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The prediction of total organic carbon (TOC) content and grading evaluation of
shale formation are very much significant and essential for reservoir description of
rolling exploration and development in the new shale exploration area
(Shuangcheng) in Songliao basin, China. In order to improve exploration
efficiency and obtain continuous TOC content curve of wells, the variable
coefficient △logR technique was developed for TOC estimating which is based
on the two of acoustic time difference and deep lateral resistivity logging curve
and the variable scale coefficient (K) between them as well as another scale
coefficient (A) between TOC and △logR. A prediction model of TOC was
established for the well which TOC is measured by evaluation of side wall
cores, then apply it to other wells to verify the reliability of the model. The
application result of eleven exploration Wells in Shuangcheng area show that
the TOC of shale is linearly correlated with △logR, and the maximum prediction
accuracy k value varies with wells, so it is necessary to determine the
undetermined coefficient k according to a single well, but the A value having
no big change from one well to another in similar sedimentary facies and thermal
evolution degree of shale. The average relative error of TOC between prediction
model and coremeasurement is 10.6%which verifies the accuracy of this method.
On this basis of TOC prediction, we establish shale grading evaluation criteria for
the study area. In the establishment process, not only the relationship between
TOC and S1, but also vitrinite reflectance (Ro) are considered. The shale in
Shuangcheng area can be divided into three types (Class I: TOC > 3.5% and
Ro > 0.9%; Class II: TOC 2%–3.5% and Ro > 0.9; Class III: TOC < 2% or Ro < 0.9%),
and achieved shale classification on the well profile with TOC and Ro which are
easy to predict and reliable. According to the relationship between the thickness of
shale of disparate classes and the total thickness of shale in different zones, the
thickness of shale of disparate classes in each well is predicted.
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1 Introduction

Organic matter in shale is not only the parent material for
directly generating oil and gas resources, but also an indicator of the
quality of shale reservoirs and the design of pressure protocols
(Passey et al., 2010; Sondergeld et al., 2010; Wang et al., 2015). So,
the study of geochemical characteristics of organic matter present
within the rock is required to delineate the potential unconventional
targets within shales. In the current years, source rock and
geochemical data are mainly exclusive datasets produced by
internal and/or external laboratories (Aziz et al., 2020). Such data
are quite expensive and time taking that are difficult to manage and
investigate geographically or statistically (Evenick, 2020). Therefore,
by using logging data in addition to identify and evaluate source
rocks by experiment testing methods (such as the TOC analysis,
rock pyrolysis, elemental analysis, chromatography-mass
spectrometry analysis, etc.) to identify the distribution of
hydrocarbon source rock and accurately predicate interval shale
geochemistry index is necessary (Banerjee et al., 2000; Ghassal et al.,
2018; Wang et al., 2018; Cai et al., 2019).

In recent years, some scholars have attempted to evaluate the oil-
bearing property (chloroform bitumen A) and maturity of shale
utilizing logging data (Liu et al., 2014; Zhao et al., 2018), but total
organic carbon (TOC) is still the recognized geochemical index that
can be accurately evaluated by logging data. TOC content is
generally measured by traditional methods such as the evaluation
of side wall cores and formation cuttings in a geochemical lab. Data
obtained from these experimental techniques are not continuous
and also a time-consuming process (Aziz et al., 2020). Therefore,
many scholars tried to use different logging-based methods to
predict continuous TOC content and improve exploration
efficiency. The logging-based methods can be generally divided
into three categories. The first category involves establishing a
regression analysis model directly with logging curves and
geochemical indices which may include one or several radioactive
logs (GR,U), porosity logs (Δt, DEN, and CNL), and lateral
resistivity logs (Schmoker, 1979; Fertl and Rieke, 1980; Schmoker,
1981; Schmoker and Hester, 1983; Mendelzon and Toksoz, 1985;
Fertl and Chilingar, 1988; Zhu et al., 2003; Herron et al., 2011; Hu
et al., 2011); The second category involves constructing new
parameters that respond to the TOC content, such as the
carborlog method (Carpentier et al., 1991), △logR technique
(Passey et al., 1990) and several improved △logR models (Liu
et al., 2011a; Liu et al., 2015; Hu et al., 2015; He et al., 2016;
Zhao et al., 2017; Liu et al., 2019; Zhu et al., 2019); The third category
involves predicting the TOC by artificial intelligence, such as neural
network, support vector machine, Gaussian process regression and
other non-linear methods (Kamali and Mirshady, 2004; Kadkhodaie
et al., 2009; Khoshnoodkia et al., 2011; Tan et al., 2015; Shi et al.,
2016; Kadkhodaie et al., 2017; Yu et al., 2017; Shalaby et al., 2019).

