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The upper reaches of the Jinsha River, with their complex terrain and active
tectonic movements, are vulnerable to landslide-induced hazard chain events,
which endanger the safety of residents and infrastructure construction. Based on
the analysis of the development background of the hazard chain in the upstream
area of the Jinsha River, five factors, including the lithology, distance to faults,
distance to rivers, peak ground acceleration, and slope degree, were selected to
identify the critical landslide-prone areas. Principal component and grey
correlation analyses were then conducted to determine the contributions of
these different factors. Based on ArcGIS, the study zone was categorized into
five classes of landslide susceptibility: very high, high, moderate, low, and very low.
The identification of the critical target areas for landslide hazard chain formation
showed satisfactory accuracy. The very high- and high-susceptibility areas are
concentrated along the Jinsha River. The dynamic process of a typical landslide in
a very high-susceptibility area was numerically simulated using OpenLISEM. The
high-precision Baige landslide data of the study area were used to calibrate the
practicality of the input mass parameters, including cohesion, internal friction
angle, D50, and D90. The movement and accumulation processes of a typical
landslide were then numerically simulated with the verified data. The entire
landslide accumulation covers an area of 0.45 km2, with a length of 1,600m
and a width of 270m. Thus, the OpenLISEM model, which combines mass,
topography, and landcover parameters, is feasible for the numerical simulation
of landslide dynamic processes. The prediction of the dynamic processes and
accumulation morphology of landslides can provide a reference for the formation
processes and mechanisms of the landslide-induced hazard chain in the upper
Jinsha River.
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1 Introduction

Due to the compressed active fault zone and severe erosion of the valley shear, the Jinsha
River basin exhibits unique fold mountains and deep valley geomorphology (Xu et al., 2018;
Zhu et al., 2021). With the complicated lithology and steep slope degree, the upper reaches of
the Jinsha River are vulnerable to landslide–dam breach–flood hazard chain events, e.g., the
Baige (Fan et al., 2020), Sela (Zhu et al., 2021), Temi (Chen et al., 2021), and Guili (Xu et al.,
2022) landslides, which threaten the safety of people and property upstream and
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downstream (Wei and Siming, 2020; Jin, 2021; Li et al., 2021).
Therefore, the identification of critical areas and simulation of the
dynamic processes of landslide hazard chain formation is critical in
the upstream Jinsha River basin.

Field surveys are exceedingly difficult to perform in this region
because the landslide disaster site is in a remote alpine canyon area
with a harsh environment and limited access. Thus, high-precision
ground observation technologies, including remote sensing,
interferometric synthetic aperture radar (InSAR), and light laser
detection and ranging (LiDAR), are used to identify landslide
hazards (Lu et al., 2019). Moreover, Landsat, ALOS, Quick Bird,
and other satellites with high-resolution images have been widely
used for landslide identification; however, they only identify
landslide hazards with clear deformation (McDonald and Grubbs,
1975; Sato and Harp, 2009; Youssef et al., 2009; García-Davalillo
et al., 2014). InSAR with centimeter-high precision and all-weather
surface observation technology can perform large-scale landslide
identification and monitoring to build a landslide hazard inventory
(Woods et al., 2020; Urgilez Vinueza et al., 2022; Zhang et al., 2022).
Because of the satellite lateral imaging mode, the terrain may cause
geometric distortion of SAR images, including perspective
shortening, overlap, and shadow (Jie et al., 2018). LiDAR can not
only directly obtain three-dimensional terrain coordinates to
provide high-accuracy topographic images but also remove the
effective influence of vegetation to obtain true ground elevation
data (Gorsevski et al., 2016; Abdulwahid and Pradhan, 2017; Xu
et al., 2019). However, LiDAR is not suitable for large-scale disaster
identification due to its harsh operating conditions and high costs
(Lu et al., 2019). Thus, while high-accuracy remote sensing
technology has become an important means to obtain landslide
hazard information, the reliability of remote sensing data
interpretation and the accessibility and costs of high-precision
image data remain issues in landslide risk assessment. In addition
to satellite sensing technology, scholars have proposed statistical
models for landslide susceptibility assessment, with remarkable
results (Song et al., 2012; Xu et al., 2013; Khan et al., 2019; Liu
D et al., 2021; Yong et al., 2022). Models such as the information
quantity model (Yang et al., 2018), the weight-of-evidence model
(Wang et al., 2016), the logistic regression model (Xing et al., 2021),
the analytical hierarchic process (Yoshimatsu and Abe, 2006), and
the principal component analysis (Chang et al., 2014) have
demonstrated excellent accuracy. Based on the rich results in the
selection of evaluation factors, the weight of the factor
determination, and the construction of the evaluation model, the
present study applied mathematical statistics to identify the key
target areas of landslide hazards to not only objectively analyze the
assessment of regional landslide disaster susceptibility but also the
relationships and impact degrees of slope failure factors.

