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Introduction: Cracks are a key feature that determines the structural integrity
of rocks, and their angular distribution can be used to determine the local
or regional stress patterns. The temporal growth of cracks can be monitored
in order to predict impending failures of materials or structures such as a
weakened dam. Thus, cracks and their spatial-temporal distributions should be
automatically monitored for assessing their structural integrity, the associated
stress patterns and their potential for failure.

Method: We show that the U-Net convolutional neural network, semantic
segmentation and transfer learning can be used to accurately detect cracks in
drone photos of sedimentary massifs. In this case, the crack distributions are
used to assess the safest areas for tunnel excavation. Compared to the coarse
performance of ridge detection, the U-Net accuracy in identifying cracks in
images can be as high as 98% when evaluated against human identification,
which is sufficient for assessing the general crack properties of the rock faces
for the engineering project.

Result: Based on approximately 100 h of manual cracks labeling in 127 drone
photos and 20 h of network training, the U-Net was able to successfully detect
cracks in 23,845 high-resolution photographs in less than 22 h using two Nvidia
V100 GPUs. Meanwhile, the network was able to detect more than 80% of the
observable cracks of a volcanic outcrop in Idaho without additional training.
With a modest amount of extra labeling on photos of the volcanic outcrop
and transfer training, we found that the accuracy significantly improved. The
surprising outcome of this research is that the U-Net crack detector laboriously
trained on photos of sedimentary rocks can also be effectively applied to photos
of volcanic rock faces. This can be important for real-time assessment of
geological hazards and lithology information for dam inspection and planetary
exploration by autonomous vehicles. For another application, we accurately
detected fractures and faults with a scale of tens of kilometers from Martian
photographs.

Conclusions: In summary, our methodology of using CNN with transfer training
suggests that it can be used as a semi-universal detector of cracks in across a
range of diverse geological settings.

KEYWORDS
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1 Introduction

1.1 Crack detection and deep learning

All solids weaken over time and develop a reduction in their
mechanical strength. A sign of this weakness is the development
of cracks, a quasi-linear physical separation of material on the
surface and in the interior of a solid. For siting buildings on a
rock foundation (Wyllie, 1999), assessing dam hazards (Herbert,
2011), avoiding drilling hazards or for mining excavation (Dyskin
and Germanovich, 1993), it is critical to assess the density and
distribution of fractures in the rock mass. To aid in this task,
thousands of aerial photos of a rock area can easily be obtained
by cameras mounted on Unmanned Aerial Vehicles (UAVs). As
introduced in (Bemis et al., 2014) and (Vasuki et al., 2014), UAVs
can be programmed to photograph an area of interest to a centimeter
accuracy, no matter how large the rock mass. Then, methods from
photogrammetry can create a mosaic of these images and merge
them with real topograhy (Mikhail et al., 2001).

In tradition, surface cracks were labeled by experts and
their distribution was cataloged (Sanderson et al., 2019) to give
engineers an estimate of the integrity and stability of the rock
mass (Aydan et al., 2014). However, if there are thousands of
images then the manual interpretation of cracks is both time
consuming and error prone because of variable lighting, shadows,
non-crack erosional features, rock spall, and complex rock surfaces.
In addition, the accuracy of manual crack interpretation depends
on the expertise of the interpreter, and the interpretation criteria
(Hillier et al., 2015); (Sander et al., 1997). Therefore, there is a
growing demand to develop tools that can automatically detect and
catalogue cracks in a more efficient and accurate way.

Because the shape of cracks is long and narrow, many crack
detection methods are based on edge-detection algorithms. For
example (Pereira and Pereira, 2015), successfully applied edge-
detection algorithms to UAV photographs to detect cracks in
building structures. Their algorithm applied Sobel operator (Sobel,
1990) and particle filters (Thrun, 2002) for detecting cracks in
building facades. For fractured outcrop images, Prabhakaran et al.
(2019) used the complex shearlet transform to automatically extract
fracture ridge realizations from images. After getting the features
of ridges, post-processing image analysis algorithms were then
used to vectorize the fracture traces in an automated manner. The
resulting fracture detection maps are generally consistent with the
human-labeled fractures in photos taken over a geological outcrop
in Parmelan, France.

