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Three-dimensional (3D) elastic reverse-time migration (ERTM) can image the
subsurface 3D seismic structures, and it is an important tool for the Earth’s
interior imaging. A common simulation kernel used in 3D ERTM is the current
staggered-grid finite-difference (SGFD) method of the first-order elastic wave
equation. However, the mere second-order accuracy in time of the current SGFD
method can bring non-negligible time dispersion, which reduces the simulation
accuracy and further leads to the distortion of the imaging results. This paper
proposes a vector-based 3D ERTM using the high-order accuracy SGFD method
in time to obtain high-accuracy images. This approach is a new high-resolution
ERTM workflow that improves the imaging accuracy of conventional ERTM from
numerical simulation. The proposed ERTM workflow is established on a quasi-
stress–velocity wave equation and its vector wavefield decomposition form.
Advanced SGFD schemes and their corresponding coefficients with fourth-order
temporal accuracy solve the quasi-linear wave equation system. The normalized dot
product imaging condition produces high-quality images using high-accuracy
vector wavefields solved using the SGFD method. Through the numerical
examples, we test the simulation efficiency and analyze how temporal accuracy
in numerical simulations affects migration imaging quality. We include that the
proposed method obtains highly accurate images.
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Introduction

Seismic migration can convert the collected seismic data into the attribute images of the
Earth’s interior medium, being a benefit for structure characterization and lithology
identification. In contrast to ray-based migration (Bleistein, 1987; Zhang et al., 2019), wave
equation migration exploits the kinematics and dynamics of seismic data to generate high-
precision images (Claerbout and Doherty, 1972; Gazdag, 1978). Based on the two-way wave
equation simulation, reverse-time migration (RTM) uses primary reflections to generate the
Earth’s structural image, and it also presents no dip limitations (McMechan, 1983; Whitmore,
1983).
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Elastic RTM (ERTM; Chang and McMechan, 1987; Li and Li,
2022) has attracted the interest of researchers in the academic research
and exploration industry in the past years due to the rapid
development of multicomponent acquisitions, which can record the
rich P and S waves in multicomponent seismic data. P and S waves can
reflect the elastic nature of the Earth media and both of them have
their own advantages in specific geological conditions. By making full
use of these two types of waves, ERTM can reveal the multicomponent
images (PP, PS, SP, and SS) for our understanding of the elastic
properties of the subsurface (Stewart et al., 2003). Compared with two-
dimensional ERTM, three-dimensional (3D) ERTM (Du Q. et al.,
2014) does not need to make any assumptions about the spatial
patterns of geological bodies and has the advantage of making
diffraction migration. Therefore, 3D ERTM is an indispensable
means to solve structural lithology problems in complex areas. 3D
ERTM consists of three main steps: source wavefield forward
simulation, receiver data backward simulation and imaging
condition application. The first two respects are solving the wave
equation, which occupies the foundation of the whole migration. We
next review the two main aspects, namely numerical simulation and
imaging conditions.

The velocity–stress wave equation of 3D ERTM is solved using the
staggered-grid finite-difference (SGFD) method (Virieux, 1986; Wu
et al., 2022) in the time domain due to its high efficiency and easy
implementation. However, the discretization of partial derivatives
using the SGFD method causes truncation errors. The current
SGFD method in the literature for 3D ERTM has arbitrary even-
order spatial accuracy but low second-order temporal accuracy
(Kristek et al., 2010; Zhou et al., 2021b). Although a relatively
small discrete time-step can get a relatively accurate wavefield
solution, the computational efficiency is very low for a large
number of time-step loops. Instead, the computational efficiency
can be improved several times when a larger discrete time-step
under the constraints of the Courant–Friedrichs–Lewy (CFL,
Courant et al., 1928; Zhou et al., 2021a); however, the temporal
dispersion problem will be exposed. The low temporal modeling
precision causes a severe temporal dispersion through waveform
distortion and a phase advance (Wang and Xu, 2015). Such
temporal dispersions are numerical errors produced by simulation
tools and are independent of the subsurface medium’s properties.
Therefore, these errors only occur at the numerical stage and affect the
image quality.

More time slices in the calculation or fully spectral methods
(Etgen and Brandsberg-Dahl, 2009; Alkhalifah, 2013; Wu and
Alkhalifah, 2014) can improve the temporal accuracy when
taking the derivative of time, but they have large memory
requirements and slow computational efficiency, especially for
3D ERTM. Numerous methods have been proposed to improve
the wavefield simulation, such as the high-order time discretization
(Chen, 2007), rapid expansion method (Tessmer, 2011), correction
approaches by filter and interpolation (Du X. et al., 2014; Li et al.,
2016; Koene et al., 2018), low-rank method (Song et al., 2013), and
recursive time evolution method (Kosloff et al., 1989; Pestana and
Stoffa, 2010). One general concept for better approximating
temporal derivatives via the SGFD schemes is incorporating off-
axis grid nodes (Tan and Huang, 2014; Chen et al., 2016a; Ren et al.,
2017; Ren and Li, 2019; Xu et al., 2019; Zhou et al., 2021a) in
calculating spatial derivatives to achieve high-order temporal
accuracy. Following the SGFD method, ERTM proposed in this

paper introduces a 3D quasi-stress–velocity elastic-wave-based
(Chen et al., 2016b) modeling method using SGFD stencils with
analytical fourth-order temporal accuracy.