Many numerical simulation tools for the simulation of landslide
dynamic processes are effective for the analysis of landslide hazards.
Pastor et al. (2021) andOuyang et al. (2019) used the depth-integrated
continuum method for the dynamic simulation of debris and
landslides. Based on the discrete element method An et al. (2021)
established an adapted Hertz–Mindlin contact model between
particles and the ground surface to accurately simulate the
landslide dynamic process. Zhang et al. (2012) simulated the entire
process of failure and instability of the Jiweishan high-speed remote
landslide in Chongqing via PFC 3D software. Smoothed particle

hydrodynamics (SPH) based on Lagrangian particle-based
meshless methods have been widely employed in applications in
geotechnical engineering (Peng et al., 2019; Zhu et al., 2020). The
depth-integrated continuum and discrete element methods consider
the landslide body as a fluid and can efficiently simulate the landslide
motion and accumulation processes. However, they cannot easily
simulate the initial failure mechanism and triggering factors such as
the erosion and volume expansion processes due to the disaggregation
and fragmentation of the rock mass (Wen-Jie et al., 2021). The
landslide movement process is affected by many factors, including
mass composition, trigger mechanism, and vegetation environment.
The above numerical simulation methods do not consider the
interaction between the material source and the environment
during the movement process. Aiming to precisely assess the
landslide dynamic process, the present study used OpenLISEM to
perform the numerical simulations. OpenLISEM divides the research
area into several grids of equal size; inputs corresponding terrain,
vegetation, and material source parameters into different grids;
couples the distributed basin hydrological and two-phase flow
models; compares the slope, ground roughness, and other
parameters of adjacent grids; and simulates disaster processes such
as landslides, debris, and flash floods (OpenLISEM manual 2017,
https://lisemmodel.com).

The complete geohazard chain includes potential hazards,
primary hazards, secondary hazards (series), and hazard-bearing

FIGURE 1
Location of the study area.
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bodies (Peng and Jian, 2021). This study identified potential
geatators by hazard susceptibility assessment and researched the
dynamic process of the primary hazard by numerical simulation.
Based on remote sensing and field investigation data, the weights of
the landslide factors were determined via principal component
analysis and the grey correlation degree method. A landslide
susceptibility evaluation model was then constructed to identify
high-susceptibility landslide areas. Based on the vulnerability
assessment, the key target areas of landslide hazards were
numerically simulated in OpenLISEM to obtain the movement
process and accumulation form of landslides, and to provide a
reference for a landslide–dam breach–flood disaster chain
prevention in the upstream area of the Jinsha River.

2 Study area

The study area is situated in the upper Jinsha River valley, at the
intersection of Tibet and Sichuan, and covers an area of 60,352 km2.
The geographic coordinates are 97.33°E–99.94°E and
28.68°N–32.73°N (Figure 1). The terrain is characterized by “V”-
shaped gullies in the high-mountain region, which is severely
affected by river erosion. The elevation of the study area ranges
from 2092 to 6,088 m. Based on the genesis, the geomorphic types in
the study area can be divided into five types: erosion accumulation,
structural erosion, structural denudation, structural dissolution, and
glacier geomorphology (Bai et al., 2014). The main fault strikes have
a northwest-southeast orientation. The lithology of the study area is

FIGURE 2
Factor distribution in the study area: (A) lithology, (B) fault, (C) river, (D) PGA, and (E) slope.
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complicated, including marine Upper Triassic system, Ordovician
granite, Cretaceous granite, Quaternary sandstone, Permian,
Triassic, Paleogene, and Jurassic systems.

