a morphometrics-
based model since the aberrant elevation change signal is not
correlated with terrain complexity. We propose to capture those
effects separately in the likelihoodusing a simplemodel.We typically
expect the aberrant elevation change signal to be either markedly
positive or negative, depending on whether the low contrast regions
are located on DEM1 or DEM2 and with greater absolute value than
the glacier change signal. Given a pixel s, we consider three possible
cases: either pixel s of only DEM1 is a low-contrast artifact (event
C1), or pixel s of only DEM2 is an artifact (event C2), or the pixel is a
low-contrast artifact in neither DEM (eventC0). We neglect the case
where the same pixel is affected on both DEMs. Under these three
disjoint scenarios, we therefore have three conditional likelihoods:
p(Z|X,Cq, I),q = 0,1,2. Note that in the case C0, there are no low-
contrast artifacts, and the likelihood is given by Eq. 5which accounts
for terrain-related errors and possible snow penetration:

p(Z|X,C0, I) = p (Z|X,Terrain&PDD, I) . (6)

We detail our model for the conditional likelihoods
p(Z|X,Cq, I),q = 1,2 in Supplementary Appendix SA.1.3. Finally,
we obtain the full likelihood as a mixture of conditional likelihoods
on the disjoint cases Cq,q = 0,1,2:

p (Z|X, I) = ∑
q=0,1,2

p(Z|X,Cq, I)p(Cq|I) (7)

We obtain p(C1|I) and p(C2|I) from the DEM’s metadata
(valid pixel mask for ASTER scenes, for example); for a radar
DEM, we set the corresponding p(Cq|I) = 0. We also take
p(C0|I) = 1− p(C1|I) − p(C2|I).

3.2 Prior

We now turn to the description of the prior term, p(X|I)
in Eq. (3), capturing all information on X known regardless of
any information from the observed surface elevation changes Z. I
may contain information obtained directly from already existing
datasets, from modeled results, or more theoretical considerations
of glacier surface elevation changes, for example.

In the present work, we form our prior over glacier surface
elevation change in two steps. We first consider existing datasets
from other studies to form the median of the prior probability
distribution. In a second step, we define the variance as a simple
model of glacier surface elevation changes, capturing contrasting
elevation change patterns often documented in dynamically
unstable glaciers.

The wealth of data produced by recent studies quantifying
glacier volume changes (Brun et al., 2017; Braun et al., 2019;
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Shean et al., 2020; Hugonnet et al., 2021) provides valuable a-
priori information for our inference process. Given the data
gaps present and the use of higher order polynomials used
to minimize errors in Brun et al. (2017), we only consider
the datasets from Shean et al. (2020) (Available at https://ze
nodo.org/record/3600624) and Hugonnet et al. (2021) (available
at https://www.sedoo.fr/theia-publication-products/?uuid=c428c5
b9-df8f-4f86-9b75-e04c778e29b9) as potential prior information.

To derive our prior formulation, we first compute the median
and 70% interpercentile range (distance between the 15th and 85th
percentile) of the yearly surface elevation change rate for 100 m
elevation bins for all glaciers in High Mountain Asia (HMA) for
2000–2018 for both the Shean et al. (2020) and Hugonnet et al.
(2021) datasets (Figure 1), using anotherDEMas elevation reference
(Copernicus DEM in the present case, see Section 4.1.2).

Glaciers are then divided into surge-type and non-surge-
type groups, using the surge-type glacier inventory generated by
Guillet et al. (2022). Both datasets present an elevation-dependant
median, with constant variance for stable glaciers and elevation-
dependant variance for surge-type glaciers (Figure 1). The latter
results from surges, especially towards lower altitudes. However,

both datasets implicitly assume that thickness changes are constant
over time by representing glacier thickness change as rates
rather than totals over the 2000–2018/2019 period. This does
not reflect the wealth of observed surge behavior, in which
sudden destabilization of a glacier will lead to a rapid (over the
course of months to years) dynamical thickening of up to several
hundreds ofmeters (Bolch et al., 2017; Steiner et al., 2018;Guo et al.,
2020; Muhammad and Tian, 2020). While Hugonnet et al. (2021)
provide additional surface elevation change records resolved over
5-year intervals, they suffer from similar caveats and do not
adequately represent possible surge-induced surface elevation
changes.

