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Automatic seismic fault identification for seismic data is essential for oil and gas
resource exploration. The traditional manual method cannot accommodate the
needs of processing massive seismic data. With the development of artificial
intelligence technology, deep learning techniques based on pattern recognition
have become a popular research area for seismic fault identification. Despite the
progress made with U-shaped neural networks (Unet), they still fall short in
meeting the stringent requirements of fault prediction in complex structures.
We propose a novel approach by combining a standard Unet with a transformer
Unet to create a parallel dual Unet model, called Dual Unet with Transformer. To
improve the accuracy of fault prediction, we compare six loss functions (including
Binary Cross Entropy loss, Dice coefficient loss, Tversky loss, Local Tversky loss,
Multi-scale Structural Similarity and Intersection over Union loss) using synthetic
data, based on three evolution metrics involving Dice coefficient, Sensitivity and
Specificity, find that the binary cross entropy loss function is the most robust one.
An example comparing the prediction performance of different Unet models on
synthetic data demonstrates the superior performance of our Dual Unet model,
verifying the practical application value. To further validate the practical feasibility
of our proposedmethod, we use real seismic data with a complex fault system and
find that our proposed model is more accurate in predicting the fault system
compared to well-developed Unet models such as the classical Unet and classical
coherence cube algorithm, without transfer learning. This confirms the potential
for wide-scale application of our proposed model.
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1 Introduction

Seismic fault detection is a crucial step of oil and gas reservoir exploration because faults
often serve as pathways for hydrocarbon migration. Furthermore, faults have geological
significance as they indicate changes in stress and provide valuable information for drilling.
Fault identification technology is constantly developing with the development of seismic
exploration technology. In the past, the discontinuity or edge of seismic images is considered
as a sign of a fault. Therefore, many fault detection methods are proposed to enhance those
discontinuities using some seismic attributes including the semblance, coherence and
curvature (Marfurt et al., 1998; Marfurt et al., 1999; Roberts, 2001). To pursue better
performance, more improved approaches are proposed including the ant tracking and
attributes fusedmethods (Pedersen et al., 2002; Di et al., 2019; Yuan et al., 2020; Acuña-Uribe
et al., 2021; Yuan et al., 2022), but the results still rely heavily on the experience of
interpreters and the quality of the seismic attributes used. Moreover, the presence of noise in
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seismic images can negatively impact the accuracy of fault detection.
Therefore, it is imperative to develop an automatic fault
identification method.

With the rapid development of deep learning, especially the deep
convolution neural networks (CNN), more and more attention has
been paid to processing and interpreting seismic data, such as
velocity inversion, seismic salt interpretation and noise
suppression (Shi et al., 2019; Wu and McMechan, 2019; You
et al., 2020). The powerful capability of deep CNNs to establish
non-linear relationships between inputs and targets has made
automatic fault identification based on CNN models a popular
area of application. Seismic fault detection is essentially a
classification task, with labels of “fault” and “non-fault.” Over the
years, researchers have developed a variety of neural network
architectures to tackle this task. In the early stages, support
vector machine (SVM) and multi-layer perceptron (MLP)
methods were applied to deal with this task (Di et al., 2017;
2018). In recent years, more end-to-end fault-detection deep
CNN models have been developed (Xiong et al., 2018). The fault
detection task is regarded as semantic segmentation of images, and
the standard Unet architecture including encoder and decoder is
introduced (Li et al., 2019; Wu et al., 2019). Because of the
superiority of Unet models, its many variants have been
successfully applied in seismic fault detection, such as a nested
residual Unet, Unet 3plus and wavelet transform based CNN (Yang
et al., 2020; Gao et al., 2022; Shen et al., 2022).