The study area has highland climates with an average
temperature of -4.9°C–7.8°C. Furthermore, due to the high
terrain and strong solar radiation, the area is cold and dry with

53–67% relative humidity, an annual average rainfall of
387.0–657.6 m, and an average of 100.3–169.8 days of
precipitation. The rainy season is from May to October,
accounting for more than 90% of the annual rainfall. Snow is the
main form of precipitation in the region, and the daily rainfall in
most areas is 50 mm. Additionally, the vegetation is mainly
grassland and swamp meadows (Wu, 2007).

3 Database and method

3.1 Susceptibility assessment

3.1.1 Factor sources
Landslide susceptibility mapping is essential for identifying

areas with high landslide risk. In this study, the landslide
inventory with a total of 635 hazard points was extracted from
the Resource and Environment Science andData Center (RESDC) of
the Chinese Academy of Science. Based on previous research, the
specific characteristics of the study region, including lithology,
distance to the fault, distance to the river, and peak ground

TABLE 1 Data sources.

Data type Data source

Lithology RESDC of the Chinese Academy of Science: https://www.
resdc.cn

Fault RESDC of the Chinese Academy of Science: https://www.
resdc.cn

River Open Street Map: https://www.openstreetmap.org

PGA China’s seismic ground motion parameter zonation map

DEM ALOS ASF Data Search (alaska.edu)

Hazard Inventory RESDC of the Chinese Academy of Science: https://www.
resdc.cn

TABLE 2 Numbers and densities of landslides in the study area.

Factors Classes Area (km2) Landslide number Landslide density (landslide number/km2) Scores

Lithology I 22,645.627 321 0.014174922 5

II 15,837.825 156 0.009849837 3

III 6,609.371 66 0.009985822 4

IV 11,455.568 71 0.006197859 2

V 3,804.447 21 0.005519856 1

Fault ≤15 km 23,923.96017 330 0.0137937 5

15–30 km 13,892.70801 159 0.01144485 4

30–45 km 6,872.80138 50 0.00727505 2

45–60 km 5,460.90858 58 0.01062094 3

>60 km 10,202.46206 38 0.00372459 1

River ≤4 km 25,597.48631 460 0.01797051 5

4–8 km 18,554.48587 89 0.00479668 3

8–12 km 10,368.69513 42 0.00405065 2

12–16 km 4,112.58464 16 0.0038905 1

>16 km 1,718.46238 28 0.01629364 4

PGA ≤0.15 g 28,855.31 300 0.0103967 1

0.2 g 30,189.11 329 0.01089797 3

0.3 g 1,308.466 6 0.00458552 5

Slope ≤10° 7,277.5427 103 0.014153 5

10°–20° 14,813.384460 164 0.011071 4

20°–30° 18,561.758800 173 0.009320 2

30°–40° 13,660.906230 142 0.010395 3

>40° 6,015.9348 53 0.00880994 1
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acceleration (PGA), were selected to assess the landslide
susceptibility (Table 1). The lithology and fault were obtained
from the RESDC of the Chinese Academy of Science, while the
river data were obtained from the Open Street Map. The fault and
river buffer distances were calculated using the surface analysis tools
in ArcGIS. The slope data were extracted from the digital elevation
model (DEM) downloaded from the advanced land observation
satellite (ALOS) with a resolution of 12.5 m × 12.5 m. The influence
degree of seismic intensity was reflected by PGA extracted using the
seismic groundmotion parameter zonation map of China (GB18306
2015).