We define p(X|I) as a Student-t distribution with k = 5 degrees of
freedom, an empirical median derived from the Shean et al. (2020)
dataset and use Eq. 19 as a scaling parameter to control the standard
deviation of the distribution:

X|I ∼ Student(μ (z) ,σX (z) , k = 5) (8)

Equations for μ(z) and σX(z) are described in Supplementary 
Appendix A.2; see Eqs 18, 19, respectively.

FIGURE 1
Distribution of surface elevation change rates per 100-m elevation bins from Hugonnet et al. (2021) (top) and Shean et al. (2020) (bottom) over HMA,
for the 2000–2018 period. Solid lines are medians, while shaded areas represent the inter-percentile range between the 15th and 85th percentiles of
each 100 m elevation bin.
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The prior distribution defined here is “weakly” informative.
The purpose of formulating a relatively weak prior is to explicitly
regularize the inference process and thus keep estimated glacier
thickness changes within a reasonable range of values, compatible
with known variations resulting from dynamical thickening. A
weaker prior thus allows one to capture glacier surface elevation
changes resulting from a wider range of phenomena, such as
dynamical thinning or thickening within a single model. Assuming
that one is interested in estimating glacier thickness changes for
non-surge-type glaciers, the weak prior formulation can easily be
modified to constrain surface elevation changes more strictly (see
Supplementary Appendix A.2).

We have now specified the likelihood (Eqs (6), (7) and Eq. 16,
17 in Supplementary Appendix A.1) and the full prior (Eq. (8),
with terms discussed in Supplementary Appendix A.2). Therefore,
we can evaluate the univariate posterior probability density on X
using Eq. (3) for any Z(s,T). The pixel-wise estimate of the glacier
thickness change is finally computed by cumulative trapezoidal
numerical integration as the median of the univariate posterior
probability density function.

Another descriptor of the posterior probability density function
commonly used in Bayesian inference problems is the Maximum A
Posteriori (MAP) which corresponds to the mode of the posterior
distribution. In the present study, we use the median and the
associated 90% credible interval (range of values in which one can
expect the latent variable to lie, with a probability of 0.9) as the
posterior probability density is multimodal. Identifying the highest
mode can therefore be impossible since, in some cases, the different
modes are equal (Lehmann and Casella, 2006; Casella and Berger,
2021). Even if the highest mode can be identified, it is unlikely to be
representative of the posterior distribution. Although the posterior
probability density median is not always the most probable value,

it allows, alongside the credible interval, to better characterize the
posterior PDF in its entirety, and thus provide a clearer picture
of the uncertainty associated with each surface elevation change
estimate.

4 Case study and results

In this section, we set up experiments to demonstrate and
evaluate key points of the presentedmethodology. First, we consider
outlier filtering by simulating errors within a DoD to reflect biases
that could exist in glacier surface elevation changes computed from
DEMs derived from radar and optical sensors (Section 4.2). In
the second step, we test our prior formulation and the overall
sensitivity of the technique to the prior parameters (Section 4.3).
We then investigate our complete uncertainty estimation
framework implementation by comparing our results with already
published studies (Section 4.4). All experiments are independent
of one another and re-use the same publicly available input
DEMs.

4.1 Presentation of experiments and data

4.1.1 Overview of experiments
We test our methodology using data from the Western Kunlun

Shan in the northwestern Tibetan Plateau (Figure 2). Lying south of
the Tarim Basin and west of the Karakoram range, Western Kunlun
Shan is one of the most glacierized regions of High Mountain Asia,
containing a wide range of glacier types from cirque, valley, and
piedmont glaciers to ice caps.While the northern slopes present long
and relatively steep glaciers flowing into deeply incised valleys, its

FIGURE 2
Location of the Western Kunlun Shan. Glaciers are represented by their outlines from the RGI v6.0. The classification of surge-type glaciers is from
Guillet et al. (2022). Hillshade is generated from COP-DEM. Location Map data is copyrighted by OpenStreetMap contributors and available from
https://www.openstreetmap.org.
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TABLE 1 Prior parameters used in the experiments.