Field applications reveal that the multiple regression and
machine learning methods can provide a high accuracy for
training samples (Hu et al., 2011; Khoshnoodkia et al., 2011;
Mahmoud et al., 2017; Yan et al., 2017; Shalaby et al., 2019).
However, when the trained models were applied to new wells or
new areas, their accuracy decreased because these methods have no
theoretical basis and suffer from overftting (Passeyet al., 1990). On
the contrary, the ΔlogR method is based on the petrophysical

model derivation and includes fewer well logs (redundant
information), and its TOC quantification performance is
relatively good. Many scholars have focused on the
improvement of the ΔlogR model to enhance its TOC
prediction accuracy. In addition to replacing the level of organic
metamorphism (LOM) using an easily accessible parameter (Tmax
or Ro) (Wang et al., 2015), almost all of the modifcations have
focused on how to overlay the sonic transit time and the resistivity
logs. Liu et al. (2015), Liu et al. (2014) noted that using a fixed
overlay-coefficient for all of the wells is not always appropriate,
because the k value that minimizes the error of the TOC prediction
may be different for different wells in different Basins. Hu et al.
(2011) also noted that using a fixed overlay-coefficient may lead to
large errors in shale formations with large lithology changes. Wang
et al. (2015) calculated the overlay-coefficient from theoretical
models, in which several key parameters must be determined from
the rock minerals and a complex petrophysical model. Although
such modifcations have different theoretical bases, their essence is
to determine a proper method of overlaying the logging curves and
producing a higher correlation between the‘ΔlogR’and the core
TOC. However, the current methods of determining the overlay-
coefficient based on the rock minerals, empirical parameters (sonic
transit time of the rock minerals), and complex petrophysical
calculations, which are even less accessible than the measured
TOC, weaken the applicability or the accuracy of the ΔlogR model
(including the modified ΔlogR models).

In this study, we improve the application and accuracy of△logR
model related with conventional geochemical data to carry out the
prediction of TOC and classification evaluation of shale. A simple
and feasible method, the V-ΔlogR model is proposed based on three
revisions to the

ΔlogR model. i.e., replacing the fixed overlay-coefficient with a
variable one, removing the maturity, and replacing the baselines
with a single one. Among these, a critical improvement is treating
the overlay-coefficient (k) as a variable and determining it from the
measured TOC values or from well logs. The application of our
improved model in the Songliao basins indicates that the V-ΔlogR
model can accurately predict the TOC of shale with large lithological
and mature variations. Because it uses actual geological data to
determine the overlay-coefficient in the model, the V-ΔlogR model
offers more reliable results for test wells than other commonly used
models (e.g., the modified Schomoker, multiple regression analysis,
modified ΔlogR). The V-ΔlogR model eliminates the need for
mineral and maturity data constraints and the overlay-coefficient
can be determined using only the well logs, which significantly
expands the applicability of the ΔlogR method.

2 Methodology

2.1 Background

Passey et al. (1990) proposed a method for calculating the
TOC by overlaying a properly scaled porosity curve (generally the
sonic transit time curve) over a resistivity curve and baselined
them in clay-rich, organics-poor, and fine-grained rock intervals
(Liu et al., 2020). The mathematical expressions that were used by
Passey for the calculation of ΔlogR summarized in Eqs 1, 2 and
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widely used for evaluating the unconventional resources
(Mahmoud et al., 2017).

ΔlogR � log R/Rb( ) + 0.02 Δt − Δtb( ) (1)
Where ΔlogR is the curve separation measured in logarithmic

resistivity cycles; R is the resistivity measured in Ω·m using the logging
tool; Δt is the measured sonic transit time in μs/ft; and Rb is the resistivity
corresponding to the Δtb value when the curves are baselined in non-
source,clay-rich rocks. The LOM can be obtained from core sample
analysis, such as the vitrinite refiectance or Tmax (Passeyet al., 1990).