3.1.2 Factor classification
The geographic information system (GIS) was used to show the

terrain features of the lithology and other factors. The hazard
inventory, combined with the five evaluation factors, was
digitized and stored in the GIS. The classification of the five
factors in this study is shown in Figure 2. The lithology
composition in the study area is sophisticated. Herein, it is
divided into five categories: soft rock (I), half-soft rock (II), half-
hard rock (III), hard rock (IV), and others (V), which include loose
deposits, complex structural surfaces, and unknown rock.
Landslides are mainly located in soft rock composed of siltstone,
sandstone, etc. because these rocks are vulnerable to external forces
(Figure 2A). The faults are densely distributed in the study area. This
study selected the Jinsha-Honghe fault as the main research target.
The rock near the fault zone is relatively broken and has poor
stability. The landslide activity intensity decreases with increasing

distance from the fault (Figure 2B). The surface stream deepens in
the valley in the study area through erosion and transportation,
producing favorable conditions for hazards. More than 50% of the
hazards are located within 4 km of the river (Figure 2C). PGA was
used to represent the magnitude of the earthquake intensity and was
divided into <0.15, 0.2, and 0.3 g. According to the seismic intensity
map in the spatial distribution, most landslides are mainly
concentrated in areas of high earthquake intensity (Figure 2D).
The slope gradient was obtained using the 3D-analysis slope tool in
ArcGIS. The landslides are concentrated in regions ranging from 10°

to 40° (Figure 2E).

3.1.3 Factor weight calculations
According to the landslide intensities for the selected factors, a

score was given to the different intervals of each evaluation factor
(Table 2). The discriminant coefficient matrix of the landslide
inventory in the study area and factors is shown in Table 3.

The contribution degrees of the five factors were obtained via
principal component analysis (Chang and Tang et al., 2014). The
discriminant coefficient matrix (Table 3) was imported into SPSS
software for principal component analysis to obtain the
contributions of the factors. The first four factors, i.e., lithology,
faults, rivers, and PGA, contributed to >80%. Lithology was the most
influential factor and was, therefore, selected to determine the
contribution of the other factors (Table 4).

The grey correlation analysis (Wei et al., 1998) mainly
determines the correlation between the dominant factor and the
other four factors. When the variable was transformed into
dimensionless data, the outcome was a coefficient matrix of
factors and initialized data. From this, the absolute D-value Eq.
1was calculated:

xi k( ) �
x0 1( ) x0 2( ) x0 n( )
x1 1( ) x1 2( ) x1 n( )
xi 1( ) xi 2( ) xi n( )

⎛⎜⎝ ⎞⎟⎠
Δi k( ) � xi k( ) − xi 0( )| | (1)

where i=1,2. . . . . .m; k=1,2,. . . . . .n; xi(k) =coefficient matrix of
factor lithology; and Δi(k) =absolute value. The extreme of the
matrix (Δ min andΔ max) was obtained via Eq. 2

Δ min � minminΔi k( ),Δ max � maxmaxΔi k( ) (2)
The correlation coefficient of the evaluation factors was

calculated using Eq. 3:

ξ i k( ) � Δ min + ρΔ max

Δi k( ) + ρΔ max
(3)

TABLE 3 Discriminant coefficient matrix of landslides in the study area.

Landslide code Lithology Fault River PGA Slope

L-001 5 5 3 1 2

L-002 5 5 5 1 4

L-003 5 5 5 1 3

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

L-633 4 5 5 3 2

L-634 5 4 5 3 4

L-635 3 5 5 3 4

TABLE 4 Composition matrix table of landslide factors in the study area.

Factors Composition matrix

Lithology 0.346 0.508 −0.187 0.622

Fault −0.412 −0.24 0.587 0.438

River 0.426 −0.202 0.577 0.391

PGA 0.44 −0.207 0.311 −0.56

Slope −0.133 0.732 0.569 −0.338

Eigenvalue 1.467 1.069 0.882 0.863

Contribution rate (%) 29.35% 21.38% 17.65% 17.26%

Cumulative contribution rate (%) 29.35% 50.73% 68.37% 85.63%

TABLE 5 Related coefficients and weights of landslide factors in the study area.