One problem with an image processing approach is that it
cannot easily distinguish abrupt changes in a photo’s intensity caused
by, for example, a skyline in a photo (Mohan and Poobal, 2018).
This type of noise is easily distinguished by an interpreter, but
manual detection is labor intensive when thousands of photos must
be analyzed. To incorporate humans into the automated decision
process, convolutional neural network (CNN) architectures were
introduced to detect cracks. In the earliest applications, a variety
of CNN networks including AlexNet (Dorafshan et al., 2018) and
VGG16 (WilsonLeal da Silva and de Lucena, 2018) were used to
detect cracks in concrete structures (Kim and Cho, 2018); (Cao and
Anh, 2019). Their limitation is that they are inefficient for high-
resolution semantic segmentation, which is the task of classifying all

pixels in the input image. Such CNNmethods cannot localize cracks
at the pixel level. In the work of (Cha et al., 2017), a method based
on CNN can only locate cracks in a box which has the same size as
the CNN’s input samples. Sufficiently large samples are required by
this CNN to ensure its accuracy, which limits its resolution.

Developed from previous CNN architectures, the standard
U-Net CNN (Ronneberger et al., 2015) mitigates the main flaw
by classifying each pixel in the input image with a very high
precision. As a convolutional neural network, U-Net can provide a
high accuracy and excellent resolution for semantic segmentation.
This is because the U-Net is a deep network with short-
connections between the encoder and decoder structure to enable
an accurate semantic segmentation: the short connections ease
information propagation in training and compensate details for
high level semantic features (Zhang et al., 2018). This high-
level accuracy makes the U-Net architecture favored by medical
personnel for analyzingMRI, CT, and ultrasound scans (Zhou et al.,
2018); (Han and Ye, 2018); (Yang et al., 2019a); (Yap et al., 2017);
(Behboodi and Hassan, 2019) and signal denoising (Sun et al.,
2020); (Xiong et al., 2022). In addition, the high resolution of U-
Net has been successfully used for crack detection in concrete
structures (Cheng et al., 2018); (Liu et al., 2019); (Li et al., 2020). For
scenes with a complex background, U-Net has been used to detect
prominent features such as roads in images taken by satellites and
performs better than traditional CNN methods (Constantin et al.,
2018), (Yang et al., 2019b). The convolutional blocks in U-Net can
be replaced with high-performing blocks with residual branches
(Yang et al., 2019b) and short-connections can be modified by
including several convolutional layers (Zou et al., 2021) to improve
detection accuracy and resolution in complex backgrounds. In
geophysics, U-Net architectures are used to identify faults in
seismic images and delineate their 3D patterns (Wu et al., 2019),
(Guitton, 2018). U-Net usually requires the support from powerful
hardware because of the millions of parameters, so that it is
limited in clusters rather than directly implemented on embedded
devices.

1.2 Project background

Sandstones in the Middle East study area are cut by a NW-
trending, roughly vertical set of long cracks that dissect the rocks,
forming blocky massifs and elongated rock fins that are several tens
to hundreds of meters wide, up to a kilometer or more in length
and several tens of meters in height. NE-trending vertical cracks
form a second but less prominent set of vertical cracks in the study
area. Cliff faces or facades are marked by traces of both vertical and
sub-horizontal cracks, with the latter aligned parallel to bedding.
Discontinuous vertical cracks located within the rocks terminate at
or near bedding surfaces suggesting that mechanical changes across
bedding locally inhibited crack growth (Pollard and Aydin, 1988).
Bedding-parallel cracks are relatively short, discontinuous features
caused mostly by failure along bedding surfaces exposed in vertical
facades. Consequently, failure along bedding surfaces should be
anticipated in the design of underground excavations. This type of
failure is common in crack (joint) bounded rock fins, where failure
and collapse along bedding surfaces leads to the development of
natural arches.
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FIGURE 1
Workflow of the procedure for training and labeling of cracks in drone photos.