Parameter Value Sources

X front 110 [m] Cuffey and Paterson (2010); Muhammad and Tian (2020)

̇a 0.3 [myr−1] Maussion et al. (2014); Thompson et al. (2018)

Xacc 4 [m] –

zELA 5,930 [m.a.s.l.] Zhang and Jiao (1987); Ageta (1989); Liu et al. (1992); Bao et al. (2015); Wang et al. (2018); Luo et al. (2022)

southern slopes present a more gradual elevation gradient. Surges
have been reported to affect 18 glaciers (63% of the glacierized area),
both in the northern and southern slopes of the Western Kunlun
Shan (Guan et al., 2022; Guillet et al., 2022). The diverse elevation
gradients and widespread complex thickness change signal resulting
from dynamical instabilities make the Western Kunlun Shan a good
test case for our methodology. The RGI (V6.0, RGI Consortium
(2017)) outlines used in this study comprise 399 glaciers covering
a total area close to 3,000 km2.

For each experiment, we use the prior parameters described in
Table 1 unless otherwise specified.

4.1.2 Data
4.1.2.1 NASADEM

The NASADEM (hereafter referenced as NAS30) was released
in 2020 and consisted of a reprocessing of the Shuttle Radar
Topography Mission (SRTM, 30 m) DEM using ASTER GDEM2,
advanced interferometric techniques and ground control points
derived from the ICESat laser altimeter to fill existing data voids and
to improve the geolocation accuracy (Crippen et al., 2016; NASA,
2020). The SRTM DEM was originally produced with WGS84
geographic coordinates, with elevation as a height measure relative
to the Earth Gravitational Model 1996 (EGM96) geoid (Farr and
Kobrick, 2000). We use NAS30, with its improved spatial coverage,
to represent elevations from 2000. NAS30 also allows us to test the
penetration correction implemented within our likelihood due to
its well-known problem of C-band radar penetration into snow at
higher altitudes.

4.1.2.2 Copernicus DEM
The Copernicus DEM is based on DEMs generated from

TanDEM-X data acquired between December 2010 and January
2015 and went through significant post-processing, including
spikes and holes removal, void filling, as well as correction
of implausible terrain structures and random biases (AIRBUS,
2020a). Validated against ICESat GLAS measurements, the
Copernicus DEM presents an average vertical RMSE of 1.68 m
(AIRBUS, 2020b). The Copernicus DEM is provided in WGS84
geographic coordinates, using EGM2008 as a vertical reference
datum. We follow Liang et al. (2022) and use the Copernicus
1 arcsec (30 m, hereafter referred to as COP30 and available
at https://spacedata.copernicus.eu/collections/copernicus-digital-
elevation-model) as a representation of glacier surface elevation
in 2013.

4.2 Outlier filtering

We first compute glacier surface elevation changes from the
coregistered NAS30 and COP30 DEMs to validate the posterior-
based filter. Note that while we are aware of the radar penetration
problems arising from the use of DEMs generated from radar
sensors, this experiment solely focuses on testing the ability of our
methodology to recover the underlying surface elevation change
map in complex glaciological contexts. Therefore, we do not
consider the potential radar penetration problem in this experiment
but do so in the one presented in Section 4.4. The computed surface
elevation changes are further used as reference DoD.