The main feature of a CNN model is that it shares receptive
fields by using filters with limited size. Because of that, it is difficult
for CNN-based methods to learn explicit global and long-term
semantic information. In cases where the fault system is complex,

the positive (fault) and negative (non-fault) labels in seismic images
are highly unbalanced, and the CNN model may suffer from an
unsatisfactory result, which seems to be unable to fully meet the
strict requirements of seismic fault detection. Inspired by the
significant success of the transformer with attention mechanism
in the field of Natural Language Processing (NLP), a vision
transformer (ViT) module with an attention mechanism was
introduced (Dosovitskiy et al., 2021). However, transformers were
originally designed to process one-dimensional sequences and focus
on building global relationships between inputs and targets, which
results in a lack of localization information, which coincidentally is
the advantage of a CNN model. Integrating the strengths of both
models is becoming a new trend, leading to the development of
combined CNN and transformer architectures, such as the
Transformer-based Unet (TransUnet) and Shifted Windows
Transformer-based Unet (Swin TransUnet) (Cao et al., 2021;
Chen et al., 2021). Although these two hybrid models have been
successfully applied to medical image segmentation, there are few
reports on their use in seismic fault prediction. Using the combined
CNN-Transformer model to develop a new end-to-end hybrid
structure for seismic fault prediction is both promising and
significant.

In our manuscript, we begin by presenting our newly developed
hybrid CNN-Transformer architecture. Next, we investigate the loss
function used in the image segmentation and compare their
performances. Afterwards, we detailed compare several well-
established CNN architectures using synthetic data and evaluate
their metrics. Lastly, we apply the developed CNN models to
perform seismic fault prediction on real data and summarize
our work.

FIGURE 1
Architectures of (A) classical Unet, (B) TransUnet, (C) SwinUnet.
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2 Methodology

2.1 Architecture of Unet model

In our manuscript, for the task of semantic segmentation,
various variants of the standard Unet model that incorporate
transformers are gaining increasing attention. Two of these well-
developed models are the TransUnet and Swin TransUnet. The
TransUnet model integrates multiple transformer blocks into the
bottom layer of the standard Unet model, while the Swin TransUnet
replaces the convolutional blocks in the encoder-decoder
components with transformer blocks. TransUnet combines the
convolution blocks with transformers, showing more fused
features; Swin TransUnet illustrates a purely U-shaped
Transformer architecture. Further research is needed to
determine which architecture produces better results in seismic
fault prediction. The architectures of Unet models are shown in
Figure 1.

In order to extend the applications of CNN models, a
transformer with attention mechanism embedded within a CNN
is proposed and serves as a powerful tool in computer vision. In the
later examples of synthetical data, we can observe that predicted
results of the traditional Unet model are more continuity but lack
detailed information whereas transformer assistant Unet models are
short of continuity in seismic fault prediction. Due to the use of
shared convolution kernels, conventional convolutional neural
network models such as Unet are more suitable for learning local
features of input images but have limited ability to capture global
features. The Transformer models show a good performance of
global learning, but its description of local features of images is not
ideal. To take advantage of the strengths of both models, we propose
a new hybrid architecture called the Dual Unet with Transformer, as
illustrated in Figure 2.

2.2 Loss function

In deep learning, the loss function plays a crucial role. By
minimizing the loss function, the model converges and reduces
the predictive error of the CNN model. Therefore, different loss
functions have a significant impact on the model. In the case
where the parameters of the deep neural network architecture
have been determined, there is a need for a deeper comparative
study on how to select the loss function so that the deep neural
network converges to an optimal solution. In the seismic fault
detection, the positive (faults) and negative (no-faults) labels are
extremely unbalanced. The selection of the loss function is crucial
for prediction accuracy as it has advantages in handling label
imbalances. In our manuscript, we discuss a loss function that is
introduced. As seismic fault detection is a binary classification,
the loss function we discuss belongs to the binary segmentation
problem.

Binary Cross Entropy loss: Binary cross entropy is a classic and
widely used loss function in binary classification, but for image
segmentation, it is defined to predict a binary label at a pixel level. Its
function is defined as

lossBCE � − ylog~y + 1 − ~y( )log 1 − ~y( )[ ] (1)

Where y and ~y are the ground truth and predicted labels,
respectively.

Dice coefficient loss: Dice coefficient is a widely used
measurement in computer vision, which is applied to calculate
the similarity between two images. It has also been suggested for
use as a loss function (Milletari et al., 2016). The dice coefficient loss
between labels and outputs can be written as

lossDC � 1 − 2y~y
y + ~y

(2)

FIGURE 2
Architecture of dual Unet with transformer.
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Tversky loss: The loss function of dice coefficient keeps an
equal weigh between precision and recall. However, it is difficult
to train a network for highly imbalanced data by using the dice
coefficient loss function, in which predicting small scaled seismic
faults is crucial. To improve performance, the Tversky loss
function (Salehi et al., 2017) based on the Tversky index is
defined as

lossT � 1 − y~y

y~y + α 1 − y( )~y + βy 1 − ~y( ) (3)

Where α and β are coefficients. Noted that when α = β = 0.5, the
Tversky loss function is degenerated into the dice coefficient loss
function.