Imaging condition is crucial for elastic wave imaging. Vector-
based imaging conditions can generate separate PP, PS, SS, and SP
images and can avoid the polarity reversal problem for PS and SP
images by the dot-product operator. The wave-mode
decomposition is essential to vector-based imaging. Divergence
and curl operator-based decoupling of P- and S-wave fields is
critical for isotropic media (Yan and Sava, 2008; Yang et al.,
2018a). However, the spatial derivative operations in the
divergence and curl operators cause phase shifts and amplitude
changes in the original wavefield. A vector wavefield
decomposition method (Zhang and McMechan, 2010; Yong
et al., 2016; Zhu, 2017; Wang et al., 2018; Shi et al., 2019)
preserves the vector components in the decomposed P and S
waves without changing the phase and amplitude.

As the kind of vector-based imaging condition, the normalized
dot-product imaging removes the polarization angle’s amplitude
effects (Wang et al., 2016; Du et al., 2017; Yang et al., 2018b).
However, it is challenging to accurately estimate the propagation
direction and polarity when multiple waves intersect in complex
structure areas. Simplified imaging conditions were proposed by
retaining the signs of the dot product and recomputing the
amplitudes using the absolute value multiplication (Yang et al.,
2018b). Following the idea of vector-based wavefield decomposition
and simplified imaging conditions, we establish the imaging condition
by the wavefields solved from the P- and S-wave decoupled form based
on the quasi-stress–velocity wave equation by the temporal high-order
SGFD method in this study.

Though full-waveform inversion using SGFD with the high-
order accuracy in time has been proposed (Fang et al., 2020;
2021; Ren et al., 2021), 3D ERTM with a temporal high-order
SGFD method has not been reported. We take our previous
numerical simulation and migration imaging work (Chen et al.,
2016b; Fang et al., 2022a) a step further toward the 3D ERTM
workflow, improving parts such as source and receiver wavefield
simulation, wavefield reconstruction, and MPI parallelism using
GPUs (Fang et al., 2022b). We develop a high-accuracy 3D
ERTM workflow based on a P/S decoupled quasi-stress–velocity
elastic equation, solved by using the SGFD method with high-order
accuracy in time and space. With the proposed method, we also
investigate how temporal accuracy in numerical simulations affects
migration imaging quality. The contributions of this work are to help
readers learn about the temporal dispersion effects on ERTM images,
and introduce a new high-accuracy imaging 3D ERTM workflow to
achieve antidispersion migration imaging. The point of view of
improving imaging accuracy from the perspective of high-
precision simulation proposed in this paper is applicable to most
of the current 3D elastic wave migration imaging technologies to
promote the practicability of the algorithm, which is of great
significance to the development and industrial application of
RTM technology.

The remainder of this paper is organized as follows. The theories
and methods are provided, including the 3D quasi-stress–velocity
elastic wave equation and its P- or S-wavefield decomposition formula,
followed by an accurate temporal fourth-order and spatial high-order
SGFD method solution. Next, a normalized dot-product imaging
condition and corresponding ERTM workflow produce PP and PS
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images. In the numerical example part, the efficiency and accuracy of
wavefield simulation are tested, and two migration examples are
presented to illustrate the proposed 3D ERTM workflow’s
performance. Finally, discussions are provided, and a conclusion
and the importance of the proposed study are provided.

Methods

Wave equation and its decomposition
formula

The quasi-stress–velocity elastic wave equation (Chen et al.,
2016b) for the 3D is defined as

ρztvx � zαxτ111 + zβxτ111x + zβyτ12 + zβzτ13
ρztvy � zβxτ12 + zαyτ111 + zβyτ111y + zβzτ23
ρztvz � zβxτ13 + zβyτ23 + zαzτ111 + zβzτ111z

ztτ111 � λ + 2μ( ) zαxvx + zαyvy + zαzvz( )
ztτ111x � −2μ zβyvy + zβzvz( )
ztτ111y � −2μ zβxvx + zβzvz( )
ztτ111z � −2μ zβxvx + zβyvy( )
ztτ12 � μ zβxvy + zβyvx( )
ztτ13 � μ zβxvz + zβzvx( )
ztτ23 � μ zβyvz + zβzvy( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where λ and μ are the Lamé parameters, ρ is the density; λ + 2μ � ρα2,
μ � ρβ2, α and β respectively are the P- and S-wave velocities, vx, vy,
and vz are the particle velocity components, τ111, τ111x, τ111y, and
τ111z are the particle normal stress components, where τ111 is
associated with the P wave, and the rest of the components are
associated with the S wave, τ12, τ13, and τ23 are the particle shear
stress components relative to the S wave. Compared to the standard
first-order elastic equation, we have τxx � τ111 + τ111x, τyy � τ111 +
τ111y, τzz � τ111 + τ111z, τxy � τ12, τxz � τ13, and τyz � τ23.
Furthermore, zt is the first-order temporal differential operator,
zr(·) and (r � x, y or z) represent the spatial derivatives for r.

Each derivative is related to the P- or S-wave velocities from Eq.
1. Therefore, P- and S-wave separation can be achieved during the
wave propagation marching. Then, the partial-velocity components
in Eq. 1 in P- and S-wave decomposition forms can be rewritten as
Eq. 2:

ρztv
β
x � zβxτ111x + zβyτ12 + zβzτ13

ρztv
β
y � zβxτ12 + zβyτ111y + zβzτ23

ρztv
β
z � zβxτ13 + zβyτ23 + zβzτ111z

ρztv
α
x � zαxτ111

ρztv
α
y � zαyτ111

ρztv
α
z � zαzτ111

vx � vαx + vβx
vy � vαy + vβy
vz � vαz + vβz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (2)

where vαx, vαy, and vαz are calculated using the derivatives of zαj
(j � x, y, z), which are related to the P-wave velocity and only
included in the P waves, whereas vβx, v

β
y, and vβz are wavefields related

to the S wave. After substituting Eq. 2 into Eq. 1, we have a complete quasi-
stress–velocity wave equation of the decoupled P/S wave propagation as