Gaussian random fields (GRFs) have been widely used to
model measurement biases and random fluctuations in physical
properties in spatially correlated data (Haran, 2011; Hristopulos,
2020). Tomimic noise observed in glacier surface elevation changes,
we simulate biases using a two-dimensional zero-mean stationary
Gaussian random field:

w = (w (s1) ,w (s2)…,w(sn))
′ ∼ N (0,C (d)) (9)

where s1,s2… sn are samples from the DEM D and C(d) is a
family of covariance matrices and function of d, the reciprocal
distance between two samples si and sk. We here define the Gaussian
random field through its power spectrum and first design a test case
using a scale-invariant power spectrum. We compute a GRF with
Gaussian power spectrum as a second test case, derived from the
variogrampresented inHugonnet et al. (2022). In both cases, we aim
to reflect biases in glacier surface elevation changes when computed
from digital elevation data derived from radar and optical sensors.
We thus define a heteroscedastic random field, where the power
spectrum is scaled to vary with terrain roughness, as specified in the
likelihood (Eq. 15).

4.2.1 Gaussian random field with scale-invariant
power spectrum

In this experiment, we use a GRF with a power spectrum of the
form:

P (ω) = ω−n (10)

where ω is the conjugate of the distance d through the Fourier
transform. n here controls the spatial correlation of the randomfield.
n = 1 provides the most realistic simulated noise (see Figure 3).

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2023.1076732
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guillet and Bolch 10.3389/feart.2023.1076732

FIGURE 3
Example of simulated errors using a heteroscedastic GRF with scale-invariant power spectrum with n = 1. Glacier outlines originate from the RGI v6.0.
Ref. stands for reference DoD. Box represents the extent of Figure 4.

4.2.2 Gaussian random field with Gaussian power
spectrum

In this experiment, we derive a Gaussian power spectrum for the
GRF from Hugonnet et al. (2022). In Eqs 15, 16, they proposed an
analytical form of an empirical variogram relying on two different
models: Gaussian at short ranges and spherical models at longer
ranges. Hugonnet et al. (2022) further report the decorrelation of
95% of variance on flowing glacier ice for distances greater than
38 m. For the sake of simplicity, we here neglect the remaining 5%
of variance and assume a variogram of the form:

G (s, r,d) = s(1− e(
2d
r
)2) (11)

with s = 1 being the sill for standardized elevation differences and
r = 38 m. From this, we can derive the covariance function:

C (d) = e(
2d
r
)2 (12)

To model this covariance function, we take the power spectrum to
be:

P (ω) = √π
a
⋅ e
−( ω

2

4a
)

(13)

where a = 2
r

and ω is the conjugate of d through the Fourier
transform. An example of the random field is given in Figure 4.

Figures 5, 6 show the surface elevation change maps with
simulated noise and compares them to the posterior distribution.
Qualitatively, the proposed methodology satisfactorily culls the
artificial noise in the scale-invariant and Gaussian cases. We further
note that additional spurious elevation change in the reference map
has been filtered alongside the added noise.

More quantitatively, the medians of the reference DoD (gray,
Figure 6) and surface elevation change maps with Gaussian and
scale invariant noise are 7.5, 7.3, and 12 m, respectively, over the
considered period. Medians of the posterior on glacier surface
elevation changes for the scale invariant (n = 1) and Gaussian power
spectra are consistent, with medians of 3.7 and 3.5 m, respectively.
We note a wider spread for the Gaussian power spectrum case.
The most likely explanation for this is high-valued artificial noise
at relatively low elevations, typically below the Equilibrium Line
Altitude (ELA) (Figure 5). Given the weaker prior below the ELA
(see section Supplementary Appendix SA.2), our methodology does
not consider these pixels outliers. Still, they are affected with greater
uncertainty, as demonstrated by the distribution of widths of the
90% credible regions (Figure 7). While a weaker prior allows to
accommodate a wider range of surface elevation change patterns, it
does so at the cost of additional variance.