Local Tversky loss: Based on the Tversky index, to balance
precision and recall ratios in the small regions-of-interest and
make the loss function more sensitive to the small regions of
interest, a local Tversky loss (Abraham and Khan, 2019)
is proposed with a parameter γ, and its loss function is
defined as

losslocal T � lossT( )
1
/γ (4)

Where γ is in the range of 1–3.
Multi-scale Structural Similarity (MS-SSIM) loss: The

structural similarity index (SSIM) is used to measure image
quality evaluation between a processed image and a reference
image. However, the SSIM index is a single-scale assessment. To
calculate image quality assessment more flexibly, a multi-scale
structural similarity (MS-SSIM) index is proposed (Wang et al.,
2003), it can be computed by combining the evaluation at
different scales using

lossms−ssim � 1 − l y, ~y( )[ ]αM∏
M

j�1
c y, ~y( )[ ]βj s y, ~y( )[ ]γj (5)

Where l(y, ~y) � 2μxμy+C1

μ2x+μ2y+C1
, c(y, ~y) � 2σxσy+C2

σ2x+σ2y+C2
and

s(y, ~y) � σxy+C3

σxσy+C3
, C1 � (K1L)2, C2 � (K2L)2 and C3 � C2

2 . In

generally, L =255 and K1 ≪ 1 , K2 ≪ 1.
Intersection over Union (IoU) loss: The IoU index (Rahman and

Wang, 2016) is performed to measure a standard similarity between
the predicted and ground truth images for a segment issue, this loss
function is generally used in object detection and its definition is
written as

lossIoU � 1 − y ∩~y
∣∣∣∣

∣∣∣∣
y ∪~y
∣∣∣∣

∣∣∣∣
(6)

3 Numerical experiments

3.1 Performance of loss functions on
synthetic data

The selection of loss functions in seismic fault detection is a less
concerned topic. In this example, we compare the performance of
different loss functions using synthetic data, which lays a solid
foundation for the following works. We use synthetic 2D seismic

images with faults and their corresponding fault labels as training
samples to train a standard Unet (Wu et al., 2019). The synthetic 2D
seismic images and their corresponding labels are shown in Figure 3.
In the stage of training a neural network, we employ a total of
5,120 samples, in which 80% of them are used as training samples
and the remaining 20% are used as validation datasets while an
additional 256 samples are applied to test the accuracy of neural
networks. In order to quantitatively evaluate the performance of
different loss functions, we use three.

Evaluation indexes, including dice coefficient, sensitivity and
specificity, in evaluating the prediction results of CNN models.
Dice coefficient is used to account for overlapping pixels between
the predicted and ground-truth images while sensitivity and
specificity mirror the ratios of true positive and true negative,
respectively. These metrics are calculated by using the following
equations

DC � 2TP
2TP + FP + FN

,

sensitivity � TP

TP + FN

specificity � TN

TN + FP

(7)

Where TP, FP FN and TN represent the number of true positive,
false positive, false negative and true negative, respectively.

During the training of the neural network, we set the number of
epochs to 30 and use the same optimization parameters, including
Adam algorithm and learning rate of 0.0001. The loss and accuracy
curves using different loss functions are drawn in Figure 4.
Additionally, we also compile statistics for these three metrics
using different loss functions, which are listed in Table 1.
Examining the loss and accuracy curves, it can be seen that the
binary cross entropy loss function achieves the lowest error and the
highest accuracy. In the prediction results, we obtain a best dice
coefficient of 0.9101 by using the binary cross entropy loss, and IoU
loss also gets a very close value, a dice coefficient of 0.9050. As for
sensitivity, binary cross entropy loss also surpasses other loss
functions and IoU loss follows it closely. Except for MS-SSIM
loss function, the specificity of most loss functions is almost
equal. The comparison of metrics mutually confirms the accuracy
curves using different loss functions (Figure 4B).

