AUTHOR=Gutiérrez Xochilt , Bobrowski Nicole , Rüdiger Julian , Liotta Marcello , Geil Bastien , Hoffmann Thorsten , Gutiérrez Eduardo , Dinger Florian , Montalvo Francisco , Villalobos Mirian , Escobar Demetrio TITLE=Geochemical characterization of volcanic gas emissions at Santa Ana and San Miguel volcanoes, El Salvador, using remote-sensing and in situ measurements JOURNAL=Frontiers in Earth Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2023.1049670 DOI=10.3389/feart.2023.1049670 ISSN=2296-6463 ABSTRACT=
Volcanic degassing provides important information for the assessment of volcanic hazards. Santa Ana and San Miguel are open vent volcanoes along the Central American Volcanic Arc–CAVA, where the magmatism, basaltic to dacitic, is related to the near-orthogonal convergence of the Caribbean Plate and the subducting Cocos Plate. Both volcanoes are the most active ones in El Salvador with recent eruptive events in October 2005 (Santa Ana) and December 2013 (San Miguel), but still not much data on gas composition and emission are available today. At each volcano, SO2 emissions are regularly monitored using ground-based scanning Differential Optical Absorption Spectrometer (Scan-DOAS) instruments that are part of the global “Network for Observation of Volcanic and Atmospheric Change” (NOVAC). We used the data series from these NOVAC stations in order to retrieve SO2 and minimum bromine emissions, which can be retrieved from the same spectral data for the period 2006–2020 at Santa Ana and 2008–2019 at San Miguel. However, BrO was not detected above the detection limit. SO2 emission ranged from 10 to 7,760 t/d, and from 10 to 5,870 t/d for Santa Ana and San Miguel, respectively. In addition, the SO2 emissions are complemented with