4.3 Prior selection and sensitivity

4.3.1 Impact of the ELA on the posterior on
surface elevation changes

We first compute the reference elevation change over the
Western Kunlun Shan by culling outliers from the COP30-NASA30
surface elevation change map. Then, elevation changes over the
Western Kunlun Shan are estimated for various ELA values:
5,600, 5,700, 6,000, 6,200, and 6,500 m (see Table 1). These values
purposely lie outside of the expected interval for both end-of-
summer transient snowlines (5,900–6,100 m) and equilibrium line
(5930 m) altitudes to test the effect of “extreme” hyperparameter
values on the filter’s performance.
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FIGURE 4
Example of simulated noise using the heteroscedastic GRF with Gaussian power spectrum. Glacier outlines originate from the RGI v6.0. Ref. stands for
reference DoD. Closeup from Figure 3.

Theresulting posterior distributions for surface elevation change
maps computed with ELAs equal to 5,600 and 5,700 m present
an important bias toward 0 values compared to the reference
DoD, with median surface elevation changes of 0.0 and 1.3 m and
interpercentile range (IPR, between the 25th and 75th percentile) of
4.2 and 5.3 m respectively during the 2000–2013 period (Figure 8).
As expected, the distributions of widths of 90% credible regions are
similarly biased towards smaller values, with medians of 18 (ELA
5600 m) and 22 m (ELA 5700 m) and IPR of 9 m.This bias in filtered
surface elevation change and width of 90% credible regions directly
results from the altitude of the equilibrium line in these examples,
as it is lower than the terminus for 269 glaciers of the 399 in this
example.

Strong similarities exist between the posterior distributions for
the reference and surface elevation change maps computed with
ELA = [6,000,6,200]. The distributions are consistent with each
other, presenting median surface elevation changes close to 3.8
(reference DoD), 4.3 (ELA = 6,000 m), and 5.4 m (ELA = 6,200 m),
and IPR of 6.1, 6.2, 6.3 m, respectively, over the 2000–2013 period.
The distribution of widths for the 90% credible regions is more
conservative, withmedians close to 29.7 (reference DoD), 31.5 (ELA
6,000 m), and 35 m (ELA 6,200 m) and IPR ranging from 14.1 to
20 m.

Finally, the posterior distribution on surface elevation change
computed with an ELA=6,500 m presents a median of 6.3 m. The
distribution of widths of 90% credible regions is significantly wider,
with an IPR of 26 m during the 2000–2013 period.

4.3.2 Impact of errors in the reference DEM
As defined by Eq. (8), the prior captures knowledge on

pixel-wise glacier thickness change, given a certain elevation
and glacier ELA (see section Supplementary Appendix SA.2).
Elevation ̃zs for a given pixel s is read directly from the reference
DEM (Copernicus DEM in the present case), which is itself a
flawed representation of the true and unknown ground surface
elevation zs.

To test for the impact of errors ϵs on our prior formulation,
we first define ̃zs = zs + ϵs, with ϵs ∼N (0,30m) thus assuming
ϵs to be normally distributed with a standard deviation an
order of magnitude higher than the reported Copernicus
DEM root mean square error (RMSE) of 1.68 m (AIRBUS,
2020b). We then simultaneously generate 10,000 realizations

of the prior probability distributions on X given zs and ̃zs:
p(X|zs,zELA) and p(X| ̃zs,zELA). Repeating this experiment for
different values of zS and zELA, we observe no difference between
p(X|zs,zELA) and p(X| ̃zs,zELA) (Figure 9) and therefore conclude
that the errors in the reference DEM do not affect the prior
probability.

4.4 Comparison with other glacier surface
elevation changes in the Western Kunlun
Shan

Finally, we estimate glacier thickness changes using all the
features presented in our methodology (Figure 10). Here, we thus
further account for the well-known problem of radar C-band and
X-band snow penetration.

The correction is parameterized using the results from Li et al.
(2021a) empirically describing the radar penetration depth in the
Western Kunlun Shan as linearly dependent on the altitude, with a
function of the form:

PDD = 0.026× z− 12.46 (14)

where PDD is the penetration depth difference of the C/X-Band
STRM and z is the elevation. We follow the method of Liang et al.
(2022) and apply a similar correction to the NAS30 and COP30
DEMs.