ρztv
α
x � zαxτ111, ρztv

β
x � zβxτ111x + zβyτ12 + zβzτ13

ρztv
α
y � zαyτ111, ρztv

β
y � zβxτ12 + zβyτ111y + zβzτ23

ρztv
α
z � zαzτ111, ρztv

β
z � zβxτ13 + zβyτ23 + zβzτ111z

vx � vαx + vβx, vy � vαy + vβy, vz � vαz + vβz
ztτ111 � λ + 2μ( ) zαxvx + zαyvy + zαzvz( )
ztτ111x � −2μ zβyvy + zβzvz( )
ztτ111y � −2μ zβxvx + zβzvz( )
ztτ111z � −2μ zβxvx + zβyvy( )
ztτ12 � μ zβxvy + zβyvx( )
ztτ13 � μ zβxvz + zβzvx( )
ztτ23 � μ zβyvz + zβzvy( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (3)

It can be observed from Eq. 3 that the P- and S-wave partial velocity
components are automatically decoupled at each time step while the
interaction between the P- and S-wave is retained during the propagation.

High-accuracy wavefield simulation

This subsection solves the equation system with the
decomposition formula (Eq. 3) using a high-order temporal and
spatial accuracy SGFD method. The consensus is that the temporal
derivative approximation in Eq. 3 only has second-order SGFD
accuracy. However, the spatial derivative approximation has an
arbitrary even-order by employing on-axis grid values. As we
know, improving the temporal accuracy directly, such as using
more wavefield time schemes in the temporal derivative
approximation, is nearly forbidden for 3D simulation due to the
large memory cost of so many wavefield variables. Therefore, an
available “k-space” approach (Fomel et al., 2013; Fang et al., 2014;
Wu and Alkhalifah, 2014; Chen et al., 2016b) can ease this issue by
transferring the temporal accuracy into the spatial derivation
implementation. Typically, the off-axis grid values are introduced
into the spatial derivative calculation to improve the temporal
accuracy based on the k-space method. Then, the high temporal

FIGURE 1
Staggered-grid finite-difference (SGFD) stencil of the fourth-order
temporal accuracy and arbitrary even-order spatial accuracy,
r, ϕ,φ ∈ (x, y, z) and r ≠ ϕ ≠ φ.
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accuracy is determined through the dispersion relation in the spatial
derivative calculation.

Let χ � α or β. u indicates all wavefield variables. As usual, the
solution for zt(u) is approximated by the first-order derivatives as,

zt u( ) ≈ 1
Δt

u t + Δt( ) − u t( )[ ], (4)

where Δt denotes the time step. However, the solution for z χ
r (u) (r �

x, y or z) is achieved using the SGFD stencil (Tan and Huang 2014)
defined in Eq. 5.

zχru ≈
1
hr

∑Nr

m�1c
r,χ
m,0,0 uϕ,φ

r+m−0.5 − uϕ,φ
r−m+0.5( )

+crϕ,χ1,1,0 uϕ+1,φ
r+0.5 − uϕ+1,φ

r−0.5 + uϕ−1,φ
r+0.5 − uϕ−1,φ

r−0.5( )
+crφ,χ1,0,1 uϕ,φ+1

r+0.5 − uϕ,φ+1
r−0.5 + uϕ,φ−1

r+0.5 − uϕ,φ−1
r−0.5( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭, (5)

where ϕ and φ denote another two coordinate axes different from r;
therefore, r, ϕ,φ ∈ (x, y, z), r ≠ ϕ ≠ φ. hr represents the grid spacing
along the r − axis, and Nr represents the stencil length on one side.
Equation 5 is illustrated in Figure 1, where 2Nr + 8 grids are used to
calculate the spatial derivative. Different from traditional stencil, the
advanced one includes an extra eight grid points in the spatial
derivative approximation.

The dispersion relations in the frequency-wavenumber domain
are used to determine the SGFD coefficients. Then the wavenumber
response of z χ

r (u) and its approximation is derived as

ikχr ≈
2i
hr

∑Nr

m�1c
r,χ
m,0,0 sin m − 0.5( )krhr( )

+2crϕ,χ1,1,0 sin
krhr
2

( ) cos kϕhϕ( )
+2crφ,χ1,0,1 sin

krhr
2

( ) cos kφhφ( )
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (6)

The SGFD stencil’s Fourier responses can compensate for
temporal and spatial dispersion errors using suitable SGFD
coefficients. Following the idea of Tan and Huang (2014) and
Chen et al. (2016b) of attaining SGFD coefficients, we match the
Fourier response of the SGFD discretized Laplacian and velocity-
dependent second-order k-space operator, as

F zttu( ) � χ2 ik( χ
x)2 + ik( χ

y)2 + ik( χ
z)2[ ], (7)

where F denotes the Fourier transform. By substituting Eq. 6 into Eq.
7, we have,

γ2x,χ ∑Nx

m�1
cx,χm, 0, 0 sin m − 1

2
( )kxhx[ ] + 2cxy,χ1, 1, 0 sin

1
2
kxhx( ) cos kyhy( ) + 2cxz,χ1, 0, 1 sin

1
2
kxhx( ) cos kzhz( )⎧⎨⎩ ⎫⎬⎭2

+ γ2y,χ ∑Ny

m�1
cy,χm, 0, 0 sin m − 1

2
( )kyhy[ ] + 2cyx,χ1, 1, 0 sin

1
2
kyhy( ) cos kxhx( ) + 2cyz,χ1, 0, 1 sin

1
2
kyhy( ) cos kzhz( )⎧⎨⎩ ⎫⎬⎭2

+ γ2z,χ ∑Nz

m�1
cz,χm, 0, 0 sin m − 1

2
( )kzhz[ ] + 2czx,χ1, 1, 0 sin

1
2
kzhz( ) cos kxhx( ) + 2czy,χ1, 0, 1 sin

1
2
kzhz( ) cos kyhy( )⎧⎨⎩ ⎫⎬⎭2

+

� 1
2

1 − cos χΔtk( )[ ], (8)

where γr,χ � χΔt/hr (r � x, y or z) denotes the velocity-dependent
CFL number, and the wavenumber k �

����������
k2x + k2y + k2z

√
.

