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X-Ray computed tomography is a non-destructivemethod that is used, amongmany
applications, to study the size, shape, 3D structures and interconnections of pores in
shale. We use phase retrieval methods to deal with the “edge enhancement” effect
caused by phase shift. The process of phase retrieval can be described by the
transport-of-intensity equation (TIE). But this is an ill-posed problem. The existing
methods focus on phase retrieval in the frequency domain. To tackle the ill-
posedness, we propose a new method whose main idea is to solve this problem
in space domain with a regularization technique. We study a synthetic shale model
and simulate the projection data. Thenwe apply threemethods to retrieve the phase:
conventional method in frequency domain, direct solving method and iterative
Tikhonov regularization method in space domain. Finally, we use the standard
filtered back-projection (FBP) method to present the outcome. By analyzing the
results, we find advantages of the new method: more stability and fewer artifacts
under noise perturbations. The study shows that relative errors of the new method
are nearly 1% of that of the traditional method based on frequency domain, and
hence the new method is promising for the practical data processing.
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Introduction

X-ray computed tomography (CT) is an important diagnostic approach in healthcare and is
a non-destructive detecting technology. Due to its particular advantages, it is widely used in
industry and medical imaging. CT relies on X-ray flux measurements from different angles to
form an image. If the input X-ray photons are mono-chromatic, the X-ray intensities follow the
Beer-Lambert law from the microscopic view (Natterer, 2001): ΔI/I � f(x)Δx. In this
equation, f(x) is the attenuation coefficient (function) of the object, Δx is the small
distance that the ray travels and ΔI is the intensity loss. Let I0 be the initial intensity of
the beam; L be the straight line, and let I1 be intensity of the beam after having passed the object.
It follows from above equation that I1/I0 � exp{−∫

L

f(x)dx}. We need to find the attenuation

coefficient (function) f from the above integral equation, which can be used to describe the
object’s structure. In practice, the integral can be regarded as a function on R2 being mapped
into the set of its line integrals, and it can be expressed as the Radon transform (Natterer, 2001).
Therefore the reconstruction problem of CT can be performed via inversion of the Radon
transform in R2.
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The common CT reconstruction algorithms can be divided into
two categories: analytical methods and iterative methods (Natterer,
2001). In practice, we use methods like filtered back-projection
algorithm (FBP) and the algebraic reconstruction technique (ART)
correspondingly (Shepp and Logan, 1983; Gordon et al., 1970). The
former one utilizes explicit formula which may cause ring-artifacts,
whereas the latter can suppress some artifacts but requires longer
computing time than the former one. Some commercially available CT
scanners use fan-beam projections, but they are not applicable for the
reconstruction of shale structure by using the synchrotron radiation-
based X-ray CT. Synchrotron radiation allows us to select
monochromatic X-ray beams from the full spectrum and conserve
enough intensity for imaging. Because of the small size of the shale
sample, parallel geometry can be used to conduct the experiment.

Conventional X-ray (CT) is based on the contrast of the
absorption. However, a wide range of samples used in biology and
material exhibit very weak absorption contrast, nevertheless can
produce significant phase shifts in the X-ray beam (Bronnikov,
2006). When the distance between the sample and the CCD (CCD
stands for “charged couple device”) becomes larger, the projected
image becomes a mixture of the absorption-contrast image and the
phase-contrast image. As for shale, it contains a lot of weak absorption
organic materials which are similar with pores in the absorption-
contrast image. Although the conventional X-ray CT algorithm may
not distinguish the difference between the pore and weak absorption
materials, the phase shift that X-ray undergoes when passing through
the material may provide better image quality. Experiments have
demonstrated that the intensity distribution changes a lot with
different distances between the sample and the CCD (Bronnikov,
2006). This leads to a fact that the Radon transform cannot be used to
simulate the practical process of the CT imaging exactly. Therefore, it
is necessary to use the information about the phase. The “edge
enhancement” effect caused by the phase shift will affect the final
imaging (Chen et al., 2009). So we should use the phase information to
reduce these artifacts.