The ΔlogR separation in the source rock and non-source rock
intervals can be distinguished using the natural gamma-ray curve
(Passeyet al., 1990). For clay-rich rocks, they proposed an
empiricalequation for calculating the TOC from ΔlogR:

TOC � 10 2.297−0.1688×LOM( ) ×ΔlogR (2)
where TOC is the total organic carbon content measured in wt%;
and LOM is the maturity.

2.2 V-△logR model

The V-△logR technique was proposed and improved by Liu
et al. (2011b); Liu et al. (2014); Liu et al. (2019). This model includes

three revisions to the ΔlogR model. 1) Replace the fixed overlay-
coeffcient (0.02) with a variable one, and determine it according to
the actual geological data (TOC and well logs). 2) Remove the
maturity (LOM) from the model. 3) Determine the baseline from the
ΔlogRV curve, instead of determining it from the sonic and
resistivity curves.

ΔlogRV � k × logR + 1 − k( ) × P (3)
TOC � α × ΔlogRV − baseline( ) + b (4)

Here, ΔlogRv is the curve separation measured in logarithmic
resistivity cycles; R is the deep lateral resistivity (Ω·m); p is the sonic
transit time, bulk density, or neutron log. k is a variable that ranges
from 0 to 1; baseline is the baseline value of the ΔlogRv curve; b is the
background value of the TOC content; and α is a coeffcient
calculated using a mathematical tool.

2.2.1 A variable overlay-coeffcient
In theV-ΔlogRmodel, the overlay-coeffcient (k in Eq. 3) is a variable,

which was determined according to the actual geological data. In this
method, k is the logging response of the non-organic elements, which
should be eliminated from the ΔlogR separation as the porosity and
resistivity logs also respond to other non-organic elements, such as rock
minerals, formation water salinity, and formation pressure (Wang et al.,
2015; Zhu et al., 2019). Under geological conditions, non-organic

FIGURE 1
Flowchart of calculating TOC content of shale by the V-△logR model.
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elements can be very complex and may vary significantly from place to
place. Thus, the value of k should also change with the geological

conditions. Based on the above analysis, it can be concluded that a
proper k value can remove the non-organic response in the ΔlogR
separation. Due to the strong heterogeneity of hydrocarbon generation
and expulsion process of source rocks, and the factors that interfere with
TOC logging response under geological conditions are complex
(including lithology, physical properties, fluid salinity, etc.), the K
value that leads to the best TOC prediction effect often changes with
different wells (Liu et al., 2015; Chen et al., 2017; Liu et al., 2019). For this
reason, it is often necessary to determine k value based on a single well,
rather than using a fixed k value uniformly for entire area of interest. In
cases where TOC for core test is available, the coefficient k can be
determined by an exhaustive method (based on core and logging) (Liu,
2011a; Liu et al., 2015). If measured TOC data cannot be obtained, the
variable coefficient △LogR model provides a method to calculate TOC
independently of measured TOC data. i.e., logR-AC (using only logging
curves) intersection method (Liu et al., 2015; Liu et al., 2019). In this
study, we first set the average value of acoustic logging curve and
logarithmic resistivity curve as 2, then we determine k value with the
exhaustive method or the “logR-Δt” crossplot method (see the example
analysis below). Once the k value is determined, combining with the
gamma-ray curve to distinguish the△logR of the shale and the non-shale
section, we calculate △logRv according to Formula (3).

2.2.2 Removing maturity from the model
Passey et al. (1990) noted that ΔlogR is linearly related to the TOC

content and is a function of maturity. However, our analysis indicates
that maturity can be removed from the model. First, the increase in the

FIGURE 2
(A) Overview map showing the location (B) Stratigraphic map of the study area. (C) Locations of exploration wells included in the database.

FIGURE 3
Generalized stratigraphic column for deep formation in the study
area.
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resistivity response in mature and clay-rich continental shales is not
signifcant (probably related to high clay contents, high bound water
contents, and overpressure) (Liu et al., 2019). Second, it is cumbersome to
determine the LOM of each depth point, and may be inaccurate in cases
where test data is unavailable. Third, the 10 (2.297–0.1688 × LOM) term
in Eq. 2 is approximately a fixed value if the LOM changes little
throughout a well profile, and it can be replaced by a fixed value
calibrated from the TOC measured from the core samples. In a case
where the maturity flfluctuate significantly over a long profile, the profile
can be divided into several subsections that each contain small maturity
changes.