In this test, we can conclude that it seems that a single loss
function is very difficult to get the best scores in all indexes. In the
seismic fault detection task, based on the seismic fault labels, it can
be observed that the positive and negative labels seem to be
imbalanced, but the binary cross entropy function outperforms
other loss functions in most metrics and it is probably the most
robust one. According to manuscript of Jadon (2020), other loss
functions may work better in the case of highly imbalanced data sets.
Therefore, our further work is based on the binary-cross entropy loss
function.

3.2 Fault prediction on synthetic data using
different architectures

After determining the performances of different loss functions,
we carry out an example to compare the performance of different

Frontiers in Earth Science frontiersin.org04

Wang et al. 10.3389/feart.2023.1047626

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1047626


Unet architectures, including the standard Unet, transUnet,
swinTrans Unet and dual Unet with transformer. In the neural
network training stage, we use the same training datasets in the

examples of comparing loss function. Figure 5 shows the accuracy of
the validated data sets using different Unet models. By observing the
accuracy curves, it can be seen that the predicted accuracy of the
proposed dual Unet with transformer model is superior to the other
Unet models. For a fair comparison, we pick up some predicted fault
images from the test data set by using different Unet models, which
are shown in Figure 6. By comparing the results, we notice that the
predicted faults from our proposed models exhibit more accurate
information than that of other Unet models. In the experiment, the
faults predicted by the traditional Unet model have greater
discreteness and less continuity, and the transUnet seems to
produce more artifacts. Our proposed dual Unet model combines
characteristics and properties of the traditional Unet model and the
transUnet model. This example illustrates the superiority of our
proposed method and provides a foundation for its application in
practical data.

It is interesting to note that the purely swin transformer U-type
model seems to produce an imperfect prediction. The predicted

FIGURE 3
Synthetic 2D seismic images and their corresponding labels, (A,C) are the seismic patch, (B,D) are their corresponding fault labels.

A B

FIGURE 4
Loss (A) and accuracy (B) curves using different loss functions, the red, blue, back, green, yellow and cyan lines present dice loss, Tversky, local
Tverskry, MS-SSIM, IoU and binary cross entropy loss functions.

TABLE 1 Evaluation metrics by using different loss functions.

Loss function Metrics

DC Sensitivity Specificity

Binary Cross-Entropy 0.9101 0.8592 0.9616

Dice 0.8688 0.7820 0.9696

Tversky 0.8887 0.8161 0.9687

Local Tversky 0.8730 0.7901 0.9673

MS SSIM 0.8953 0.8375 0.9532

IoU 0.9050 0.8473 0.9652
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results of Swin TramsUnet model have an obvious gap from those of
other models. The emphasis on global feature extraction makes it
difficult to consider the local continuity of seismic events in the
linear mapping of swin transformer blocks, and the precision curve

of Swin TransUnet in processing validation data sets also proves this
view. At present, we doubt that whether swinTrans Unet is able to
achieve a better performance than other methods as described in the
medical image segmentation, for the seismic fault detection task
(Cao et al., 2021). Fortunately, TransUnet seems to hold a good
accuracy compared with the standard Unet. Because of that, we
prefer to merge TransUnet and the standard Unet, to build a merged
Unet architecture, the predicted accuracy and fault images verify our
judgement.

4 Application of real data

In the actual seismic data fault prediction, our work selects a
shallow sea area in the southwest of Bohai Bay where the faults
are relatively well developed. In terms of regional structure, the
study area is located in the east of the low uplift in the Cheng Bei,
at the junction of the Bohai Depression and Jiyang Depression.
To the south is the Zhendong Depression, to the north is the
Bohai Depression, and to the east and west are the Chengbei low
uplift and the Bonan low uplift, respectively. The study area is
rich in hidden mountains, which have experienced the evolution
stages of ancient platform development, Triassic platform
disintegration, Yanshan rapid deformation, ancient
Quaternary faulting, and recent Quaternary depression. The

FIGURE 5
Accuracy curves of the validation date sets recorded by using
different Unet models, the black, blue and green lines indicate
accuracy of swinUnet, standard Unet and transUnet while the red
dashed line is the accuracy of our proposed dual Unet with
transformer.