Factors Degree Scores Weights

Lithology 1 5 0.33

Fault 0.73 3 0.2

River 0.69 4 0.27

PGA 0.685 1 0.07

Slope 0.160 2 0.13

Frontiers in Earth Science frontiersin.org05

Song et al. 10.3389/feart.2023.1051913

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1051913


where ξi(k) is the correlation coefficient and ρ is the
distinguishing coefficient, which takes 0.5 as the value. The size
of the value can control the data transformation and significant
differences in the correlation coefficients. The greater the correlation
between other factors and the dominant factor, the greater the
impact on geological disasters. The weights of the evaluation
factors are shown in Table 5.

3.1.4 Model generation
Five-factor raster maps with 12.5 m resolution were constructed

using GIS. The values of the factor raster were calculated using the
Raster Computing Tool. The final model was established using these
factors.

R � ∑n

i�1xi k( )ωi (4)

where i = 1, 2. . .. . .5, R is the value of landslide susceptibility
evaluation, xi(k) is the value of the landslide in Table 2, and ωi

is the weight of the landslide in Table 5.
According to the value of R, the susceptibility degree of the study

area can be divided into three categories: very low (R ≤ 2), low
(2<R ≤ 2.5), moderate (2.5 < R ≤ 3.5), high = (3.5 < R ≤ 4), and very
high (R >4) susceptibility.

3.2 Landslide numerical simulation

3.2.1 Theory
To better simulate the dynamic process of critical landslide

hazards, a discrete numerical modeling method was applied using
the open-source software OpenLISEM, which requires the
subdivision of both space and time into a discrete set of locations
(https://lisemmodel.com). Originally, OpenLISEM was a physically
based numerical model designed to simulate event-based runoff,
flooding, and erosion on a catchment scale. By combining solid and
water runout flow equations, OpenLISEM includes a series of
dynamic hydrological processes, such as precipitation,
interception, surface flow, splash detachment, erosion, and
sediment transportation. Many revisions and additions have
subsequently been incorporated into the OpenLISEM application.
OpenLISEM was further developed as a multi-hazard model,
including groundwater flow, slope stability, slope failure, mass
movements, deposition, entrainment, and earthquake effects
(Pudasaini, 2012; Bout et al., 2018; Scaringi et al., 2018).
Furthermore, the model incorporates the iterative slope failure
method based on a modified infinite slope mode. The
conventional infinite slope model predefines the bottom of the
soil layer as the potential slip surface, while the iterative method
iteratively searches the potential slip surface. The equation for
determining the factor of safety (FOS) is

FOS � c + c′ + γ −mγω( )z +mγωz[ ]cos 2 β tanφ′
γ −mγω( )z[ ] sin β cos β (5)

where c and c′ (kpa) are the effective soil cohesion and root cohesion,
respectively; γ and γω (kg/m

3) are the soil andwater densities, respectively;
m is the effective saturation level of the soil; z (m) is the soil depth; β (°) is
the slope angle; and φ′ (°) is the effective internal friction.

The two-phase runout flowwithin OpenLISEM is a combination
of water and solid dynamics (Pudasaini, 2012). Using it, landslides,
water flow, and debris flow can be simulated, including their
interactions. The full momentum source terms for both the fluid
and solid phases are as follows:

Sx,s � αs g
zb
zx

( ) − us

�us| | tan zPbs( ) − εPbs

zb
zx

( )( )
−εαsγPbf

zh
zx

+ zb
zx

( )
+CDG uf − us( ) �uf − �us

∣∣∣∣ ∣∣∣∣j−1 (6)

Sy,s � αs g
zb
zy

( ) − vs
�us| | tan zPbs( ) − εPbs

zb
zy

( )( )
−εαsγPbf

zh
zy

+ zb
zy

( )
+CDG vf − vs( ) �uf − vu�→s

∣∣∣∣ ∣∣∣∣j−1 (7)
Sx,f � αf g

zb
zx

( ) − ε
1
h

z

zx
h2

2
Pbf( ) + Pbf

zb
zx

[{
− 1
αf NR

2
z2uf

zx2
+ z2vf
zxzy

+ z2uf

zy2
− χvf
ε2h2

( )
+ 1
αf NR

2
z

zx
zαs

zx
uf − us( )( ) + z

zy
zαs

zx
vf − vs( ) + zαs

zy
uf − us( )( )( )