2.2.3 A single baseline
In the V-ΔLogRmodel, the baseline appears around the valley of

the ΔLogRv curve and corresponds to the organic-lean and clay-rich
intervals. This method is essentially consistent with Passey’s
approach (Passeyet al., 1990), except that it avoids determining
the baselines twice (i.e., for the porosity log and resistivity curve).
Therefore, the baseline values are determined which are generally
occur in fine-grained non-oil-producing zones according to the
shape of △logR curve.

2.2.4 Coefficient α and b
The coefficients α and b are undetermined coefficients. Chen et al.

(2017) pointed out that the coefficient α is related to the depositional

environment of shale. When the maturity is basically the same, the α
value of lacustrine shale is larger than that of delta front shale. Liu et al.
(2019) proposed a prediction method for α in formation with strong
sediment phase change, which can achieve the prediction of α value in
the absence of experimental test TOC b corresponds to the
background value of organic carbon content (△TOC) in the △log
technique proposed by Passey. In this study, the α and b coefficients in
Eq. 2 were determined by Linear regression analysis. In order to avoid
the introduction of large systematic errors when applied to other
wells, it is recommended that the value of b should not exceed the
lower limit of the TOC of the source rock.

3 Application examples and discussions

3.1 Geologic setting and lithostratigraphy

The Songliao basin is located in the northeastern part of China
(Figure 1A), and the Shuangcheng area is located in the eastern fault
depression zone in the northern part of the Songliao Basin
(Figure 1B). The study area described in terms of structural
elements in the Shuangcheng sag which is sub-element within
the Shuangcheng area. The strata with clastic rocks in the
Shuangcheng sag include the Yingcheng Formation and the
Denglouku Formation, The fourth member of the Yingcheng

FIGURE 4
Geochemical characteristics of shale in the Yingcheng formation of the study area, (A) Histograph of TOC, (B) Crossplot showing Tmax versus HI
plot used as a kerogen type and thermal maturity indicator , (C) The relationship between Ro and depth indicates that the shale is in the oil generation
window.
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Formation develops black shale considered to be rich potential
source rocks for hydrocarbons (Figure 2). Since 2017, a suite of
organic-rich shale has been discovered in the southern sag of the
Shuangcheng region (Huang et al., 2015; Yin et al., 2018). This set of
shale has strong hydrocarbon-generating capacity, because it was
discovered in the sandstone of the Denglouku Formation, and the
shale is oil, and the natural productivity of a single well can reach up
to 91 t/d, The shale rich in organic matter is developed in the fourth
member of the Yingcheng Formation. The shale is deposited in the
freshwater environment of continental semi-deep lake-deep lake,
with a thickness of 20 m–120 m. Previously, this set of shale was
mainly studied as a source rock, and it was not used as a shale oil
exploration object until 2019.

3.2 Geochemical and well logging responses
of shale

The total organic carbon, Rock eval pyrolysis and vitrinite reflectance
(Ro) data involved in this study were collected from Key Research
Laboratory on Tight Sandstone and Shale Oil Reservoir Forming. The
data were obtained from core samples of 11 Wells in the Shuangcheng
areawhich are used to determine the origin, content, andmaturity level of
the organic matter present in a shale. The depth of the data ranges from
1,241.00 m to 1796.35m, and the well locations are shown in Figure 3C.

In order to avoid the volatilization of light hydrocarbons in shale, Rock
eval pyrolysis and TOC tests of core samples were carried out soon after
drilling and coring. Analysis data from two typical exploration wells were
shown on Supplementary Table S1. These data revealed that the TOC of
shale in Shuangcheng area ranged from 0.78% to 6.38%, with an average
of 2.86% (Figure 4A). S1 ranged from 0.05 mg/g-1.65 mg/g (average
0.58 mg/g), and S2 ranged from 0.36mg/g-16.36 mg/g (average 6.35 mg/
g). The measured Ro is between 0.82% and 1.31%, indicating that shale
has entered a mature evolution stage, and Ro increases regularly with the
increase of depth (Figure 4C). Figure 5 shows geochemical analysis data
and conventional logging curves of typical exploration wells in
Shuangcheng area. Shale segments correspond to higher gamma
values (typically greater than 140API), which can be used to
distinguish shale from non-shale.