FIGURE 6
Comparison of predicted faults by using different Unet models in the test data set: (A) standard Unet; (B) TransUnet; (C) Swin TransUnet; (D) our
proposed dual Unet with Transformer; (E) ground truth label.
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internal structure of the hidden mountain belt is quite complex,
with a large number of folds and fault structures, as shown in
Figure 7. Therefore, carrying out the characterization and
description of faults in this study area is of great significance

for understanding the evolution of the hidden mountains and
predicting oil and gas resources.

After the neural network training of synthetic data is completed,
we try to use our pretrained Unet models to perform seismic fault

FIGURE 7
Geological background of the research area.

FIGURE 8
Original seismic section with manual interpreted faults.
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prediction on the real data. The real seismic section is painted in
Figure 8. In Figure 8, some faults are easy to notice directly, which
have been marked by red lines. For a seismic fault detection task, we
prefer applying the pretrained Unet models to predict the seismic
faults straightforwardly without transfer learning, which is a tough
challenge. The predicted probability of faults overlapping with the
seismic section is shown in Figure 8. In the predicted faults, for some
large-scale faults such as fault F1, three Unet models generate similar
results. For the case of fault F3, the TransUnet model can only
predict it intermittently or hardly. Maybe inherited the ability of
standard Unet model, our proposed dual Unet with transformer can
produce clearer fault lines than the standard Unet and TransUnet
models, especially fault F4 at 1.2–1.4 s. To furtherly compare the
performance of fault prediction, we enlarge on the red dashed box
(F4) in Figure 9 and display it in Figure 10, it is obvious to see that
our proposed model yields a better quality of fault prediction than
other two methods. Note that because the Swin TransUnet model
has not obtained ideal results in the synthetic example, hence we do
not include it in the practical application. In order to compare the
application effects of neural network methods and traditional fault
identification methods in practical examples, this article used the
classical coherence cube algorithm to process the actual example
(Bahorich and Farmer, 1995). As shown in Figures 8, 9, the neural
network method provides a clearer and more continuous
characterization of the fault compared to conventional methods.
This also demonstrates the necessity and superiority of conducting
deep research on neural network methods.

It is worth noting that the seismic fault prediction of actual
seismic data using our proposed model is not performed using

transfer learning. The predicted results supply hard evidence to
prove that our proposed model has a better generalization than the
standard Unet and TransUnet models, and it is of great significance
for seismic fault prediction of practical data.

5 Discussion

Our target is to emphasize and raise the significance of loss
function in deep learning. Loss functions are crucial in
determining the performance of a model. However, for complex
objectives like segmentation, it’s not feasible to choose a single,
universal loss function. The optimal loss function depends mostly
on the dataset properties used for training, such as distribution,
skewness, and boundaries. It’s worth noting that none of the
existing loss functions are universally superior in all use cases.
Specifically, the binary-cross entropy function performs well in our
cases, and we do not think this is a conclusion that applies to all
deep learning problems. It may perform well for fault detection
task, but for different deep learning tasks, other loss functions may
be more effective. In our opinion, specific deep learning tasks need
to be analyzed in detail. For example, for deep learning tasks that
involve noise suppression in seismic data, which loss function
enables better performance of the deep neural network model, and
relevant numerical experiments and comparative studies need to
be conducted. For medical image semantic segmentation tasks,
Jadon (2020) has made a detailed comparison of the performance
of different loss functions, which has a different conclusion with
fault detection task.

FIGURE 9
Predicted faults by using different neural networks: (A) classical coherence cube algorithm; (B) conventional Unet; (C) TransUnet; (D) our proposed
dual Unet with transformer.
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For the interpretation of 3D seismic data, due to the large
amount of data, manual interpretation is difficult to efficiently and
quickly complete the relevant interpretation tasks. Fully automatic
or semi-automatic computer interpretation solutions have
received increasing attention and research. In theory, 3D
seismic data can be regarded as an unfolding form of multiple
2D data. For seismic data interpretation, we believe that the
successful application of 2D seismic data is the basis for the
application of 3D seismic data. Therefore, for fault recognition
work, the feasibility and effectiveness of the proposed method in
this article were first verified on 2D seismic data. Of course, the
development of 3D Transformer-based fracture recognition
technology is also one of our future research directions.
Currently, in the research of 3D medical image semantic
segmentation, some scholars have developed 3D Transformer
models, which can provide references for our future research on
3D Transformer-based fault detection (Hatamizadeh et al., 2022;
Liang et al., 2022). However, we need to develop a 3D Transformer

model suitable for fault recognition in seismic data according to
the characteristics of seismic data.