X-ray phase contrast imaging has received muchmore attention in
recent years, either in biomedical sciences (Bravin et al., 2013) or in
material sciences (Mayo et al., 2012a; 2012b). The object can be
depicted by its refractive index distribution,
n(r) � 1 − p(r) + iβ(r), where p denotes the phase shift caused by
the object, the imaginary part β describes the absorption, and the
vector r is the spatial coordinate. The parameter β has a relationship
with the linear attenuation coefficient μ: μ � 4π/(λ · β). Based on
different kinds of optical devices, there are many commonly used
phase retrieval methods like: in-line phase contrast (Lee, 2015), grating
interferometer (Nesterets and Wilkins, 2008), analyzer-based method
(Bravin, 2003), and coded aperture (Olivo et al., 2012). The advantages
of the in-line phase contrast imaging are its simple arrangement of
optical components and insensitiveness to misalignment. And because
there is no mask like interferometer or analyzer in this method, the
flux will not be lost (Lee, 2015).

The computational procedures of the X-ray phase contrast
imaging can be outlined as follows (Lee, 2015).

• Phase retrieval
- Obtain the measured intensity function
- Calculate the Fourier transform of the measurement
- Apply a user-defined filter in frequency domain
- Perform the inverse Fourier transform of the filtered result

- Obtain the phase image through FBP or inversion
• Filtered back-projection (FBP)
- Calculate the Fourier transform of the phase
- Frequency filtering
- Calculate the inverse Fourier transform of the filtered result
- Back-projection

In above steps, the phase retrieval is used for dealing with the edge
effect, while the FBP is used to present the image results.

There are two basic assumptions when we use the information of
phase to retrieve the structure of the object: the absorption is negligible
(μ ≈ 0) (Bronnikov, 1999), and the phase and absorption are
proportional to each other (p∝ β) (Beltran et al., 2002; Paganin
et al., 2002; Wu and Liu, 2005). When the object is shale, the
absorption of the light is inevitable, so we should use the latter
assumption. We can use the phase information to rectify the final
image through the proper choice of the ratio between parameter values
p and β. Even though there exit some exceptions like Shack-Hartman
sensor (Lane and Tallon, 1992), most of the existing methods for the
analysis of X-ray phase contrast data requires application of a filter in
the Fourier domain just like the procedures listed above (Bronnikov,
1999; Beltran et al., 2002; Paganin et al., 2002; Wu and Liu, 2005).
Some experiments have shown that the X-ray in-line phase contrast
CT technology based on the modified Bronnikov method can be used
in the experimental investigation of high polymer mixed materials and
medical samples (Liu et al., 2012). Synchrotron radiation X-ray
propagation-based phase-contrast computed tomography has been
used to reconstruct the structure of plant organs (Ye et al., 2013). The
essence of these problems is solving the transport of intensity equation
(TIE) (Teague et al., 1983). In previous researches, people have studied
the convergence of the regularized solutions of this question in
frequency domain (Sixou, 2015). The iterative Tikhonov
regularization method was developed for solving the TIE in spatial
domain (Tang and Wang, 2017). In Wang and Tang (2018), method
and device for nano-scale imaging with spatial domain technique was
also addressed.

In this paper, we propose a newmethod based on space domain. In
this new method, the problem can be expressed as ue � Af + error,
where A is an operator with second-order differential term, ue is the
observation data and f is the projection data which only contains the
information of the absorption. The model can be expressed as a least
squares variational problem min f T[f]: � 1

2‖ue −Af‖2L2 ,
where“: �” means “defined by”. The minimal norm least squares

FIGURE 1
Coordinate system for the object and the plane of observation.
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solution can be expressed as f � A+ue, whereA+ denotes the pseudo-
inverse of A. However, we find that with the improvement of the
model’s resolution, the condition number of the operator A becomes
huge. And the spectrum of the self-adjoint operator A*A is much
worse than that of the operator A; so when noise exists, it is hard to
form a correct image. This paper discusses the ill-posedness of the
phase retrieval problem and proposes a posterior regularization
method for phase retrieval in space domain.