FIGURE 2
U-Net architecture used for detecting cracks in drone images. In (A) and (B) each arrowed tier represents a layer; the blue boxes represent features
after the calculations from that layer. The input is a 256×256 RGB image. After five convolutional blocks (brown dotted block in a) and down-sampling
(violet downside arrow), the feature map has the size 16×16. This is followed by up-sampling of features with transposed layers (green upside arrow),
concatenation (gray dotted arrow) with the former output of the same size, and a final convolution. The final output size matches the 256×256 input to
allow individual pixel classification of the input. Each convolutional block contains 6 separate convolutional layers (red dash arrow) with a final input
identity operation (+) summed with the residual function block to form the desired output. (C) is the block of the original U-Net in (Ronneberger et al.,
2015) in comparison with (B).

Large cracks, especially those longer than 1 m, pose a problem
for engineers who must drill into portions of the sandstones. Prior
to drilling, a strict safety assessment must be carried out to access
the rock integrity. Mechanical integrity is related to the density and
distribution of large cracks, where drilling into themassif with a high
density of cracks must be avoided or extra precautions should be
taken. To quantitatively estimate the crack density, more than 23,000
drone photos were taken of the study area. Based on the success of

theU-Net architecture, we nowuse it to detect cracks in photographs
of rock faces. In our work, we add special convolutional modules
which include residual shortcuts and two additional branches to
better match crack orientations. More than 100 h were used to
manually label large cracks in 127 high-resolution training images,
which were then used to train the architecture. Applying the trained
U-Net to new input images achieved an accuracy of 98%, which is
sufficient to assess rock integrity prior to drilling into the massif.
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In addition we used transfer training to generalize the U-Net crack
detector so it is applicable to different rock types.

We describe our results in four sections. Following the
introduction, we present the methodology of our CNN procedure
for crack detection. The workflow for training and testing of the U-
Net is shown in Figure 1. After this, we describe the training of the
network and present results from the validation set.The next section
presents the numerical results of applying the trainedU-Net tomore
than 23,000 unlabeled drone images of our survey area. To test
the generalizability of the trained U-Net, we use it to detect cracks
in photos of volcanic rocks near the Teton dam site in Idaho and
do transfer learning and fine-tuning (Shin et al., 2016) to improve
accuracy. Finally we test the trained U-Net model on lineaments in
photos of Mars taken by a Mars orbiter. We draw conclusions in the
last section.

2 Network and loss function choosing

2.1 U-net architecture

To better match the reqiurements of crack detection, our
U-Net is designed and different from standard U-Net. The U-Net
architecture is diagrammed in Figure 2. It consists of a series of
contracting encoders followed by expanding decoders weighted
with features from the contraction path. In addition to the cross-
connected paths, each convolution block implements an internal
encoder/decoder with three convolution branches to enhance the
detection of specific orientations of cracks. The convolution block
forms the residual function to which an identity operation is added
(He et al., 2016). The dimensions of the final U-Net output are the
same as the input images but there is only one output channel
of binary values to represent the probability of a pixel to be
crack.

The U-Net design was chosen for the following reasons.

• Additional convolution branches: This idea comes from the
Inception Network (Szegedy et al., 2016) because most of the
cracks in our drone images are approximately horizontal
or vertical. The two additional convolution branches with
filter sizes 1×9 and 9×1 enable the efficient extraction
of crack features by focusing on a specified dimension
without the need for a square filter. A square filter with
many parameters can detect a wide variation of crack
orientations, but it is computationally inefficient if the cracks
are confined to just a few orientations. This is a data specific
enhancement.
• Residual function connection: In deep learning models, the
convergence rate and accuracy can become degraded with an
increase in the number of layers (He and Sun, 2015). Including
a residual operation to each convolution block helps to improve
accuracy in deep CNN models (He et al., 2016), (Zhang et al.,
2018).

Our U-Net has 9 convolutional blocks, including 54 convolution
layers, 4 maxpooling layers, and 4 transposed layers. For each
convolution layer, we include batch normalization (Ioffe and
Szegedy, 2015) and ReLU activation (Eckle and Schmidt-Hieber,

2019). Each convolution block is followed by a dropout layer with
a rate of 0.5 (a random choice, half are dropped) for additional
regularization. The final layer uses a sigmoid function to constrain
the output of U-Net between 0 and 1.