6 Conclusion

Aiming at the problem of seismic fault identification, after
analyzing the shortcomings of the convolution block and the
transformer block, we attempt to integrate a standard Unet
model with a TransUnet model, and develop a dual Unet with
transformer. In order to discuss which kinds of loss function can
make CNN models converges quickly and produce a best
performance, we carried out a numerical example to compare the
performance of six loss functions and find that the binary cross
entropy loss function has a superior performance in the task of
seismic fault detection. In addition, a synthetic data is employed to
compare performaces of different Architectures, the predicted fault
sections show that our proposed transformer assisted dual Unet

FIGURE 10
Enlarged images of the red dashed box in Figure 8: (A) classical coherence cube algorithm; (B) conventional Unet; (C) TransUnet; (D) our proposed
dual Unet with transformer.
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depicts the fault system clearer than that of the standard Unet,
TransUnet, Swin TransUnet and classical coherence cube algorithm.
Based on that, through seismic fault prediction and qualitative
comparison, predicted results demonstrate that our proposed
dual Unet with transformer model obtains a more accurate and
convergent fault prediction than that of the standard Unet,
TransUnet and Swin transUnet models in a synthetical case. In
the application of real data, our proposed model generates a higher
quality fault predicted image, compared with other Unet models,
proving its practical application value.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

JY: The conception and design of the study, manuscript editing;
ZW: Manuscript writing and revising, processing of data; WL:
manuscript reviewing and editing; XW: Provide the real seismic
data and some suggestion.

Funding

This research is supported by National Natural Science
Foundation of China (Grant Nos 42050104, 42030812 and
42004103).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer SY declared a shared affiliation with the author
ZW to the handling editor at time of review.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abraham, N., and Khan, N. M. (2019). “A novel focal Tversky loss function with
improved attention U-net for lesion segmentation,” in 2019 IEEE 16th international
symposium on biomedical imaging (ISBI 2019). 683–687.

Acuña-Uribe, M., Pico-Forero, M. C., Goyes-Peñafiel, P., and Mateus, D. (2021).
Enhanced ant tracking: Using a multispectral seismic attribute workflow to
improve 3D fault detection. Lead. Edge 40 (7), 502–512. doi:10.1190/
tle40070502.1

Bahorich, M., and Farmer, S. (1995). 3-D seismic discontinuity for faults and
stratigraphic features: The coherence cube. Lead. edge 14 (10), 1053–1058. doi:10.
1190/1.1437077

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., et al. (2021). Swin-
Unet: Unet-like pure transformer for medical image segmentation. ArXiv, abs/
2105.05537.

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., et al. (2021). TransUNet:
Transformers make strong encoders for medical image segmentation. ArXiv, abs/
2102.04306.

Di, H., Shafiq, M. A., Wang, Z., and Alregib, G. (2019). Improving seismic fault
detection by super-attribute-based classification. Interpretation 7 (3), SE251–SE267.

Di, H., Shafiq, M., and Alregib, G. (2018). “Patch-level MLP classification for
improved fault detection,” in SEG technical program expanded abstracts 2018.

Di, H., Shafiq, M., and Alregib, G. (2017). “Seismic-fault detection based on
multiattribute support vector machine analysis,” in Seg technical program expanded
abstracts.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2021).An image is worth 16x16 words: Transformers for image recognition at scale.
ArXiv, abs/2010.11929.

Gao, K., Huang, L., and Zheng, Y. (2022). fault detection on seismic structural images
using a nested residual U-net. IEEE Trans. Geoscience Remote Sens. 60, 1–15. doi:10.
1109/tgrs.2021.3073840

Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al.
(2022). “Unetr: Transformers for 3d medical image segmentation,” in Proceedings of the
IEEE/CVF winter conference on applications of computer vision, 574–584.