We will compare three methods: traditional transformed-based
frequency-domain method, direct normal equation solving method
(equaling to the least-squares method), and a posterior regularization
method. To be simplicity in context, the above three methods are

named as TFDM, LSM and PRM, respectively. These methods will
be addressed in details in the following sections. Finally, some
conclusions are given.

Theory

Transport-of-intensity equation

Let (x1, x2, x3) be a Cartesian coordinate system of the object, the
detector is located with the (x, y) coordinate system, and the direction
of the y axis coincides with the direction of the x3 axis (see Figure 1).

FIGURE 2
Linear absorption model.

TABLE 1 Theoretical β values for materials in the model at E=30 Kev.

Number Materials Percentage (%) β × 10−10

1 quartz 75.04 7.4

2 kaolinite 3.20 6.5

3 illite/smectite 3.20 7.2

4 plagioclase 3.20 9.0

5 dolomite 2.92 11.5

6 ledikite 3.02 12.4

7 calcite 3.10 16.0

8 chlorite 3.04 20.5

9 void 3.27 0
FIGURE 3
Acquisition geometry.
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FIGURE 4
FBP result without phase retrieval.

FIGURE 5
The inversion result using TFDM for noiseless data.
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We assume that the source Ui is the incident monochromatic
plane wave (considering the synchrotron radiation generates a highly
collimated beam, this assumption is easy to achieve). The wave field
downstream of the object can be described as

Uθ x, y( ) � Tθ x, y( )Ui, (1)
where Tθ(x, y) is the complex transmission function of the object for
the scanning angle θ, which contains the absorption of the light and
the phase shift and is of the form

Tθ x, y( ) � exp −1
2
μθ x, y( ) + iϕθ x, y( )[ ]. (2)

The absorption function μθ and the phase shift ϕθ follow the Beer-
Lambert’s law and have the following integral formulas:

μθ x, y( ) � ∫ μ x1, x2, y( )δ x − x1 cos θ − x2 sin θ( )dx1dx2, (3)

ϕθ x, y( ) � 2π
λ
∫g x1, x2, y( )δ x − x1 cos θ − x2 sin θ( )dx1dx2, (4)

where μ is the linear attenuation coefficient of the object,
g(x1, x2, x3) � real[n(x1, x2, x3)] − 1, where real(.) means the real
part and δ(.) is the Dirac delta function. The two equations describe
the 2D Radon transforms, and the intensity of the plane which has a
distance d from the object can be expressed as (Bronnikov, 2015)

Idθ x, y( ) � hd**Uθ| |2, (5)
where the double asterisk “**” denotes two-dimensional convolution
and hd is the Fresnel propagator which can be defined as:

hd x, y( ) � exp ikd( )
iλd

exp i
π

λd
x2 + y2( )[ ], (6)

where λ is the wavelength. If we consider the near field condition
λd≪D2 (D is the size of the object) and assume that μθ varies
insignificantly, we obtain the intensity distribution at a small
distance as (Brenner, 1952; Bronnikov, 1999):

Idθ x, y( ) � I0θ 1 − λd

2π
∇2ϕθ[ ], (7)

where I0θ denotes the intensity at the object plane. From Eq. 7, we find
that the projected image consists of the absorption information I0θ and
the phase information ϕθ, which may generate the “edge
enhancement” effect. With the assumption that μθ varies slightly,
and let T(r) be the projected thickness of the object, we obtain the TIE
equation (Paganin et al., 2002)

−dp
μ
∇2 + 1( )e−μT r( ) � Idθ

Iin
. (8)

The right-hand side of Eq. 8 is the observation, the left represents
the effect caused by the phase. The conventional method to deal with
this problem is to take the Fourier transform to both sides of the above
equation to get (Paganin et al., 2002)

F e−μT r( ){ } � μ
F Idθ{ }/Iin
dp k⊥| |2 + μ

, (9)

where k⊥ is the coordinate in space domain, the symbol “⊥” stands for
the plane perpendicular to the direction of the X-ray travels. This
method is equivalent to using a frequency filtering to get the projected
thickness T(r). Finally, we can use the filtered back projection to get
the parameter of the model. We call the transformed-based frequency-
domain method as “TFDM”.