The labeling targets are cracks that tend to form less than
1% of the entire set of images. Therefore, there is an imbalanced
set of equations due to most labels having a label value of 0
(background). This typically leads to poor convergence and
large errors in inference labeling. To overcome the imbalance
problem, we test the performance of two weighted loss
functions.

1. Weighted cross entropy (WCE) (Sousa Aurelio et al., 2019):

WCE (y,p) = −∑
i
[λy(i) logp(i) + (1− λ)(1− y(i)) log(1− p(i))] (1)

where y(i) is our assigned label for the ith example, p(i) is the U-Net
prediction, and λ is a scalar chosen to improve performance.

2. Focal loss (FL) (Lin et al., 2017):

FL (y,p) = −∑
i
[λy(i) × (1− p(i))γ logp(i) + (1− λ)

×(1− y(i)) × (p(i))γ log(1− p(i))] (2)

where we use the constant γ = 2.
WCE is a typical loss function used in classification problems

where λ provides for a rebalancing of the possibly underrepresented
positive pixels in the loss calculation. FL is used to address
class imbalance by down-weighting the contribution of correctly
identified pixels to focus on the loss due to misidentified pixels. We
used a fixed value of γ = 2, varying only λ for all comparisons of each
loss function. The FL formula reduces to the WCE formula when γ
= 0. Our U-Net architecture is implemented using Keras 2.2.3 and
Tensorflow-GPU 1.14.

2.2 Labeling, training and validation

Although the facade and top images have different crack
features of the massifs, we only describe U-Net training of the
facade images because the workflow is the same for the top
images.

2.2.1 Labeling and picking of sub-samples
We select 57 photos from the facade view to be manually labeled

for training and validation, which contain typical cracks examples.
54 photos are used for training and 3 are used for validation. The
public-domain editing software GIMP (GNU Image Manipulation
Program) is used to label the crack lines. We use the pen tool in
GIMP to mark crack lines with many anchor points. Anchor points
are required to locate the center of the crack along the normal
direction to ensure the accuracy of labels. To convert labeled lines
to pixels, we paint the line with a width of 6-pixels to closely match
the crack size of interest. Image labeling is a time intensive task
that is necessary for the training of the CNN. Labeling requires
approximately 30–60 minutes per photo for a human, depending on
the number of cracks. The size of each image is 4,000× 3,000 or
4,000× 2000 so that more than 100 hours (including labeling the 70
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FIGURE 3
Different dataset samples. We use the two types of subimages to balance cracks in the dataset. (A) type A sub-samples that contain cracks; (B) type B
sub-samples that only contain the background and some have confusing and crack-like features. The size of each sample image is 256 × 256.

top images) are needed tomanually label the photos for training and
validation.

The biggest problem in labeling is defining what constitutes a
crack of interest. In the drone photos, there is a large variation
in the size of cracks and not all cracks are of interest. For these
data, geologists and building-site engineers are only interested
in identifying cracks longer than 1 m, which are long enough
to indicate possible instability in the building. Soil and small-
rock sections covering parts of cracks are not labeled, resulting
in discontinuous crack labels. Another problem is the mixture of
horizontal cracks and some special bedding contacts. Some bedding
contacts are strongly eroded so that there are some troughs along
bedding surfaces. It is challenging to discriminate them from cracks.
So we could include some troughs into the “horizontal cracks” label.

There are two types of subimages selected from the labeled
photos: subimages of type A contain labeled cracks (Figure 3A);
type B subimages contain the background rock, sky, sand, and/or
bare rocks, which are devoid of labeled cracks (Figure 3B). Some
samples in type B includes itemswhich complicate network training,
including line-like shapes of rain traces, shadow edges, and trees.
Although the U-Net output is a binary classification, identifying
types for inclusion in training allows for selecting a good balance
of cracks and non-cracks.