The acoustic time of shale is relatively high, mainly between 70 μs/
ft-100 μs/ft. The density of shale is mainly between 2.46 g/cm3 and
2.52 g/cm3, which is slightly less than that of sandstone. However, the
density curve was greatly affected by hole collapse (e.g.,
1,366 m–1378 m), so it was not used to predict the total organic
carbon. The deep lateral resistivity of shale is lower than that of
sandstone, but the resistivity of shale does not show the obvious
positive anomaly as Marine shale, and even shows a slight negative
anomaly, even when the shale is mature and contains liquid
hydrocarbons (e.g., 1,460 m–1480 m chloroform bitumen A
0.049%–0.361%).

FIGURE 5
Organic heterogeneity and logging response of shales in the Yingcheng Formation of the study area.
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3.3 Establishment of the model

Two typical wells (well S59 and well S70) in the targeted area
with core TOC measurements were randomly selected to establish
and vertify the prediction model of TOC, and the remaining 9 wells
were used for model validation. The key point to establish the model
is to obtain the parameters of the V-ΔlogR methods described in

process 3.3. Therefore, we determine the parameters in Eq. 3 of the
V-ΔlogR model separately. Combined with the TOC evaluation
standard of Lacustrine shale (SY/T 5735-1995), the value b should
not exceed the lower limit of organic matter abundance of source
rock (< 0.4%). As the value b has little influence on the prediction
accuracy of TOC of shale. We mainly discuss the coefficients k,
baseline and α in the V-ΔlogR model.

FIGURE 6
TOC prediction model and prediction results of typical exploration wells. (A) Determination coefficient (R2) between predicted TOC and core TOC
and its variation with K for well S59. (B) Determination coefficient (R2) between predicted TOC and core TOC and its variation with K for well S70. (C)
Crossplot of “LogRD-AC” of well S70, the absolute value of the slope of the crossplot is the prediction K. (D) Crossplot of “LogRD-AC” of well S59, the
absolute value of the slope of the crossplot is the prediction K. (E)Crossplot of△LogRV and core TOC in S59 well. (F) Crossplot of△LogRV and core
TOC in S70 well. (G) Crossplot of logging prediction TOC and core TOC in S59 well. (H) Crossplot of logging prediction TOC and core TOC in S70 well.
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3.3.1 Determination of the optimal k value
Coefficient k was determined by exhaustive method (based on

the core sample and logging data) and “logR-AC” intersection
(using logging data only). Figures 6A, B are the crossplots of the
coefficient R2 and k between the predicted TOC and core TOC
determined by the exhaustive method proposed by Liu et al. (2015).

The figure shows that as the k value increases, the determination
coefficient R2 increases first and then decrease, so, this shows that
there is an optimal K value which makes the predicted TOC agree
with the core TOC best an optimal k value that gives the highest
coincidence between predicted TOC and core TOC. The k value
corresponding to the peak values of the determined coefficients
R2 in Figures 6A, B are 0.65 and 0.12, respectively. The obvious
difference between them indicates that it is necessary to determine
the k value according to every single well in Shuangcheng area for
accurate prediction of shale TOC; Figures 6C, D show the k
predicted by “LogR-AC” intersection for S59 and S70 Wells.
The data points in the figure are the acoustic time difference
and log resistivity corresponding to the points near the baseline
(baseline ± 20%; if there is a significant deviation from the trend,
the point should be excluded). The lithology is no organic matter or
low organic matter shale or silted shale. The slope of the fitting
formula in Figures 6C, D (absolute value, negative sign indicates
that a curve decreases as the other curve increases) is basically
consistent with the k value corresponding to the peak value in
Figures 6A, B, indicating that the k value predicted by “LogR-AC”
intersection is reliable. Therefore, we applied this approach to all
Wells in the targeted area and ultimately determined the optimal k
value for each well, and the coefficient k predicted by LogR-
AC intersection method for other wells is shown in
Supplementary Table S2.

FIGURE 7
The relationship between core TOC and TOC predicted by V-
△LogR model.