Instead of this final step, here we solve Eq. 8 directly in the space
domain. To do so, we first build an operator equation to reformulate
the Eq. 8 to get e−μT(r), then use the filtered back projection to get the
projected thickness of the object. Equation 8 can be expressed in the
form of the first kind operator equation as:

u � Af, (10)
where A � (1 − dp

μ ∇
2), f � e−μT(r) and u � Idθ /I

in.

General solutions of the operator equation of
the first kind

All data are noisy, so Eq. 10 should be rewritten as:

FIGURE 6
The inversion result using LSM for noiseless data.

FIGURE 7
The inversion result using PRM for noiseless data.
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ue � Af + error. (11)
Therefore we cannot guarantee that ue belongs to the range of the

operator. So we need to find the approximate solution that minimizes
the residual norm of the simulated data to the observed data on some
metric space:

f: � argmin
f

Af − ue

���� ����2, (12)

where “argmin” stands for argument of the minimum. Because A
includes the differential operator (see Eq. 10) and its spectrum is

unbounded, the discrete equations derived by the difference scheme or
the finite element method are always ill-conditioned. This ill-
conditioning will be increasingly severe with the shrinking of the
discrete scaling, therefore the phase retrieval problem is an ill-posed
problem (Xiao et al., 2003). The strategy to solve the ill-posed problem
is to find the solution of a series of well-posed problems.

This method for solving ill-posed problems is called a Tikhonov
regularizing method (Tikhonov and Arsenin, 1977; Wang et al., 2010).
Tikhonov regularization means a variational approach based on
minimization of a smoothing functional as follows (Xiao et al., 2003)

FIGURE 8
The inversion result using TFDM for noisy data with noise-level 0.1%.

FIGURE 9
The inversion result using LSM for noisy data with noise-level 0.1%.

FIGURE 10
The inversion result using PRM for noisy data with noise-level 0.1%.
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Mα f, ue[ ] � ρ2U Af − ue( ) + αΩ f[ ], (13)
where ρU is a measure in the observation space U and Ω[f] is a
non-negative and continuous functional defined in the solution
space F.

Numerical methods for minimizingMα[f, u] are based in general
on three approaches (Wang, 2007; Freeden et al., 2010; Tang and
Wang, 2017; Wang et al., 2020):

(1) Direct methods, i.e., solving an Euler equation: (Mα[f, ue])′ � 0.

(2) Iterative Tikhonov regularization methods: i.e., solving the above
Euler equation iteratively with higher-order convergence rate.

(3) Optimization methods, i.e., solving an optimization problem
Mα[f, ue] → min via gradient or Newton’s method.

We will consider a posterior regularization method with optimal
regularization parameter selection. Details will be given in the
following section.

Solving methodology

Discrete Tikhonov regularization

To simplify the notation, we denote the discrete form of the
operator equation as

Af � ue, (14)
where A is the discretization of the operator A � (1 − dp

μ ∇
2). For the

second-order differential operator in A, we apply the five-point finite
difference scheme

z2fi,j

zx2 ≈
δ2f

δx2 �
1

δx( )2 a1fi,j+a2fi+1,j+a3fi+2,j+a4fi−1,j+a5fi−2,j( ),
z2fi,j

zy2 ≈
δ2f

δy2 �
1

δy( )2 a1fi,j+a2fi,j+1+a3fi,j+2+a4fi,j−1+a5fi,j−2( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

The coefficients ai (i � 1,/, 5) can be obtained through the
Taylor expansion and solving the corresponding equations as:
a1 � −1/12; a2 � 4/3; a3 � −5/2; a4 � 4/3 and a5 � −1/12.