Comparing results between uncertainties estimated from
frequentist and Bayesian approaches is not straightforward, as
initial assumptions and design philosophies strongly differ. While
describing the posterior distribution as a single-value estimate is not
representative of Bayesian methods, we can nevertheless compare
the median of the posterior distribution on glacier surface elevation
changes with similar products published previously (Figure 11).
In the following, we further express our results as glacier surface
elevation change rates for consistent comparison with the other
studies. However, we want to restate that computing rates over
periods greater than the duration of the active surge phase implies
constant surface elevation changes over the considered time interval.
This does not adequately represent surge-type dynamics and
directly contradicts the observed surge behavior (Benn et al., 2019;
Guillet et al., 2022).
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FIGURE 5
(A) Elevation change maps for the Western Kunlun Shan (left). Closeup of the elevation change map in the area delineated by the black box (right).
Reference glacier thickness change computed from the difference between COP30 and NAS30. (B) Reference glacier thickness change with noise
added from the Gaussian random field. (C) Estimated noise-free surface elevation change map. (D) Difference between third and second rows. Note
that the filter has culled noise present in the reference map. SI and G, respectively, refer to scale invariant and Gaussian. Both refer to the power
spectrum of the Gaussian random field used in each case.
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FIGURE 6
Distributions of the reference surface elevation change (top, grey), the surface elevation changes with added noise from Gaussian (G) and scale
invariant (SI) power spectrum random field (center, blues), the medians of the posterior on glacier surface elevation changes for each test case
(bottom, greens). The boxes show the quartiles of each distribution, and the whiskers extend to show the rest of the distribution.

FIGURE 7
Distributions of the width of 90% credible regions for the scale invariant (SI) and Gaussian (G) cases.

Over the 2000–2013 period, we find a general glacier thickening
in theWestern Kunlun Shan of ≈0.14± 0.35 m yr−1; the distribution
being heavy-tailed, we use the interpercentile range (16th to
84th percentiles) to describe the dispersion around the median
value. These results are consistent with previous documentation
of a thickening anomaly over similar periods and spatial extent
in the Western Kunlun Shan. Lin et al. (2017) relied on the
use of SRTM DEM and X-band SAR images to derive surface
elevation changes of ≈+ 0.15± 0.06 m yr−1 for the 2000–2013
period. Wang et al. (2021) report a mean glacier thickening of

≈0.14± 0.10 m yr−1 over between 2000 and 2019, according to
ICESat and ICESat-2. Similarly, relying on the use of ICESat
data, Bao et al. (2015) document an average glacier thickening
≥0.2 m yr−1 in the Western Kunlun Shan between 2003 and
2009. The data generated by Hugonnet et al. (2021) for the
2000 to 2009 period show thickening of ≈0.10± 0.9 m yr−1,
the variance being here described through the interpercentile
range (16th to 84th percentiles). The most recent study of
Liang et al. (2022) documented surface elevation changes of ≈0.15±
0.35 m yr−1 for the 2000–2013 period using the STRM DEM and
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FIGURE 8
Distributions of the median (green) and width of a 90% credible region (CR, between the 5% and 95% percentile, orange) filtered surface elevation
changes for different ELA values. The gray background indicates the reference DoD. Note the heavily biased distributions for ELAs of 5,600 and
5,700 m. Note that the inverse representation of the CR distributions is for readability only.

TanDEM-X, which is consistent with our estimate using the same
data.

Figure 11 further illustrates a common problem in reporting
glacier thickness changes as Gaussian distributions. Without
access to the data, we generated distributions from the means
and standard deviations reported in Bao et al. (2015); Lin et al.
(2017); Wang et al. (2021) and Liang et al. (2022). We observe
that the heavy tails in the distributions generated from the
Hugonnet et al. (2021) data and our results (reds in Figure 11) are
not adequately captured when relying on the metrics provided
Bao et al. (2015); Lin et al. (2017);Wang et al. (2021) and Liang et al.
(2022) (greens in Figure 11). This further exemplifies the major

caveats in reporting glacier surface elevation changes and rates
as means and standard deviations, as they are not representative
measures of a non-Gaussian distribution’s central tendency and
dispersion.