−ξαs vf − vs( )
ε2αf NRAh

2 ]} − 1
γ
CDG uf − us( ) �uf − �us

∣∣∣∣ ∣∣∣∣j−1 (8)

Sy,f � αf g
zb
zy

( ) − ε
1
h

z

zy
h2

2
Pbf( )[{

+Pbf

zb
zy

− 1
αf NR

2
z2vf
zy2

+ z2uf

zxzy
+ z2vf

zy2
− χvf
ε2h2

( )
+ 1
αf NR

2
z

zy
zαs

zy
vf − vs( )( )(

+ z

zy
zαs

zy
uf − us( ) + zαs

zy
vf − vs( )( )) − ξαs uf − us( )

ε2αf NRAh
2 ]}

−1
γ
CDG uf − us( ) �uf − �us

∣∣∣∣ ∣∣∣∣j−1 (9)

where Ss and Sf (m/s2) are the momentum source terms for the solid
and fluid phases, respectively; αs and αf are the volume fractions for
the solid and fluid phases, respectively; Pb (kg/ms2) is the pressure at
the base surface; b (m) is the basal surface of the flow; NR is the
Reynolds number; NRA is the quasi-Reynolds number; CDG is the
drag coefficient; γ is the density ratio between the fluid and solid
phase; χ (m/s) is the vertical shearing of fluid velocity; ε is the aspect
ratio of the model; and ξ (1/m) is the vertical distribution of αs.

3.2.2 Data input and calibration
This study ignores the interception model. Therefore, the input

data of the OpenLISEM model can be divided into three categories:
landcover, mass, and topography parameters.

The landcover parameters include land-use type, vegetation
cover (vegc), vegetation height (ch; m), and leaf area index of the
plant cover in a grid cell (lai; m2/m2). Land-use type and ch were
obtained from Wang et al. (2012). The upper reaches of the Jinsha
River are mainly grassland and farmland. Based on ArcGIS software,
vegc was obtained from the linear range of NDVI (normalized
difference vegetation index) from Landsat remote images (http://
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www.gscloud.cn/search). Finally, lai was derived as follows
(Choudhury, 1987; Choudhury et al., 1994):

lai � ln 1 − vegc( )
−0.4 (10)

Topography parameters such as the slope, sine of slope gradient
in the direction of the flow (Gradient), random roughness (RR),
local surface drainage direction network (LDD), and main
catchment outlet corresponding to LDD (Outlet) can be derived
from the DEM using the PCRaster program. Manning’s index,
another topography parameter, was obtained using the
OpenLISEM Manual (2017), according to land use (Wang, 2018).

The mass parameters numerically used in the simulation include
mass depth (mm), initial moisture (-), cohesion (kpa), internal
friction angle (radians), porosity (-), density (kg/m3), and
D50 and D90 (cm). The mass depth is calculated based on the
empirical formula reported by Tang et al., 2012:

T � 1.432 ln sl( ) − 4.895 (11)
where T is the average soil depth (m) and sl is the landslide

area (m2).
It is difficult to directly obtain accurate values for the other mass

parameters due to the limitations of field testing technology. On
October 10 and November 3, 2018, two large landslides near Baige
village occurred in the same location on the right bank of the Jinsha
River (Figure 5). Many scholars performed field investigations, and
research on the slope failure mechanisms and parameters showed
inversion in the Baige landslide, which provided a valuable
opportunity to adjust parameters (Ouyang et al., 2019; Chen et al.,
2021; Xu et al., 2021; Zhou et al., 2020; Zhao et al., 2020; Zhang et al.,
2020; Zhou et al., 2022; Liu X et al., 2021; Sun, 2021; Wang et al., 2019).

The first Baige landslide was successfully simulated using the
OpenLISEM program. The results were consistent with the
modeling performed by Ouyang et al., 2019 (Figure 3). The
appropriate parameters were obtained by numerically simulating the
first Baige landslide event, as shown in Table 6.