FIGURE 11
The inversion result using TFDM for noisy data with noise-level 1%.

FIGURE 12
The inversion result using LSM for noisy data with noise-level 1%.
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When the light travels through the air, we assume that the
intensity at the detector equals the intensity at the object plane.
This is the situation that happens at the boundary of the projection
data. This condition means, the operator A that we want, does not
change the input data at the boundary, hence it satisfies the
Dirichlet boundary condition. When we obtain the coefficients

ai (i � 1,/, 5) derived from Taylor expansion, the finite difference
matrix is asymmetric. The condition number of the matrix A will
be very large, which leads to unstable solutions of the
corresponding linear systems. To tackle this problem, we need
to find asymmetric matrix which can express the second-order
differential. Considering the boundary condition we have

FIGURE 13
The inversion result using PRM for noisy data with noise-level 1%.

FIGURE 14
Comparison of three methods on their profiles for noisy data with noise-level 1%.
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mentioned above, we can simply adjust the first two rows and the
last two rows of the matrix to achieve our purpose. This new
matrix A does not change the boundary value, even though it
becomes a symmetric matrix. And the linear system with the
symmetric matrix reads as

dp

μ

1

dx( )2

1/12 0 − 1/12 0 0 / 0
0 − 5/4 4/3 − 1/12 0 / 0
−1/12 4/3 − 5/2 4/3 − 1/12 /0

1 1 1 1 1 ..
.

−1/12 4/3 − 5/2 4/3 − 1/12
0 / 0 − 1/12 4/3 − 5/4 0
0 / 0 0 − 1/12 0 1/12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f r1( )
f r2( )
f(...)
f(...)

f end − 1( )
f end( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

b r1( )
b r2( )
b(...)
b(...)

b end − 1( )
b end( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(16)

where dx � δx � δy, ri refers to the i-th position and the dimension
of the matrix A depends on the resolution of the CCD, e.g., 512-by-
512, or 2048-by-2048. In our model, the size of the matrix A is 512-
by-512.

Using this finite difference scheme, we can construct discrete
operatorA, and the problem is transformed to the solution of a system
of linear algebraic Eq. 14.

With the improvement of the spatial resolution, the condition
number of the operatorA becomes large caused by the finite difference
scheme. If we want to find the minimum norm of the residual in l2
space (i.e., least-square method), we need to solve a normal equation
ATAf � ATue. But the normal equation is still ill-conditioned, as the
distribution of its spectra is heavily decentralized. We call the method
of solving the above normal equation as “LSM”.

The regularization method of solving Eq. 14 refers to minimize the
following objective functional,

FIGURE 15
Projection data of the first slice.

FIGURE 16
One slice of the reconstruction results: without phase removal.

FIGURE 17
One slice of the reconstruction results: TFDM.

FIGURE 18
One slice of the reconstruction results: LSM.
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min
f

Jα f, u[ ]: � Af − ue

���� ����2l2 + α f
���� ����2l2 , (17)

where α is a regularization parameter which is larger than 0, then a key
issue is how to select a optimal value of the regularization parameter α
in a posteriori way. We call the method of solving the above

regularized problem as “PRM”. Details about a posterior selection
of the regularization parameter α are outlined in Appendix A.

Numerical experiments

Modeling parameters

In order to verify the validity and advantages of the new
algorithm, we carried out numerical simulations in the case of
parallel-beam CT. The model we used is shown in Figure 2. In
which, the grey values of the phantom represents the β values of the
material, which range from 0 to 20.5 × 10−10. The parameters we
used refer to the shale’s basal components (Wang et al., 2015). The
size of the model is set to be 512 × 512 pixels. The scanning angular
range is [0°, 180°] and the step is 1°. The energy of the X-ray is 8Kev
and the wave length is 154.06pm (Zschornack, 2007). The distance
between the detector and the sample is set to be 30 cm. The ratio
between the phase shift and the absorption is set as1200. Let datatrue
denote the model parameter, datares be its reconstruction. We
define the relative error as follows:

Err � datatrue − datares‖ ‖2
datatrue‖ ‖2 . (18)

The model’s main component is quartz, and the component
percentages are listed as in Table 1.