5 Discussion

In this paper, we proposed a proof of concept demonstrating
that Bayesian modeling, allowing for the unification of outlier
filtering and uncertainty estimation within a statistically coherent
framework, can be successfully applied to remote sensing of glacier
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FIGURE 9
Distributions of realizations of the prior probabilities on X given zs (blue) and ̃zs (orange) with zELA = 6,000 m (top row) and zELA = 7,000 m (bottom row).

changes. We characterized the state of knowledge on glacier
surface elevation changes through the posterior distribution as
the combination of glacier volume variation observations, prior
knowledge from scientific knowledge, and previously collected
data. This contrasts with the more common approaches used
in remote sensing of glacier changes relying on static control
surfaces to characterize or minimize errors through the use
of different accuracy measures (Pieczonka and Bolch, 2015;
Braun et al., 2019; Shean et al., 2020; Hugonnet et al., 2021), higher-
order polynomials (Brun et al., 2017) or inference processes
(Hugonnet et al., 2022).

The method further alleviates the problems raised by
approaches that rely on regression methods and dense DEM
time-series to compute glacier thickness changes (Brun et al.,
2017; Hugonnet et al., 2021). While such methods maximize the
likelihood of their given statistical model (linear trend or Gaussian
process) to explain the observed data, the lack of regularization
likely leads to overfitting, as Gaussian process models require
fine-tuning of the kernel functions and their hyperparameters
(Rasmussen and Williams, 2005). The robustness of estimates
computed from Gaussian process models typically suffers from
high variability in sampling rate or important temporal data
gaps. In the Bayesian model, formulating an a priori knowledge
with known and naturally interpretable parameters regularizes
the inference process, making it more robust and immune to
spurious spatial and temporal correlations. A logical next step
would be to unify the proposed methodology with the time-
series approach of Hugonnet et al. (2021) within a Bayesian
updating/data assimilation framework. Such a scheme would allow
a fully probabilistic formulation of the geodetic mass balance

of glaciers, incorporating the quantification of uncertainties
related to data, glacier area change, and ice volume-to-mass
conversion.

The Bayesian inferential paradigm incorporates previous
knowledge and physical considerations on the studied latent process
and provides a natural interpretation of credible intervals (credible
regions or sets). Indeed, contrary to the frequentist confidence
interval, the Bayesian credible region quantifies the range of values
within which the latent variable falls with a particular probability.
In addition, the flexibility of the Bayesian approach allows one to
modify the framework’s ingredients as new knowledge becomes
available. The proposed Bayesian model can readily be extended
to any other type of digital surface elevation dataset, such as laser
altimetry or InSAR, provided that the errors associated with each
sensor can be modeled satisfactorily. As an example, a model
estimating glacier or ice sheet thickness change from laser altimetry
would have to account for errors resulting from geomorphometry
(surface roughness, etc., Harding et al. (1994); Brunt et al.
(2019)), vertical ice flow (surface submergence/emergence,
Hubbard et al. (2000); Enderlin et al. (2022)) and the physical
nature of the land surface (firn densification and water content,
Smith et al. (2023)).

In Section 4.4, we showed that the presented method can
successfully estimate glacier surface elevation changes and
associated uncertainties. By comparing our results with previous
efforts to quantify surface elevation changes in the Western Kunlun
Shan, we found discrepancies in the distributions of single-value
estimates of glacier surface elevation changes. However, these
discrepancies can be explained by the difference in input data and the
more conservative approach to defining weak priors for all glaciers
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FIGURE 10
Maps of the median pixel-wise elevation change (top) and pixel-wise 90% credible interval for the Western Kunlun Shan case study, between 2000
(NASADEM) and 2013 (COP-DEM). Hillshade is generated from COP-DEM.