4 Results

4.1 Critical landslide identification

To identify the critical areas for landslide hazard chains, factors
such as lithology, fault, river, PGA, and slope were selected for the
landslide susceptibility analyses. The five landslide factors were weighed
via principal component and grey correlation analyses. Table 5 shows
that lithology has the greatest impact on the landslide hazard chain, with
a weight value of 0.33, while PGA has the least impact, with a weight
value of 0.07. Fault, river, and slope have weights of 0.2, 0.27, and 0.13,
respectively. Consequently, the R-value reflecting the landslide
susceptibility ranges from 1.33 to 5, which is classified into five
groups (Table 7). Very high and high susceptibility areas account
for 45.42% of the total area. However, the area accounts for 75.28%
of the landslides. To verify the reliability and applicability of the model
for the vulnerability evaluation of landslide hazard points in the study
area, ROC (receiver operating characteristic) curve and AUC (area
under the curve) values were selected for testing. The ROC curve is an
effective method to evaluate the performance of the classification
algorithm; that is, the relationship between the simulated and
sampled values. The horizontal axis is the cumulative value of the
false positive rate (FPR), which indicates the proportion of susceptible
areas, and the vertical axis is the true positive rate (TPR), which

FIGURE 3
Deposit thickness of the first Baige landslide: (A) actual result and (B) numerical simulation.

TABLE 6 Calibrated landslide mass parameters in the study area.

Cohesion (kpa) Internal friction angle (radians) Initial moisture (%) Porosity (%) Density (kg/m3) D50 (cm) D90 (cm)

30 0.54 13.9 21.93 2000 60 480
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indicates the cumulative value of the proportion of disaster points. The
AUC value represents the area between the ROC curve and the abscissa
axis and, with values in the range of [0.5,1], it indicates the good fitting
effect of the model on the processed data. Figure 4 shows that the AUC
value of this model is 0.70.

These results demonstrated the high evaluation accuracy of the
susceptibility assessment model. The landslide susceptibility
distribution map in the Jinsha river upstream is shown in
Figure 5. The very low and low susceptibility areas are mainly
located in the northeast and southwest of the study area, mainly
covering the Dege and Mangkang counties. The moderate
susceptibility area is very dispersed and primarily located in
central Batang county and the western area of Dege county. The
very high and high susceptibility areas with the largest floor areas are
located near the main stream and tributaries of the Jinsha River.

Based on the susceptibility assessment results, the Litang
landslide area with very high susceptibility was selected as a
critical hazard for the numerical prediction simulation (Figure 6).
The landslide shape was obtained from Cui et al. (2020).

4.2 Dynamic numerical simulation

The Litang landslide, with an area of 1.32 km2, is located near
the Baige landslide. Based on Eq. 7, the mass average soil depth is

15.2 m. Based on the GIS platform, the mass, topography, and
landcover parameters were converted into a “map” file by QGIS
and PCRaster. These map data were then input into OpenLISEM for
numerical simulation.

According to the simulation results, Figure 7, which is plotted
at 20s intervals, displays the entire dynamic process of the
landslide from startup to relative stability, which occurs in
approximately 100 s. At the initial stage of the landslide
dynamic process, the rock mass encounters stability failure
and begins to slide along the bedrock surface. From time t =
0–20 s, the landslide body slides downstream in the northwest
direction with an average velocity of about 12 m/s (Figure 7A).

TABLE 7 Statistics of landslide susceptibility in the study area.

Susceptibility class Area covered (%) Number of landslides (%)

Very low 1.78 0.47

Low 8.17 2.52

Moderate 44.63 21.73

High 28.41 29.61

Very high 17.01 45.67

FIGURE 4
ROC curve.

FIGURE 5
Landslide susceptibility map in the study area.
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From t = 20–40 s, the landslide movement is uniform with an
average velocity of 15 m/s (Figure 7B). The mass at the front edge
of the landslide reaches the Jinsha River at t = 40 s. The main
acceleration stage refers to the period from t = 40–80 s, and the
peak value of the velocity reaches approximately 59 m/s
(Figure 7C). During this period, the rock mass is divided into

two parts,i.e., upstream and downstream, due to the influence of
the watershed in the central section of the landslide. The
deceleration stage refers to the period between t = 80–100 s
Figure 7D). During this stage, the average velocity of the rock
mass near the upstream part approaches zero, while the average
velocity of the rock mass near the downstream part is <10 m/s.