FIGURE 8
Grading evaluation of shale in the study area: (A)Crossplot of S1, TOC, Ro of samples of shale from the study area, indicting that S1 increases with the
increase of TOC; (B) Crossplot of S1/TOC,TOC, Ro, S1/TOC decreases rapidly when TOC exceeds 3.5%, indicating that hydrocarbon expulsion has
occurred; (C) The crossplot of S1 and Ro shows that the inflection point of S1 from increasing to decreasing indicates that the hydrocarbon expulsion
threshold is Ro = 0.9%; (D) The crossplot of S1/TOC and Ro shows that the inflection point of S1/TOC from increasing to decreasing indicates that
the hydrocarbon expulsion threshold is Ro = 0.9%.
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3.3.2 Determination of the baseline
Substitute the calculated k value into Eq. 3 to calculate the

△logR value of each well, and then uses the morphology of
△logRv curve to determine the baseline of the V-△logR. The
thickness of the target layer is relatively thin (generally less
than 200 m), lead to the fluctuation of the acoustic time
difference and resistivity curve is not obvious, so the
baseline value is relatively stable. Taking well S59 as
an example, the baseline position corresponds to a

small △logRv value, and the lithology is mainly low
organic matter shale. The baseline value for well
S59 was 1.63 (the red line 5 in Figure 5).
Baseline values for other Wells are shown in Supplementary
Table S2.

3.3.2 Determination of the coefficient α
The coefficient α is determined according to the least square

method. Figures 6E, F show that the coefficients α obtained by

FIGURE 9
Comparison of TOC predicted by logging on well profile and TOC of core and the identification of different grades of shale.
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least squares fitting method for S59 (K = 0.65) and S70 (K = 0.12)
are 8.58 and 8.94, respectively. The shale of the 4th member of
Yingcheng Formation was deposited in a relatively stable
lacustrine environment, which may be the reason for the
relatively close α value. Figures 5G, H show that the TOC
calculated by the model is in good agreement with the TOC of
the core.

3.4 Model verification

In the model validation process, coefficient A was calculated using
the value of the adjacent well, while K was calculated using the logging
curve of the well (Supplementary Table S2). The prediction model was
applied to nine retention wells. The model of well S59 was applied to
well Sx67, S71, and Sx74 in the same eastern slope zone. The prediction
model established in S70 well in the western slope zone was applied to
S66 well, S661 well, S68 well, S72 well, S76 well and S83 well, which also
belong to the western slope zone. The cross plot of TOC calculated by
V-△logR model and TOC predicted by core for all Wells in the study
area shows that TOC calculated by model and TOC predicted by core
are distributed around Y=X, with a determination coefficient of
0.83 and an average relative error of 11.06% (Figure 7).

In Supplementary Table S2, the determination coefficients of the
predicted TOC and core TOC of the single well model ranged from
0.57 to 0.93, and the relative average errors ranged from 7.13% to
25.31%. In addition to the S74 well prediction error is relatively large
(R2 = 0.57 and MRE = 25.31%), the overall anastomosis effect is also
good. In general, the established prediction model can accurately
predict the TOC of surrounding wells, and the TOC of prediction
model is consistent with the TOC of core in well profile.

3.5 Grading evaluation of shale

Shale grading evaluation usually considers reservoir oil-bearing
property evaluation and recoverable factors (Lu et al., 2012). Since
there is little difference in the content of mineral components in
shales in the study area, this shale grading evaluation is mainly
carried out based on the difference in oil content of shales. Rock
pyrolysis index S1 represents the amount of hydrocarbons that have
been generated and remain in the shale. Although S1 lacks heavy
components and some light components are lost during sample
collection, it is still one of the more intuitive and reliable indicators
to characterize shale oil content (Lu et al., 2012; Li et al., 2015). Given
the difficulty of accurately predicting S1 from well logging data, a
feasible approach is to establish relationships with more readily
available indicators (including TOC, organic matter type and Ro)
that are closely related to S1, and then use these easily available
indicators to characterize shale oil content and to carry out shale
grading evaluation. For example, Lu et al. (2012) carried out shale
grading evaluation through the relationship between TOC and S1.

The shale maturity parameter (Ro) was also used in grading
evaluation in addition to the relationship between S1 and TOC. By
discussing the relationship between S1 and TOC and Ro, shale in
Yingcheng Formation can be divided into three categories. Type I
(TOC > 3.5%, Ro > 0.9%) shale is characterized by a slight increase
in S1 or a steady increase in TOC (Figure 8A), and most samples
have high S1 values (Y is generally greater than 0.7 mg/g). Samples
in this interval have high organic matter abundance and
hydrocarbon generation ability. When TOC is greater than 3.5%,
S1/TOC shows a downward trend (Figure 7B), indicating that the
hydrocarbon generation content in these shale has exceeded the
adsorption capacity, and the excess hydrocarbon is expelled (Li et al.,
2019), which also indicates that the oil has relatively good mobility.
In Figure 8A, some samples with TOC greater than 3.5% and still
with low S1 values were expelled from type I shale. Because of their