After applying the Taylor series expansion to the trigonometric
function in Eq. 8, we make the coefficients of the terms h2jx , h

2j
y and

h2jz (j � 1, 2, . . . , Nr andNr � Nx ,Ny orNz ) the same on the sides
of the equation to achieve the 2Nr order SGFD accuracy in space.
Similarly, the coefficients of the hybrid terms h2xh

2
y, h

2
xh

2
z and h2yh

2
z

are equalized to the coefficients of Δt4 on the other side of the equation to

attain the fourth-order temporal accuracy. Due to the above strict
constraints, the truncation error is o(h2Nr

r ) + o(Δt4) derived from the
dispersion relationship based on the SGFD stencil; therefore, the SGFD
simulation’s accuracy could be any even-order (2Nr) in space and the
fourth-order in time (2Nr, 4). The SGFD coefficients
c
r,χ
m,0,0(m ∈ [1,Nr],m ∈ Z+), c

rϕ,χ
1,1,0, and c

rφ,χ
1,0,1 related to the SGFD

stencil are expressed in Eq. 9.

crϕ,χ1,1,0 � 1
24
γ2ϕ,χ , c

rφ,χ
1,0,1 � 1

24
γ2φ,χ

cr,χm,0,0 � −1( )m+1

2m − 1
∑Nr

l�1,l ≠ m

2l − 1( )2 − γ2r,χ

2m − 1( )2 − 2l − 1( )2∣∣∣∣ ∣∣∣∣, m � 2, 3,/, Nr( )

cr,χ1,0,0 � 1 − 2crϕ,χ1,1,0 − 2crφ,χ1,0,1 −∑Nr

m�2 2m − 1( )cr,χm,0,0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(9)
where γϕ,χ � χΔt

hϕ,
, γφ,χ � χΔt

hφ
, hϕ is the grid spacing along the ϕ − axis,

and hφ is the grid spacing along the φ − axis.
To ensure the wavefield simulation’s stability when using the

stencil (Eq. 5), the following CFL condition (Chen et al., 2016b) is
defined as

χΔt

������������
s2x,χ
h2x

+ s2y,χ
h2y

+ s2z,χ
h2z

√√
≤ 1, (10)

where sr,χ � ∑Nr

m�1|c
r,χ
m,0,0| − 2crϕ,χ1,1,0 − 2crφ,χ1,0,1, r,ϕ,φ ∈ (x, y, z). A smaller

sr allows a larger Δt value, when sr � ∑Nr

m�1|c
r,p
m,0,0| of the traditional (2Nr,

2) SGFD stencil is compared, indicating a more relaxed CFL stability
condition.

From the above SGFD stencil and corresponding coefficients,
we can achieve high-precision solutions for Eq. 3. Specifically, the
temporal derivatives in Eq. 3 can be solved using the first-order
SGFD discretization of the staggered grid. The spatial derivatives
are approximated from the different stencils (for P and S waves) of
Eq. 5 and coefficients of Eq. 9. The equation’s simulation is
achieved by the discrete solution of the time and space
derivatives described above. The simulation accuracy is
guaranteed due to using SGFD schemes with fourth-order
accuracy in time and arbitrary even-order accuracy in space.
Finally, three main important advantages can be clearly
summarized: 1) the decoupled partial velocity wavefields for P
and S waves are achieved in the 3D elastic wave equation of Eq. 3; 2)
the different FD orders for P- and S-wave simulation can be chosen
when z α

r (u) and z β
r (u) are solved in Eq. 3; 3) A relaxed CFL stability

condition is proved in Eq. 10.

Vector-based RTM

ERTM uses the following three major steps to image subsurface
reflectivity.

Step 1. Forward propagation of the source wavefield

Step 2. Backward propagation of the receiver wavefield and
reconstructing the source wavefield via efficient boundary storage
strategy in reverse time

Step 3. Apply the elastic vector imaging condition
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TABLE 1 Staggered-grid finite-difference (SGFD) coefficient comparison between the STS and FTS methods using the same fourth-order spatial SGFD accuracy. The
velocities are 3700 and 2100 m/s for P and S waves, respectively, the grid interval is 20 m, and the time step is 2.4 ms.

Grid values approximated
zχru

at (r,ϕ,φ )

Wave types FTS method STS method

uϕ,φr+1/2, u
ϕ,φ
r−1/2 P cr,27001,0,0 � 1.067502 cr,27001,0,0 � 1.125000

S cr,21001,0,0 � 1.106478 cr,21001,0,0 � 1.125000

uϕ,φr+3/2, u
ϕ,φ
r−3/2 P cr,27002,0,0 � −0.033453 cr,27002,0,0 � −0.041667

S cr,21002,0,0 � −0.039021 cr,21002,0,0 � −0.041667

uϕ+1,φr+1/2 , u
ϕ+1,φ
r−1/2 , u

ϕ−1,φ
r+1/2 , u

ϕ−1,φ
r−1/2 P cr,27001,1,0 � 0.008214 \

S cr,21001,1,0 � 0.002646

uϕ,φ+1r+1/2 , u
ϕ,φ+1
r−1/2 , u

ϕ,φ−1
r+1/2 , u

ϕ,φ−1
r−1/2 P cr,27001,0,1 � 0.008214 \

S cr,21001,0,1 � 0.002646

FIGURE 2
Wavefield snapshots vx obtained using the STS with the SGFD order of 2Nr = (A) 2, (B) 4 and (C) 6, at 0.96 s with a time step of 2.4-ms time marching.
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The wavefield propagation components were obtained,
including the decoupled forward wavefields of particle velocity
�vα(x, t) � ( �vαx, �vαy, �vαz)T and �vβ(x, t) � ( �vβx, �vβy, �vβz)T, and the backward
wavefields v⃖α(x, t) � (v⃖αx, v⃖αy, v⃖αz)T and v⃖β(x, t) � (v⃖βx, v⃖βy, v⃖βz)T. We
consider only PP and PS images in this paper, and we adopt the
vector-based elastic imaging conditions (Yang et al., 2018b) in Eq.
11 and Eq. 12:

Iαα x( ) � ∫Tmax

0
sgnαα x, t( ) �vα x, t( )��� ��� v⃖α x, t( )‖ ‖dt∫Tmax

0
�vα x, t( )��� ���2dt , (11)

Iαβ x( ) � ∫Tmax

0
sgnαβ x, t( ) �vα x, t( )��� ��� v⃖β x, t( )���� ����dt∫Tmax

0
�vα x, t( )��� ���2dt . (12)

Here, Iαα(x) and Iαβ(x) are the migration imaging for the PP and PS
reflectivities, respectively, Tmax represents the maximum record time,
‖ · ‖ is the absolute value, x = (x, y, z), sgnαα and sgnαβ have the forms in
Eq. 13 and Eq. 14, respectively,

sgnαα � +1 if �vα x, t( ) · v⃖α x, t( )> 0
−1 if �vα x, t( ) · v⃖α x, t( )≤ 0

{ , (13)

sgnαβ � +1 if �vα x, t( ) · v⃖β x, t( )> 0
−1 if �vα x, t( ) · v⃖β x, t( )≤ 0

{ , (14)

where “·” denotes the dot-product operator between two vectors.
The adopted imaging condition retains the dot product’s sign and
recomputes the amplitudes via absolute value multiplication of the
separated source and receiver wavefields (Yang et al., 2018b).

Numerical example

Accuracy analysis of wavefield simulation

Homogeneous medium
We first demonstrated the simulation accuracy of the temporal

fourth-order accuracy method used in our proposed 3D ERTM in a

FIGURE 3
Wavefield snapshots vx obtained using FTS with the SGFD (A) fourth- and (B) sixth-order spatial SGFD accuracy and using the STS with the SGFD (C)
fourth- and (D) sixth-order spatial SGFD accuracy. The wavefield snapshots are recorded at 0.96 s with a time step of 2.4-ms time marching for the FTS
method and 0.6-ms time marching for the STS method.
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homogeneous medium. Constant velocities of 3,700 and 2,100 m/s are
used for P and S waves, respectively, and the density is the constant of
2000 kg/m3. The model is discretized into 301 × 301 ×301 grid nodes
with a spatial interval of 20 m, and the time step was 2.4 ms. The first
derivative of the Gaussian function of 20 Hz is used as the explosive
source located at the central point of the model.

We first study the SGFD coefficients between the second-order
temporal accuracy SGFD (STS) method and fourth-order temporal
accuracy SGFD (FTS) methods. Since different SGFD orders result
in different numbers of coefficients, we take fourth-order accuracy
in space as an example. The STS stencil employs four on-axis
values, whereas the FTS stencil employs four on-axis values and
eight off-axis values for each spatial derivative approximation. We
list the SGFD coefficients of both approaches in Table 1. Because
the FTS method’s SGFD coefficients are related to velocities, we
calculate them for the velocities of 3,700 and 2,100 m/s for P and S
waves, respectively. We note from Table 1 that the STS method has
the same coefficients for both P and S waves, whereas the coefficient
of the FTS method is dependent on the velocities, which is helpful
to the high-accuracy simulation in complex media.

Then the simulation accuracy between the STS and FTS
methods is compared in this section. Figure 2 displays the
wavefield snapshots using the STS method with spatial orders
2Nr = 2, 4, and 6, and these subfigures use the same data range.
From Figures 2A–C, it is noted the spatial dispersion, i.e., the delay
in the arrival, was effectively suppressed with the increase of SGFD
orders; however, the temporal dispersion, i.e., the phase advance
still exists, even a sixth-order SGFD accuracy in space was used. By
contrast, the temporal dispersion is effectively suppressed by the

FTS method, as illustrated in Figures 3A,B, where we observe an
accurate arrival waveform without notable distortion comparing
with Figures 2B,C. Additionally, the wavefield solution at 0.96 s of
the FTS method using a time step of 2.4 ms is very close to those of
the STS method (Figures 3C,D) using a fine time step of 0.6 ms,
which is also further proved by the profile comparisons shown in
Figure 4. From the profile comparison of both the fourth- and sixth-
order spatial SGFD accuracy, Figure 4 demonstrates that the
wavefield solutions of the STS method suffer from obvious
waveform advance and distortion at different positions of (y,
z) = (1, 1) km, (x, z) = (1, 1) km, and (x, y) = (1, 1) km;
however, the wavefield solutions of the FTS method match the
references generated using STS method with a small time step of
0.6 ms very well. The dispersion analysis is conducted to
understand the phase lead phenomena due to temporal
dispersion. Because the wavenumber (kx, ky, kz) �
k(sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) in the 3D case, the
dispersion curves are observed for θ1 ∈ [0, π/4] and θ2 ∈ [0, π/4]
due to symmetry; Figure 5 shows the dispersion curves of the STS
and FTS methods. The STS method with a time step of 2.4 ms
exhibits significant P-wave temporal dispersion (Figure 5A) and
weak S-wave temporal dispersion (Figure 5B). By contrast, The FTS
method with a time step of 2.4 ms does not introduce noticeable
temporal dispersion to P and S waves (Figures 5C,D) at the
intermediate and high wavenumber parts, which highly agrees
with the reference temporal dispersion of the STS method with a
time step of 0.6 ms (Figures 5E,F). The dispersion curves explain
why the STS method fails to attain a better accuracy than the FTS
method in the case of a time step of 2.4 ms.