FIGURE 19
One slice of the reconstruction results: PRM.

FIGURE 20
Comparison of reconstruction results with zoomed parts: (A) without phase removal, (B) TFDM, (C) LSM and (D) PRM.
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Simulation results

The line integral projection is displayed as in Figure 3, where we
discretize the model by decomposing it into 512 × 512 pixels and
assume the model parameter to be constant in each small square. We
use point-by-point scanning instead of the exact mathematical
description of the model because of the fringe effect. For each
straight line L(ri, θ), we add up the length of (L(ri, θ) ∩ dj) times
the absorption value in dj to get the u(ri) (see Figure 3). After this step,
we apply Eq. 8 to obtain the simulation data.

In our experiments, as mentioned before, we compare the three
methods respectively: TFDM—the frequency domain method with
phase retrieval, LSM—the direct method in space domain (without
regularization), and PRM-the proposed regularization method in space
domain.

Noiseless data
First we consider the ideal case, i.e., the data is noiseless. As a

comparison, we first use the FBP method to deal with the projection
without considering phase property. The reconstruction result is
illustrated in Figure 4. The Err will be 227.2 and we will only get
some blurred information at the edge of the structure. Therefore, the
reconstruction result is unsatisfactory. This indicates that the effect
caused by the phase information is inevitable.

We apply the aforementioned three methods to the phase retrieval
problem. The reconstruction results are shown in Figures 5–7, respectively.

The Errs for the three methods are 7.99, 0.018 and 0.018 correspondingly.
The inversion results indicate that for noiseless data, the reconstructions
from the direct method and the regularization method are similar, and are
better than that of the frequency domain method.

Noisy cases
A random noise with Gaussian distribution was added to the

phantom projection. Two levels of noise were used, so that two new
data sets were generated. First, we try to simulate the effect caused by
small noise, where the noise-level equaling 0.1% is added to the true
data. Figures 8–10 display the simulation results using the TFDM,
LSM and PRM with 0.1% Gaussian noise in each case. The Errs for the
three methods are 4.38, 1.51 and 0.0482, correspondingly.

If we add large noise (noise-level = 1%), the results with the
TFDM, LSM and PRM, are shown in Figures 11–13, respectively. The
Errs for the three methods are 10.85, 14.02 and
0.0627 correspondingly. To quantitatively illustrate differences of
the three methods, we draw a profile in Figure 14, which shows
the results calculated by above mentioned three methods, in which the
black line is the model parameter (true value), the red line is the result
calculated by the regularizationmethod (PRM) proposed in this paper,
the green line is the result calculated by the LSM and the blue line is the
result calculated by the TFDM in the frequency domain.

Due to the ill-posedness of the nano-scale CT imaging problem,
the direct solution is not stable (LSM) when noise exists. When the
noise level is 1%, it is even hard to get anything from the result as is

FIGURE 21
Histograms of reconstruction results: (A) without phase removal, (B) TFDM, (C) LSM and (D) PRM.
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shown in Figure 12. Under the same experiment condition, the signal-
noise ratio will be low especially when the sample is in micro size.
Therefore, even if the direct method has a fast computational speed, it
is still hard to image well for the practical data, as noise always exists
for practical measurements.

Even though the results given by the frequency domain method
(TFDM) can show the structure information under some noise levels,
if we observe a particular position where the pore located, the results,
calculated by the frequency domain method, show significant
difference. When the value of the model parameter is high, there
exists serious artifact around them. So the results from the frequency
method may be affected by the values of pixels around them. The
worst thing for the frequency domain method is that its relative error
is much higher than that of the proposed method in space domain.We
also performed some numerical experiments under different
situations (e.g., change the resolution, change the distance between
sample and detector), the method we proposed behaved well.