For samples of type A, labels are indexed with small random
shifts in the choice of index positions along the cracks to avoid cracks
are always in the center of training samples. Type B subimages are
randomly sampled. To reduce the bias of samples being too close to
each other, a minimal spacing distance was set for center points of

types A and B as 70 and 150 pixels, respectively. We select a count of
100 A types and 200 B types in each photo for balanced training.

2.2.2 Network training
Subsampling the 57 photos resulted in a training dataset

consisting of 16,200 subimages and a validation dataset consisting
of 900 subimages. The networks are trained using two Nvidia v100
GPUcardswith a batch size of 20 and an initial learning rate of 0.001.
The data are augmented in each batch of processed training samples
by adding copies with horizontal, vertical, or 0°–45° rotation using
a reflected sample to fill in the boundary space created by rotation.
The data augmentation is performed within Keras.

The maximum number of epochs is set to 100 and training
is stopped when either the maximum is reached or when loss in
the validation set does not decrease for 30 epochs (Figure 4). Loss
values in both the training and validation sets do not decrease after
around epoch number 50, so training is terminated at epoch 80.
Our modified U-Net provides lower loss values for both the training
and validation sets, compared to the standard U-Net architecture in
Figure 2C.

2.2.3 Validation and confusion matries after
skeletonization

We used two loss functions and a range of λ values to train
the U-Net. After trial-and-error tests, an output value threshold of
0.5 is used for all pixels in the U-Net for classification as either a
crack or background. Cracks in the output are marked as red in
the figures. For comparison with the U-Net, the automatic fracture
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FIGURE 4
Learning curves for the training data. (A,B) show the loss values in training set and validation set. The loss function uses WCE and λ = 0.85. Displayed
two lines show results of U-Net with original and modified blocks in Figure 2.

TABLE 1 Confusionmatrix definition and results for the validation images. a) is the definition of the confusionmatrix and related values: recall (R),
precision (P) and accuracy (A). b) is the workflow to get thematrix both in pixels and after skeletonization. The values in c) and d) are examples from results
of validation photos in which U-Net usesWCE and λ = 0.85.
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FIGURE 5
Perfomance metrics of the modified U-Net plotted against epoch number for the training data. We set eight λ from 0.5 to 0.98 in the loss functions and
display the average width, precision, recall of predictions in (A–C). The P and R values are calculated by the confusion matrix after skeletonization. In
(D), the relationship between P and R is for both the standard and modified U-Net architectures, and we add the performances of AFD method as
comparison.

FIGURE 6
Results of different algorithms applied to two validation images. Photos are 4,000×3,000 pixels each. Cracks marked in red color overlie on raw
photos. Human labeled images are shown in (A) and we only label those that we are quite confident about; (B) is calculated by automatic fracture
detection (AFD) in (Prabhakaran et al., 2019); (C–E) are trained with weighted cross entropy (WCE) using different values of λ; (F) focal loss (FL) shows
output from one value of λ.

detection (AFD) code in (Prabhakaran et al., 2019) is used as a ridge-
detection method for the validation images. We used typical 108
shearlet systems with a threshold of 0.52 for AFD.

The confusion matrix is necessary to evaluate the performance
of the U-Net for different parameter values. To normalize the crack
widths, we skeletonize the labeled and predicted cracks to be a same
width of one pixel (Zhang and Suen, 1984), (van der Walt et al.,

2014). After skeletonization, the labeled crack is only 1 pixel wide.
Table 1 compares the ground-truth labels with the predicted ones
using TP, FP and FN values. The identification accuracy is 98% but
the P and R parameters usually are the most important ones for
comparison purposes.

As shown in Figures 5, 6, λ is the key parameter which controls
the performance of the U-Net. With an increase in the value of λ,
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FIGURE 7
U-Net predictions of the image in Figure8. Here, (A) is the raw output from the U-Net with WCE as the loss function and (B) is the raw output from the
U-Net with FL as the loss function. The two kinds of loss functions share the same λ = 0.85 value. We use the sigmoid as the activation function in the
last layer so when a value of the U-Net output is closer to 1, it is more likely to be a crack.