FIGURE 4
Profile comparisons at the positions of (A) and (D) (y, z) = (1, 1) km, (B) and (E) (x, z) = (1, 1) km, and (C) and (F) (x, y) = (1, 1) km. (A-C) are the results from the
STS and FTS methods using the fourth-order accuracy in space, and (D-f) are the results from the STS and FTS methods using the sixth-order accuracy in
space.
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Spherical anomaly medium
The simulation accuracy of the temporal fourth-order accuracy

method used in our proposed 3D ERTM is demonstrated in a
spherical anomaly medium, as shown in Figure 6. Constant velocities
of 3,600 and 1800 m/s are used for P and S waves in spherical anomaly,
respectively, constant velocities of 3,000 and 2,160 m/s are used for P and
S waves in the background, respectively, and the density is the constant of
2000 kg/m3. Themodel is discretized into 301 × 301 ×301 grid nodes with
a spatial interval of 15 m, and the time step is 2.0 ms. The first derivative of
the Gaussian function of 18 Hz is used as the explosive source located at
the central point of the model.

In a spherical anomaly medium, both P and S waves can exist in
wavefield snapshots, which can demonstrate that the scheme can
properly optimize both P and S waves. The same spatial orders
2Nr =4 are used for the STS and FTS methods. Figure 7 displays the
decupled P and S-wavefields of the STS and FTS methods. It is noted
that the P wave and S wave are effectively separated based on vector-
based decomposition for STS and FTS methods. The P- and S-wave
profiles of both two methods are displayed in Figure 8 to make a further
comparison. These profiles prove that the FTS method can obtain
accurate P and S wavefields, with a goodmatch with the reference results
generated by the STS method using a 0.5-ms time step. One thing to be

FIGURE 5
Dispersion curves for (A) and (B) the STS with a time step of 2.4ms, (C) and (D) the FTSwith a time step of 2.4ms, and (E) and (F) the STSwith a time step of
0.6 ms. (A), (C) and (E) are for P waves, and (B), (D) and (F) are for S waves. The fourth-order spatial SGFD accuracy is used. In each panel, they are twenty-five
curves from bottom to top corresponding to the increases of two propagation angles of θ1 � 0, π/16, ..., π/4 and θ2 � 0, π/16, ..., π/4, respectively.
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FIGURE 6
Spherical anomaly models of (A) and (B) true P- and S-wave velocity models.

FIGURE 7
(A) and (B) P and S-wavefield snapshots vz obtained using the STS method, (C) and (D) P and S-wavefield snapshots vz obtained using the FTS method.
The wavefield snapshots are recorded at 0.8 s with a time step of 2.0-ms time marching.
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mentioned is that S waves also suffer from the temporal dispersion even
in the explosive source because the P wavefield with errors is converted
to S waves in the presence of impedance changes.

Efficiency analysis of wavefield simulation

The efficiency between the STS and FTS methods is also investigated
here. Since the FTSmethod involves extra eight grid points in spatial partial
derivative calculation, it introduces additional computational load. The
SGFD was programmed using the GPU kernel, and the 3D models were

mapped into a series of 3D GPU blocks. The GPU block size of 8 × 8 ×
8was chosen in the following efficiency tests. The time consumption of a 1-
source/3000-time step simulation is tested for both methods in different
SGFD orders and model sizes.

First, the simulation efficiency is tested in a homogeneous medium.
The efficiency varying with SGFD orders is tested. The model size is
301 × 301 ×301 grid nodes. Figure 9A displays the time consumption
varied with the SGFD orders for the STS and FTSmethods. It was noted
that the STS method was more efficient than the FTS method with the
same time step in the order of 2Nr = 2, 4, and 8, whereas for the 2Nr = 6.
The average time consumption of FTS is 1.41 times that of STS. As the

FIGURE 8
Profile comparisons at the positions of (A) and (D) (y, z) = (1.2, 1.2) km, (B) and (E) (x, z) = (1.2, 1.2) km, and (C) and (F) (x, y) = (1.2, 1.2) km. (A-C) are the
P-wavefield results from the STS and FTS methods, and (D-F) are the S-wavefield results from the STS and FTS methods.

FIGURE 9
Efficiency comparisons of the STS and FTS method (A)with the increase of SGFD orders and (B)with the increase of model sizes. The model size is 301 ×
301 ×301 in (A), and the fourth-order spatial accuracy is used in and (B). In (A) and (B), the left axis represents the time consumption and the right axis
represents the time consumption ratio of FTS to STS.
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accuracy comparisons above, the STSmethod using a three to four times
smaller time step can nearly achieve antidispersion results, however, it
requires at least two times the computation time of FTS. At the same
time, we also tested the scalability of the algorithms of the two methods
as the model size increased. Figure 9B shows that the two methods have
better consistency in computing time, with an average time-consuming
ratio of 1.37 for FTS to STS, when the model size increases.

Second, the simulation efficiency is tested in a linearly increasing
velocity medium with a P-wave velocity range of 2000–6,000 m/s. The
reason is that the velocity-dependent SGFD coefficients from a table for
each spatial point at each time step may be expensive. The memory
increase is negligible after using the rounding strategy, i.e., memory
storage of an array of thousands of data points is small compared to
the dozens of wavefield variables and model parameters over a million
grid points. However, the frequent access of the SGFD coefficient at each
spatial point at each time step is worth attention. The P-wave velocities are
randomly generated in the velocity range, and S-wave velocities are
transformed from P-wave velocities by assuming a Passion ratio of
1.732. There are 4001 SGFD coefficient pairs for the P wave and
2,354 pairs for the S wave by using the rounding strategy.