Practical shale sample results

An organic-rich shale sample is selected for this study. This
sample is a Qiliao shale from Chongqing Shizhu-Qiliao profile
belonging to the five peak group-Longmaxi (LMX) group, China. It
is composed of quartz (71%), feldspar (8%), pyrite (3%), dolomite
(4%), and illite-smectite-chlorite (14%). LMX formation shale at
Shizhu-Qiliao outcrop mainly consisted of dark carbonaceous
shale with pyrite and quartz veins. To carry out the experiment,
the Nano-TXM samples were prepared by an FEI Helios Nano-Lab
600 DualBeam FIB-SEM. Nano-TXM experiments were carried out
at beamline BL01B1, the National Synchrotron Radiation Research

Center (NSRRC) in Hsinchu, Taiwan (Wang et al., 2016). Equipped
with Zernike-phase-contrast capability, the instrument can take
images of light materials such as biological specimens. The spatial
resolution of the microscope is 0.9Δr/m, where Δr is the outermost
width of the zone-plate, with the diffraction order being an odd
number (Song et al., 2007). They provided 2D micrograph and 3D
tomography at spatial resolutions of 50 nm, with a first-order
diffraction of a Fresnel zone plate at an X-ray energy of 8keV;
the image field of view was 15 × 15 μm2 for the first-order
diffraction of the zone plate. The exposure time is 60s for a 2D
image. Meanwhile, the phase term is retrieved by the Zernike’s
phase contrast method. The gold phase ring is positioned at the
back focal plane of the objective zone-plate retards or advances the
phase of the zero-th order diffraction by π/2 resulting a recording
of the phase contrast images at the detector. The angle scanning is
180°, and there are 181 snapshots that are recorded in our system.
These data will be used to perform an inversion.

As an illustration, the projection data of the first slice is shown in
Figure 15. If we do not consider removal of phase effect, the inversion
result is shown in Figure 16. With removal phase effect, we make a
comparison of three methods: TFDM, LSM and PRM. As mentioned
in theoretical simulations, the proposed regularization method (PRM)
performs best. The inversion results using TFDM, LSM and PRM are
shown in Figures 17–19, respectively. It is clear from Figure 19 that the
high resolution result is obtained using PRM. To be focus, we zoomed
the same part of each figure of the reconstruction in Figure 20, it
clearly shows that the proposed regularization method (PRM) yields
the better reconstruction result with high resolution. We also plot the
histograms of the reconstruction results in Figure 21, where each
output grayscale image has 64 bins. Finally, we patch all slices using
PRM together to generate a three-dimensional in Figure 22. It

FIGURE 22
Three-dimensional display of the reconstruction results of PRM.
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illustrates that honeycomb coal-like pyrite and pores are observed
clearly.

Discussion and conclusion

From methodological view of point, our method works for
complex, finely layers systems prevalent in most shales, this is
because, for shale samples, although the absorption of light cannot
be ignored like biological samples, when the object leaves the receiving
screen for a certain distance, the phase factor will cause certain
interference to the projection data, forming an “edge enhancement”
effect, which is necessary to combine the basic theory of phase contrast
imaging to remove the interference of phase factors on the projection.
Therefore, a phase retrieval model based on TIE equation in space
domain is established. During solution of the TIE equation, since the
discretization of differential operators leads to the instability of the
problem, the regularization technique is employed, and a posterior
regularization method in space domain (PRM) is proposed for solving
the phase retrieval problem, meanwhile selection of an optimal
posterior regularization parameter is adopted, which accelerates the
convergence speed of the iterations. Due to an optimal regularization
parameter is achieved, the solution reaches optimal. Comparison with
the standard method in frequency domain (TFDM) and the direct
method in space domain (LSM) shows that the regularization method
yields an accurate reconstruction and is robust to noise. Though this
method is theoretically sound, there is still a restriction: we assume
that the ratio between the real and imaginary parts of the refraction
coefficient is homogeneous which may not be practical. So when we
want to deal with the real data, we should choose the suitable energy
and ratio (between values p and β) based on some priori information
like the absorption edge of the target compositions. In addition, the
above theoretical model achieves the phase retrieval in 2D, which
means that we assume the model does not change at the y direction in
Figure 1. So when we deal with the actual data, we may apply finite
difference equations in two dimensions, which leaves for future work.