FIGURE 8
Photos labeled by U-Net from unlabeled photos. We picked two example images from the out-of-the training set. (A,B) depict a facade view; (D,E) are
a top view. (C,F) are their distributions of crack orientations and densities.

the U-Net tends to be more aggressive in labelling more pixels as
cracks, which increases the average width and recall values while the
precision values goes down. Therefore, the choice of λ is important
for balancing the precision and recall values.The underestimation of
crack density can lead to safety problems, so that high FP counts are
more acceptable than missing cracks of interest. We select λ = 0.85
to reduce the high number of FP counts associated with large values
of λ.

Figure 6B displays the result from the AFD code. The result
of AFD shows many false positives caused by sharp changes in
intensity associated with non-crack features and it omitted some
labeled cracks. Also, the P-R result in Figure 6D shows a quite
low precision value and a modest recall compared to the U-
Net. The result of the original U-Net is shown in Figure 6E.
It correlates well with the human labelled result. However, the
P-R values of the original U-Net are less than these of the
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FIGURE 9
Crack detection of volcanic rocks at the Teton Dam Site, Idaho. (A): near-vertical cooling cracks in volcanic rocks just downstream from the dam site;
(B): cracks labeled in red by U-Net. The red markings correspond to a probability between 0.7 and 1.0 in the softmax output, while the white-bluish
markings correspond to a probability between 0.3 and slightly less than 0.7.

modified U-Net, which indicates the superiority of the modified
U-Net.

The results with using the U-Net with WCE and FL are shown
in Figures 6E, F. However, the P-R line of FL is always below that of
WCE in Figure 5D. Figure 7 shows that the output of WCE more
clearly highlights large cracks of interest compared to FL. Given the
limited values used for comparison, WCE is a better choice for our
work.

3 U-net crack detection in three
geological bodies

The trained U-Net is now used to label cracks in the study area
with the large sandstone massifs. Over 23,000 unlabeled photos of
the sandstone massif are taken by a drone with a high-resolution
camera. In addition, the trained U-Net is used to label cracks in
photos of volcanic rocks in Idaho as well as those in Martian orbiter
pictures. These last two examples were used to show that the U-Net
trained on photos of sandstone cracks can also be used to label the
cracks in photos of rocks with a different geological genesis. We also
show that the accuracy of theU-Net crack detection can be improved
by transfer learning.

3.1 Labeling of cracks in photos of
sandstone massifs

A drone was flown over the sandstone massifs and recorded
23,845 photos of the tops and facades (sides) of the target rock
masses. The paths of drone flights are optimized for achieving
a uniform image resolution, where variations in camera-to-target
distances created pixels approximately 0.8–10 cm wide. However,
most have a spatial resolution of several centimeters, which ensures
that the U-Net is not troubled by varying crack widths due
to the drone being at significantly different distances from the
rock face. The pixel dimensions of the photos range from are
4,000× 2000 to 4,000× 3,000 pixels with about 80% overlap of
areas.

Our U-Net does not have any fully connected layers so its input
size can be variable.Wewere limited by the amount ofGPUmemory,
so we partitioned each photo into 4 small sub-photos, each with half
the width and height of the original. Partitioning is shown by the
green lines inFigure 1.TheU-Net labeling of each photo takes about
3 s per GPU card.

Then the U-Net model trained was applied to the unlabeled
facade images. As shown in Figures 8A, B, the U-Net results for
unlabeled images are judged to be of acceptable accuracy. The
orientation distribution in Figure 8C shows that most cracks in this
photo are horizontal but there are some along 70°. We then applied
the samemethod and trained a newU-Net for the top images, where
we labeled 70 images which created a dataset with 16,800 subimages.
Figures 8D, E shows a processed top image, showing results as
accurate as those produced for the facade images. Figure 8F shows
all cracks have the same orientation angle of about 150°, which is
consistent with the cracks seen in Figure 8D. The U-Net labeling
of the all images (facade and top) required approximately 22 GPU
hours to finish.The labeled images were then used to assess the crack
densities and orientations in the areas of engineering interest.