Figure 10A displays the time consumption of the STS and FTS
methods as a function of the SGFD order in a model with 301 ×
301 ×301 grid nodes as the SGFD order increases. Figure 10B shows
the scalability of the algorithms of the two methods as the model size
increases in the use of fourth-order spatial accuracy. The average time
consumption of FTS is 1.52 and 1.47 times that of STS for Figures
10A,B, respectively. Compared to the FTS efficiency in the case of a
homogeneous medium, heavy accesses to velocity-dependent SGFD
coefficients can slightly increase the time consumption (~7.47%) in the
case of media with P- and S-wave velocity ranges of 2000–6,000m/s and
1154.73–3,464.20, respectively. One thing to be mentioned is that only the
SGFD computation part is used for timing without including the time for
data recording and disk writing in the above efficiency tests.

Modified SEG/EAGE overthrust model
migration

The proposed method was first applied to a modified overthrust
model of 2.2 km × 2.8 km × 2.8 km and sampled with a spatial interval of

FIGURE 10
Efficiency comparisons of the STS and FTS method (A)with the increase of SGFD orders and (B)with the increase of model sizes. The model size is 301 ×
301 ×301 in (A), and the fourth-order spatial accuracy is used in (B). In (A) and (B), the left axis represents the time consumption and the right axis represents the
time consumption ratio of FTS to STS.

FIGURE 11
Modified overthrust models of (A) and (B) true P- and S-wave velocity models.
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20 m. Figures 11A,B display the true P- and S-wave velocities. A constant
density of 2.0 g/cm3 was used, and the fourth-order spatial accuracy was
used for all subsequent methods.

The wavefield decomposition of P and S waves is first shown in
this section. The wavefield snapshots vz were displayed in Figure 12A,
and its decoupled P- and S-wavefields were in Figures 12B,C,
respectively. We noted that the decoupled wave equation form still
performed well even for complex media because the short-wavelength
S-wave and long-wavelength P-wave generated at the reflectors were
separated from the aliased wavefield. In addition, it was worth noting
that due to the explosive source used here, the S waves were mainly
converted waves.

Before performing ERTM, we first observed the difference in
synthetic data between the STS and FTS methods using the same
1.8-ms time step and 1.8-s record time. From the final comparisons in
Figure 13, Figures 13A,B are similar. The trace comparisons in Figures
13C,D demonstrate the visible phase shift and waveform change
compared with the reference generated using the STS method
using a 0.45-ms time step. The visible phase shift manifests early
arrivals of the reflective events. When comparing Figure 13 in more

detail, we found the root-mean-square errors (RMSEs) of the
normalized traces shown in Figure 13C were 0.2234 and 0.0750 for
the STS and FTS methods, respectively. On an RTX 3090 GPU card,
the 10-source/1.8-s simulation tests with the STS and FTS methods
took 54.84 s and 74.68 s, respectively. Notably, a more accurate
wavefield was obtained at the extra expense of a 36.18%-time cost.

Note that the time step of Δt = 1.8 ms is ~99.12% of the allowed
maximum time step of the STS method for this example. Because of
the FTS method’s more relaxed CFL conditions, we set the time step
to Δt = 2.1 ms, which is 99.41% of the allowed maximum P-wave
time step (Fang et al., 2021). Then, the FTS method with a time step
of Δt = 2.1 ms had an RMSE of 0.0853, and the 10-source/1.8-s
simulation took 65.25 s. We concluded that relaxing the FTS
method’s CFL conditions could reduce the extra calculation
time from ~36.18% to 18.98% but seldom reduce the accuracy
(Figures 13C,D).

The ERTM improvement gained was investigated using an FTS
simulation kernel. The migration velocities were obtained by
smoothing the true velocities with a 3D window size of 160 ×
160 × 160 m. A 25-Hz Ricker was used to generate the 225 shots as

FIGURE 12
Wavefield snapshots vz of (A) full wavefield, (B) P-wavefield and (C) S-wavefield obtained using the FTS at the time of 0.96 s.
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the observed data using the STS method with a fine time step of
0.45 ms. The total recorded time was 1.8 s. The direct waves for
these observed data were removed in the ERTM, and two sets of
ERTMs were performed using the STS and FTS schemes,
respectively. The same 1.8-ms time step was shared for the two
approaches. Figure 14 shows the final migration results. Although
the two methods recovered the primary events, we still noticed the

obvious imaging difference from the imaging slices as shown in
Figure 15, especially for the zones indicated by the arrows. The
imaging slices of the FTS method exhibit results consistent with the
reference solution, whereas the STS method can produce certain
artifacts.

Further, the profile comparisons shown in Figure 16 and Figure 17
demonstrate that when ERTM uses the STS modeling operator, the

FIGURE 13
One-shot synthetic data vz generated using the (A) STS and (B) FTS methods and seismic traces vz comparisons between the results at (C) (x, y) = (1.0,
0.46) km and (D) (x, y) = (1.8, 0.46) km of the STS and the FTS methods with Δt = 1.8 ms and STS method with Δt = 0.45 ms.
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accuracy of images is reduced compared with the proposed ERTM
using the FTS method. Specifically, for the PP images, the two
horizontal profiles (Figures 16A,B) show the truth that the imaging
positions of the conventional STS method become farther from the
model’s center in the horizontal direction, whereas the vertical profile
(Figure 16C) demonstrates the fact that the depth of the imaging
horizon appears deep for the conventional STS method, with some
degree of reflectance amplitude variation. For the PS images, although
there is no obvious vertical deepening of imaging depth (Figure 17C),
the imaging position shifts and amplitude changes in the horizontal
position are obvious (Figures 17A,B). However, the proposed FTS
method can overcome the above problems and obtain imaging results
that match the reference solution very well for both PP and PS
imaging, even with the same discrete time steps as used in the STS
method.