We remark that other imaging technique such as scanning
electron microscopy equipped with a focused ion beam (FIB-SEM)
can be used for nano-scale imaging of pore structures of shale. Though
the resolution is high, it belongs to the destructive method. We believe
that a combination of FIB-SEM (supplying high quality actual pore
volume fraction) with nano-scale CT imaging will be a good choice for
large amount of data analysis, e.g., employing the artificial intelligence
technique, which will be also an interesting topic.
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Appendix A

A posterior selection of the regularization parameter.
The minimization problem (17) is equivalent to solving the linear

equations:

ATA + αI( )f � ATue, (A1)
where α> 0. Clearly fα

e � (αI + ATA)−1ATue can be an approximation
of the exact solutionfT � A+u for a particular choice of the regularization
parameter α, where A+ denotes the Moore-Penrose generalized inverse.
Usually there are two ways to choose the regularization parameter
(Tikhonov and Arsenin, 1977; Wang, 2007):

(1) A prior way: it requires knowledge of some source condition about
the solution, e.g., fT � A+u ∈ Range(ATA)] for some ]> 0.
Clearly this is hard to satisfy.

(2) A posterior way: we can choose an optimal parameter αopt to
balance the trade-off between the least squares and the regularized
term. The main process will be described below.

We suppose the noise level e is bounded and satisfies
‖u − ue‖≤ e≤ ‖ue‖. Let f(α) � fα

e , then the regularization
parameter α satisfies the non-linear equation (Wang and Xiao,
2001; Xiao et al., 2003; Fan et al., 2006):

φ α( ) � Af α( ) − ue

���� ����2 − e2 � 0. (A2)

Since φ(α) is an infinitely differentiable function and is monotone
increasing, there must be a root such that the above non-linear
equation holds. To accelerate convergence of finding a root, we
consider the Newton’s root-finding method, which can be written as

αnew � α − φ α( )
φ′ α( ). (A3)

The derivative of the non-linear function φ(α) can be calculated
through

φ′ α( ) � −2α d
dα

f α( )[ ], f α( )( ), (A4)

where (, ., ) stands for the inner product.
To solve for the parameter α, we need to solve the following linear

equations:

A*A + αI( )f α( ) � A*ue,
A*A + αI( )f′ α( ) � −f α( ).{ (A5)

Thus we use the Newton iterative formula for the parameter α:

αk+1 � αk − Af αk( ) − ue

���� ����2 − e2

−2αk f′ αk( ), f αk( )( ). (A6)

Having specified the system matrix A and the data ue, we can
outline the implementation of the algorithm as follows:

(1) Input initial values of the regularization parameter α0, error-level
e, tolerance ε> 0, maximum iteration number kmax and the
maximum scanning angle θ max; Input the matrix A and the
data ue,θ ; Set θ: � 0 and k: � 0;

(2) Solve the Eq. (A5) using the Gaussian eliminations;
(3) Compute the function values φ(αk) and φ′(αk):

φ αk( ) � Af αk( ) − ue,θ , Af αk( ) − ue,θ( ) − e2,
φ′ αk( ) � −2αk f′ αk( ), f αk( )( );{ (A7)

(4) Compute the parameter αk+1:

αk+1 � αk − φ αk( )
φ′ αk( ); (A8)

(5) If ‖αk+1 − αk‖< ε or k � kmax, GOTO Step 6; Otherwise, let
k: � k + 1, and GOTO Step 2;

(6) Output f*
θ � fαk. If θ � θ max, stop; Otherwise, θ: � θ + 1 and

GOTO Step 2.
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