in the study region. The latter can be addressed by introducing
finer glacier-specific priors relying, for example, on existing surge-
type glacier inventories. Due to the inherently different nature of
the uncertainties estimated between various methodologies, it is
impossible to compare the uncertainties directly. Furthermore,
we demonstrated that the proposed methodology satisfactorily
characterizes the state of knowledge on glacier surface elevation
changes from observations and prior information and provides
estimates of glacier surface elevation change that are broadly
consistentwith previous results.Thepresented uncertainties (i.e., the
width of credible regions) are likely overestimated since each surface
elevation change pixel is considered independent of its surroundings
and the information provided by neighboring observations is not
considered. Future improvements to the presented methodology
typically include incorporating important findings from
Hugonnet et al. (2022), such as accounting for long-range spatial
correlation in errors and refining the error descriptors used in the
likelihood.

Finally, we recommend that researchers follow the examples
established by recent efforts (Hugonnet et al., 2021) and the present
study and abandon reporting changes in glacier thickness and
geodetic mass balance through means and standard deviations.
Glacier instabilities, such as surges and other dynamical ice
mass redistribution phenomena, are prime examples that glacier
changes are not smooth in space or time (Krabill et al., 2004;
Csatho et al., 2014). Implying Gaussianity in the distribution of
changes in glacier thickness does not reflect the diversity of observed
behaviors and further suggests constant variance throughout the
studied zone and period. Researchers should aim to describe their
results through robust gridded estimates of the central value (the
median, for example) and associated spread (an inter-percentile
range or the Median Absolute Deviation, MAD) of the thickness
change distribution, similar to the results of Hugonnet et al. (2021)
or presented in Figure 10. Finally, we wish to emphasize that
probabilistic methods, such as the one proposed here, present an
adaptable alternative to frequentist approaches when estimating

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2023.1076732
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guillet and Bolch 10.3389/feart.2023.1076732

FIGURE 11
Comparison between distributions of glacier surface elevation change rates computed from the studies described in this section. Solid black lines
represent medians, and vertical grey spans represent the inter-percentile range between the 16th and 84th percentiles. Distributions in green are
Gaussian generated using the median and standard deviation provided by the authors in their respective studies. Distributions in red are directly
generated using available data. Note how Gaussian distributions (green) fail to represent the heavy tails observed in glacier surface elevation change.

observable glacier quantities from imperfect observations, as they
allow for the specification of intuitive error structures, constrained
by prior knowledge derived from physical principles of glacier
dynamics.

6 Conclusion

This paper presented a novel method for estimating glacier
surface elevation changes based on a Bayesian formulation
of the DEM subtraction problem. Driven by the goal of
providing robust probabilistic estimates of glacier surface
elevation changes computed from the subtraction of DEMs in
complex glaciological contexts, we introduced models for errors
in input data relying on geomorphometrics and conditioned
observations using available scientific knowledge on glacier
changes. We integrated these ingredients into a statistically
consistent Bayesian framework, which can readily be extended

to other data types (i.e., measurements from laser altimeters)
and sources of uncertainty, provided that they can be modeled
satisfactorily.

We applied and tested the method using glaciers in the
Western Kunlun Shan, located at the northwestern edge of the
Tibetan Plateau and known for its many surge-type glaciers.
Our method produced estimates of glacier surface elevation
changes consistent with previously published results. Combining
Bayesian outlier filtering with probabilistic uncertainty models,
the method consistently estimates glacier surface elevation
changes in complex glaciological contexts while propagating
the associated uncertainties. Although the examples presented
in this study focus on dynamically unstable surge-type
glaciers, the methodology is readily useable for all glaciological
contexts.

Efforts are needed to extend the Bayesian framework to
effectively assimilate further glacier observations in the model,
such as glacier velocities, and to refine the integration of spatially
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correlated information, such as surrounding pixels. The increased
availability of glacier products derived from satellite sensors (e.g.,
digital elevation models, surface velocities) and computing power
provide the scientific community with large volumes of quantitative
physical information. As presented in this study, Bayesian methods
are valuable tools for building sophisticated models to estimate
glacier quantities from remotely-sensed data while providing an
adaptable framework to estimate and control uncertainties in the
results.
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