At the same time, it is noted that there are larger imaging
errors along horizontal directions than that along the vertical
direction. One possible reason is that the surface geometry can
record more reflections of vertical layers, thus providing better
vertical stacking of images. By comparing Figure 16C and

Figure 17C, it can be seen that the error of the PS image is
smaller than that of the PP image. This is because the time
dispersion of the P wave propagating at high velocities is more
serious than that of the S wave propagating at low velocities,
according to the dispersion analysis.

Modified salt model migration

The second ERTM example was evaluated on a modified salt
model (Figure 18), with grid points of 150 × 150 × 100 in the x, y, and z
directions and a grid size of 50 m. A constant density of 2.0 g/cm3 was
used, and 150 shots were evenly distributed in the subsurface at a
depth of 20 m. The first derivative of the Gaussian function with
dominant frequency of 10 Hz was selected as the wavelet. These shots
were generated as the observed data using the STS method with a fine
time step of 1.0 ms.

The migration velocities were obtained by smoothing the true
velocities. We first generated the reference images by ERTM using the
STS with a fine time step of 1.0 ms. Then, two sets of ERTMs were

FIGURE 14
(A) and (B) PP and PS images using the STS method and (C) and (D) PP and PS images using the FTS method.
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FIGURE 15
Image slices at z= 1.2 km using the (A) and (D) STS and (B) and (E) FTSmethods and (C) and (F) references. (A), (B), and (C) are PP images, and (D), (E), and
(F) are PS images.

FIGURE 17
PS image profiles at (A) (y, z) = (1.6, 0.8) km, (B) (x, z) = (1.4, 1.8) km
and (C) (x, y) = (2.0, 1.0) km via ERTMs using the STS and FTS methods.

FIGURE 16
PP image profiles at (A) (y, z) = (1.6, 0.8) km, (B) (x, z) = (1.4, 1.8) km
and (C) (x, y) = (2.0, 1.0) km via ERTMs using the STS and FTS methods.
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FIGURE 18
Modified salt models of (A) and (B) true P- and S-wave velocity models. Migration velocities are obtained by smoothing the true models using a 400 ×
400 × 400 m smoother.

FIGURE 19
(A) and (B) PP and PS images using the STS method and (C) and (D) PP and PS images using the FTS method.
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performed using the STS and FTS methods with the same 4.0-ms time
step (Figures 19A–D). The slices at z = 4.5 km are displayed in
Figure 20 to understand the images better. Figure 20 shows that
the proposed ERTM using the FTS method successfully portrays the
models’ accurate structures, and the images correlate with the
reference images. However, the conventional ERTM using the STS
method introduces some fakes due to the shift in the imaging location
and the change in imaging amplitude caused by the temporal
dispersion. Therefore, the PP and PS images in Figures 20B, E have
more precise event boundaries than those in Figures 20A, D, especially
for the areas indicated by the arrows. We also noticed some slight
background noise in the imaging results, indicating the insufficient
number of shots and smoothing of the background velocity models.

The above simulation and two image results show that the
proposed 3D ERTM using an FTS method achieves high-accuracy
migration, especially when using a large time step. The errors caused
by second-order temporal accuracy deepen and extend the imaging
locations vertically and horizontally, respectively. Furthermore, the
images might become distorted in deep areas when ERTM uses the
STS method.

Discussion

In high-accuracy imaging, we only considered the fourth-order
temporal accuracy because Chen et al. (2016b) had demonstrated
slight accuracy improvement from the fourth-order to the sixth-
order. Therefore, the fourth-order temporal accuracy is sufficient
for high-precision RTM imaging without incurring much
additional computational cost (Tan and Huang, 2014). The
SGFD coefficient calculation includes velocity parameters and
precalculating velocity-dependent SGFD coefficients before the
differential calculation can improve efficiency. Meanwhile,
velocity rounding is a good choice that avoids more pairs of
coefficients.

Other ERTM or least-square ERTM techniques (Duan et al., 2017;
Feng and Schuster, 2017; Xu et al., 2021; Song et al., 2022.) can be
introduced or developed based on the proposed ERTM workflow to
suppress the numerical temporal and spatial dispersion. In addition, in
anisotropic media, the SGFD coefficients and the wavefield
decomposition related to the model parameters should be carefully
considered and rederived.

FIGURE 20
Image slices at z = 4.5 km using the (A) and (D) STS and (B) and (E) FTSmethods and (C) and (F) references. (A), (B), and (C) are PP images, and (D), (E), and
(F) are PS images.
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Conclusion

This study develops a high-accuracy 3D ERTM using a temporal
fourth-order and arbitrary spatial even-order SGFD simulation kernel.
The ERTM workflow uses an advanced 3D P- and S-wave decoupled
quasi-stress–velocity wave equation and source-energy-normalized
vector-based elastic imaging conditions. The proposed method
effectively suppresses the temporal dispersion in traditional second-
order temporal accuracy SGFD schemes, ensuring accurate image
locations from a numerical simulation perspective. The proposed method
using the velocity-independent SGFD coefficients takes more time, but
employing a large time step can effectively reduce the time consumption
in a certain process. The highlighted numerical examples demonstrate
that the proposed 3D ERTM achieves precise and reliable images. The
proposed high-accuracy 3D ERTM workflow helps to integrate the most
advanced imaging techniques into this computational framework.
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