FIGURE 6
Critical landslide location in the study area.

FIGURE 7
Velocity of the landslide movement: (A) t = 20 s, (B) t = 40 s, (C) t = 60 s, (D) t = 80 s, and (E) t = 100 s.
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Simultaneously, some of the mass materials reach the Jinsha
River, and the upstream part of the mass begins to form a barrier
dam. When t = 100 s, the accumulation stage is complete, and the
landslide nearly stops. A large volume of the mass is deposited in
the valley within this period (Figure 7E).

As shown in Figure 8, the entire landslide dam covers an area of
0.45 km2, with a length of 1,600 m and a width of 270 m. Due to the
terrain, the final accumulation of the landslide includes two barrier
dams with an average thickness of 17 m, which are thin on the sides
and thick in the middle. The maximum accumulation thickness is
higher on the upstream side relative to the downstream side of the
dam (upstream, 55.32 m; downstream, 44.33 m).

5 Discussion and conclusion

This study used susceptibility assessment to identify an area with
high susceptibility for a landslide, which was numerically simulated
using an OpenLISEM model, to provide a reference for geological
hazard prevention in the upper reaches of the Jinsha River.

For susceptibility assessment, the landslide inventory and five
hazard factors, including lithology, fault, river, PGA, and slope data,
were digitalized and categorized in the ArcGIS model. Based on the
landslide intensity in the classification of the five factors, the
discriminant coefficient matrix of landslides in the study area was
constructed. Principal component and grey correlation analyses were
performed to calculate the weights of the factors, which indicated that
lithology had the largest impact on landslides. Furthermore, an
assessment model was established. The susceptibility results

indicated that the high-susceptibility zone accounts for 45.42% of
the total area but comprises 75.28% of the landslide numbers, which
are located near the main stream and tributaries of the Jinsha River.
Therefore, the susceptibility map not only can be used as a basic tool for
critical landslide identification but also helps in land use planning. A
lack of accurate factor measurements may affect the precision of the
factor data. Despite the limitations mentioned above, the ROC curve
results showed that the proposed method has the potential for risk
reduction in the study area. Moreover, we performed susceptibility
analysis for one model. Quantitative and qualitative models are
increasingly applied to research on landslide susceptibility, with
continued improvements. Landslide hazard data provide important
information for susceptibility assessment. However, due to technical
limitations, additional research is needed on hazard risk evaluation in
areas lacking landslide hazard data.

According to the susceptibility assessment results, the Litang
landslide from the high-susceptibility area was selected as a typical
hazard for simulation by OpenLISEM. Using the landslide that
occurred in Baige on October 10, 2018, as an example, the mass
parameters were calibrated to be inconsistent with the movement of
the Baige landslide. Then, the mass, topography, and landcover
parameters were input into OpenLISEM. The landslide dynamic
process simulation was completed in approximately 100 s and
comprised four stages: initial start-up, acceleration, deceleration,
and accumulation. In the acceleration period, the landslide body was
divided into two parts due to the terrain. The entire deposition
covered an area of 0.45 km2, with a maximum thickness of 55.32 m.
The numerical simulation analysis of the Baige and Litang landslides
showed that OpenLISEM can be applied to the research and analysis

FIGURE 8
Thickness of the landslide movement: (A) t = 20 s, (B) t = 40 s, (C) t = 60 s, (D) t = 80 s, and (E) t = 100 s.
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of landslide movement. Using the PCRaster platform, OpenLISEM
has good compatibility with the GIS platform, which can provide a
reference for further analysis of secondary disaster evolution
research (based on the GIS platform). OpenLISEM model
simulation requires a large amount of accurate data, and some
areas cannot be used for simulation studies of landslide dynamic
processes without good simulation data.
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