3.2 Labeling of cracks in photos of volcanic
rocks and transfer learning

After achieving accurate detection of cracks in the sandstone
photos, we apply the sandstone U-Net1 to photos of volcanic rock
faces at the Dam site in Idaho, United States. The Teton Dam in
eastern Idaho failed catastrophically on the morning of 5 June 1976,
causing a large flood. The dam is built on silica-rich volcanics
(welded tuff) that were derived by the eruption of the Yellowstone
super-volcano. Investigations suggest the failure of the dam was
related to movement of water through large fractures (cracks) in the
bedrock foundation.

1 The sandstone U-Net model is exclusively trained from the sandstone pictures
on facade.
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FIGURE 10
(A) Raw photos from the Teton dam site, and crack labels computed by the (B) sandstone U-Net and the (C) hybrid U-Net models. Red labels have a
sigmoid probability between 0.5 and 1.0.

Figure 9A depicts a 4,000× 2000 picture from http://
gigapan.com/gigapans/163482, which is the cliffs at the Teton Dam
site. Mapping the cracks in the Teton Dam photo tests the ability
of the sandstone U-Net to accurately delineate cracks in photos of
volcanic rocks.Thenearly vertical cracks are cooling joints inwelded
volcanic tuff. The nearly vertical cracks mapped by our sandstone
U-Net are labeled by the red lines in Figure 9B, where many cracks
are correctly labeled. However, some cracks are not labeled even
though they are visible to the eye and there are some false positives.
This demonstrates that the sandstone U-Net algorithm is capable of
mapping the trends in crack orientations of rocks that are different
from those from which it was trained.

We can improve the accuracy of the sandstone U-Net model
by using transfer learning. This method has been applied on
pavement distress detection in (Gopalakrishnan et al., 2017), which
uses a pre-trained VGG-16 to construct their CNN. In our work,
transfer learning combines the weights learned from the sandstone
images as well as those learned from a small number of labeled
cracks from the Teton dam photos. It only requires a small
number of labeled images from the photos of volcanic rock faces
because it reuses common crack patterns from the sandstone

U-Net. This can result in significantly less labeling and computation
time compared to standard CNN training. For relabeling, we
used another 4,000× 2000 photo of the Gigapan image, manually
labeled the cracks and broke it up into 120 256× 256 sub-
photos. The transfer learning required less than 60 min compared
to an estimate of more than 20 h to train a new U-Net
model.

For the transfer learning, we freeze the weights in blocks from 3
to 7 and allow four symmetric blocks (block 1,2 and 8,9 in Figure 2)
to be trained on the newly labeled photos, which is called as in
fine-tune (Shao et al., 2018).This decreases the trainable parameters
from 20,000,000 to 730,000. An Adam optimizer is used and we set
the learning rate to be 10–4 in order to fine-tune the trainable layers.
The batch size is 5 and the total number of 256× 256 sub-photos is
120.The transfer training is halted at epoch 30 which takes no more
than 20 minutes of computation time on a Nvidia v100 GPU. We
denote this U-Net as the hybrid U-Net model because the original
weights were trained on images of sandstones and adjusted to those
for volcanic rocks.

After transfer learning, the sandstone U-Net and hybrid U-Net
were applied to the raw 4,000× 2000 images in Figure 10A to give
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FIGURE 11
(A) Photo taken by a martian orbitor and (B) the labeled photo. The
crack distribution is depicted in the inset Rose diagram of (B), and the
labels are computed by the sandstone U-Net. In this example, a crack
is defined as a sharp linear change in the photo’s intensity value.

the labeled cracks in Figures 10B, C, respectively. Figure 10C show
a much denser and more accurate collection of labeled cracks than
the ones in Figure 10B. The important accomplishment is that it
required no more than an hour of manual labeling to achieve this
goal.

3.3 Labeling of photos of martian Nocti
Labyrinthus

We notice that the U-Net detector is effective at detecting
lineaments in photos, where such lineaments might be associated
with large-scale tectonics. Therefore we apply the U-Net crack
detector to photos of the surface ofMars taken by the Viking orbiter.
Figure 11A depicts the region known as Nocti Labyrinthus, an area
of rift basins and grabens (Daniel and Cook, 2003).