FIGURE 10
The prediction of thickness distribution of different grades of
shale. (A) Relationship between the thickness of class III shale and the
total thickness of shale; (B)Relationship between the thickness of class
II shale and the total thickness of shale; (C) Relationship between
the thickness of class I shale and the total thickness of shale.
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low maturity (Ro is typically less than 0.9%), they do not have
sufficient hydrocarbon and have not yet reached the hydrocarbon
expulsion threshold (Ro=0.9%) shown in Figures 8C, D. The S1 of
type II shale (TOC between 2% and 3.5%) increases rapidly with the
increase of TOC, indicating that the oil content
(hydrocarbon generation capacity) of shale increases with the
increase of TOC. Class II shale also include shale with TOC >
3.5 and Ro less than 0.9. The saturation degree of adsorbed
hydrocarbon of type II shale should be lower than that of type I
shale and the mobility should be lower than that of type I shale. The
S1 of Class III (TOC < 2.0%) shale increases slowly with the increase
of TOC, and shalewith different evolution degrees have lower
S1 values, mainly because they have lower organic matter
abundance and hydrocarbon generation capacity.

3.6 Thickness distribution of shale

Based on the calculation of TOC of 11 wells in the study area,
combined with the shale grading limits in Figure 7A, the distribution of
different grades of shale is identified on the well profile, and the
thickness is calculated. As shown in the typical interwell profile in
Figure 9, the development frequency of type I shale is relatively low, and
the top, middle and bottom of the fourth member of the Yingcheng
Formation are all developed. The continuous thickness of single layer is
generally no more than 5 m, and the thickness ratio revealed by drilling
(cumulative thickness of type I shale/total thickness of shale) is generally
10%–20%. The thickness of class II shale monolayer is generally
10 m–20 m, and the cumulative thickness of a single well is 40%–
60%. The monolayer thickness of shale of Class III is generally less than
5 m, and the cumulative thickness of a single well is generally 20%–30%.

By statistical analysis of the relationship between the thickness of
different grades of shale and the total thickness of shale, we

established a method conducive to predict the thickness of
different grades of shale. As shown in Figure 10, the
determination coefficient between the thickness of different
grades of shale and the total shale thickness exceeds 0.91,
indicating that the thickness of different grades of shale can be
predicted by the total shale thickness. The quantitative relationship
between the two was established based on the zonal zone. For areas
lacking drilling, the thickness of shale in each grade was predicted
based on the total shale thickness predicted by the combination of
well vibration (Sun et al., 2019) (Figure 11). The results show that the
thickness of class I shale is generally 5 m–15 m, class II shale is
generally 20 m–80 m, and class III shale is generally 10 m–40 m.

4 Conclusion

In this study, V-△logR method was applied to TOC prediction
and grading evaluation of lacustrine shale in Shuangcheng area,
Songliao Basin. The prediction model of total organic carbon
(TOC) is established by using the acoustic and the deep lateral
resistivity curve and the variable scaling coefficient (k) between
them and another scaling coefficient (A) between TOC and △logR.
Although the shale in Shuangcheng area is rich in organic matter and
in the oil generation window exhibits high natural gamma and high
acoustic time difference, however, it shows a unique logging response
of medium to low resistivity. The application results show that it is
necessary to determine the undetermined coefficient K for individual
wells, even in the formation with stable sedimentary facies and low
maturity fluctuations, because the value of K that achieves the highest
TOC prediction accuracy varies significantly but the undetermined
coefficient A varies little from well to well. According to the very close
relationship between oil content (S1) and TOC and considering the
degree of thermal evolution (Ro), shales in Shuangcheng area are

FIGURE 11
The thickness distribution of different grades of shale in Shuangcheng area. (A) Horizontal distribution of cumulative thickness of class III shale. (B)
Horizontal distribution of cumulative thickness of class II shale. (C) Horizontal distribution of cumulative thickness of class I shale.
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divided into three categories. The TOC of well logging prediction
provides a reliable basis for the evaluation of shale grading on well
profile and the prediction of shale thickness distribution at each grade
on the plane. The application results of 11 exploration wells in
Shuangcheng area show that the variable coefficient △logR method
can accurately predict TOC of lacustrine shale and guide shale grading
evaluation.
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