Figure 11Adepicts the original photo andFigure 11B shows the
photo after labeling by the trained U-Net. Many of the lineaments
seen in Figure 11A are clearly labeled in Figure 11B. Some of the
subtle lineaments not easily detected in 13a are nowdelineated in the
labeled image. Many of these lineaments are interpreted as grabens

and fossae (Daniel and Cook, 2003). The Rose diagram here reveals
the trends in their orientations, where the graben distribution is
related to the ambient extensional stress field associated with local
volcanic rifting.

4 Discussion

The sandstone U-Net Keras code and the trained weights will
be available to the public by the public-domain site cited in the data
availability statement. Part of this code will have the capability for
transfer learning. We expect a number of practical applications for
this crack detection code.

1. Semi-universal Cracks Detector for Cracks in Rock Faces. The
U-Net trained on photos of a sandstone massif shows a precise
detection of sandstone cracks and acceptable results for volcanic
rocks. With a modest amount of extra labeling and transfer
training we believe this U-Net can be a semi-universal detector
of cracks in many types of rock faces. It can also be used to
automatically detect large-scale lineaments in photos taken by
planetary orbiters as a reconnaissance of a planet’s or Moon’s
tectonics.

2. Real-Time Monitoring of Crack Development. The U-Net crack
detector can be used as a real-time monitor of growing cracks if
the photos are periodically taken and quickly analyzed for crack
growth. One application with satellite photos of polar regions is
to automatically detect the growth of crevasses and cracks in the
ice, which would be a real-timemonitor of climate changes. Other
applications of real-time monitoring of crack growth include
hazard assessment of failing dams, imminent landslides, and
erupting volcanoes, which has some similarities with surface
displacements monitoring by frequent InSAR recordings in
(Sun et al., 2020).

There are some notable areas where our workflow can be
improved. Foremost is to increase the efficiency of labeling. The
pre-trained U-Net produces some FP and FN crack labels, which
should be removed by manual labeling. Another complication
is that close-up photos of the rock degrades the U-Net model
in distinguishing erosional features from small cracks. The
consequence is that it produces false positives. We believe this
problem can be mitigated by also introducing distance information
into the input of the U-Net. This distance information can
be included with the use of lidar or radar instruments in the
drone.

5 Conclusion

This work presents a successful use of an U-Net CNN to label
cracks in rock faces. We compare U-Net with a ridge-detection
method (AFD) andfind that theU-Net trainedwith just a few images
provides a more accurate detection of cracks. Our results shows that
the U-Net approach provides a viable alternative to the conventional
AFD method for detecting cracks in rock massifs. Besides, we find
that the U-Net with residual shortcuts and additional convolutional
branches shows a better accuracy than the original U-Net. And the
performance of the U-Net is largely controlled by the value of the

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2023.1073211
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Shi et al. 10.3389/feart.2023.1073211

λweight in the loss function.We think the reason is that rock cracks
often have a narrow linear shape containing only a limited number
of pixels, which has to be balanced byweighted loss. Considering the
location of cracks is the key feature for engineers, an improvement
may be to identify the location of cracks by anchor points, which
represents important future work of ours.

One disadvantage of U-Net is that it has millions of parameters
and requires a large amount of manual labeling to train the network.
However, U-Net has transferability capabilities so that a well-trained
U-Net with transfer training can be used to detect cracks on other
kinds of rocks without an extensive effort in relabeling. We proved
this to be true by using transfer training to significantly improve
the accuracy of labeling cracks in the Teton Dam photos. Less than
60 minutes were required for manual labeling of cracks in fewer
Teton Dam photos. Moreover, the sandstone U-Net could delineate
some line-like geology features in Mars photos.

In summary, our results suggest that our trained U-Net with
transfer training is a semi-universal detector of cracks in images of
almost any type of geological outcrop. The scale of cracks can range
from centimeters to kilometers which depends on the resolution
characteristics of the photographs. Practical applications of this
method include the use of crack detection for real-time monitoring
of crack growth, such as needed for safety assessment of dams,
landslides, volcanoes and man-made structures.
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