Jadon, S. (2020). “A survey of loss functions for semantic segmentation,” in 2020 IEEE
conference on computational intelligence in bioinformatics and computational biology
(CIBCB), 1–7.

Li, S., Yang, C., Sun, H., and Zhang, H. (2019). Seismic fault detection using an
encoder–decoder convolutional neural network with a small training set. J. Geophys.
Eng. 16 (1), 175–189. doi:10.1093/jge/gxy015

Liang, J., Yang, C., Zhong, J., and Ye, X. (2022). “BTSwin-unet: 3D U-shaped
symmetrical swin transformer-based network for brain tumor segmentation with
self-supervised pre-training,” in Neural processing letters, 1–19. doi:10.1007/s11063-
022-10919-1

Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S. (1998). 3-D seismic
attributes using a semblance-based coherency algorithm. Geophysics 63 (4), 1150–1165.
doi:10.1190/1.1444415

Marfurt, K. J., Sudhaker, V., Gersztenkorn, A., Crawford, K. D., and Nissen, S. E.
(1999). Coherency calculations in the presence of structural dip. Geophysics 64 (1),
104–111. doi:10.1190/1.1444508

Milletari, F., Navab, N., and Ahmadi, S-A. (2016). “V-Net: Fully convolutional neural
networks for volumetric medical image segmentation,” in 2016 fourth international
conference on 3D vision (3DV), 565–571.

Pedersen, S. I., Skov, T., Randen, T., and Sønneland, L. (2002). “Automatic Fault
extraction using artificial ants,” in Seg technical program expanded abstracts, 107–116.

Rahman, M. A., and Wang, Y. (2016). Optimizing intersection-over-union in deep
neural networks for image segmentation, 234–244.

Roberts, A. (2001). Curvature attributes and their application to 3D interpreted
horizons. First Break 19, 85–100. doi:10.1046/j.0263-5046.2001.00142.x

Salehi, S. S. M., Erdoğmuş, D., and Gholipour, A. (2017). Tversky loss function for
image segmentation using 3D fully convolutional deep networks. ArXiv, abs/
1706.05721.

Shen, S., Li, H., Chen, W., Wang, X., and Huang, B. (2022). Seismic Fault
interpretation using 3-D scattering wavelet transform CNN. IEEE Geoscience
Remote Sens. Lett. 19, 1–5. doi:10.1109/lgrs.2022.3183495

Shi, Y., Wu, X., and Fomel, S. (2019). SaltSeg: Automatic 3D salt segmentation using a
deep convolutional neural network. Interpretation 7 (3), SE113–SE122. doi:10.1190/int-
2018-0235.1

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multiscale structural similarity for image
quality assessment. The Thrity-Seventh Asilomar Conference on Signals. Syst. Comput. 2,
1398–1402.

Frontiers in Earth Science frontiersin.org10

Wang et al. 10.3389/feart.2023.1047626

https://doi.org/10.1190/tle40070502.1
https://doi.org/10.1190/tle40070502.1
https://doi.org/10.1190/1.1437077
https://doi.org/10.1190/1.1437077
https://doi.org/10.1109/tgrs.2021.3073840
https://doi.org/10.1109/tgrs.2021.3073840
https://doi.org/10.1093/jge/gxy015
https://doi.org/10.1007/s11063-022-10919-1
https://doi.org/10.1007/s11063-022-10919-1
https://doi.org/10.1190/1.1444415
https://doi.org/10.1190/1.1444508
https://doi.org/10.1046/j.0263-5046.2001.00142.x
https://doi.org/10.1109/lgrs.2022.3183495
https://doi.org/10.1190/int-2018-0235.1
https://doi.org/10.1190/int-2018-0235.1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1047626


Wu, G. Y., and Mcmechan, G. A. (2019). Parametric convolutional neural network-
domain full-waveform inversion. Geophysics.

Wu, X., Liang, L., Shi, Y., and Fomel, S. (2019). FaultSeg3D: Using synthetic data
sets to train an end-to-end convolutional neural network for 3D seismic fault
segmentation.

Xiong, W., Ji, X., Ma, Y., Wang, Y., Albinhassan, N. M., Ali, M. N., et al. (2018).
Seismic fault detection with convolutional neural network. Geophysics 83 (5),
O97–O103. doi:10.1190/geo2017-0666.1

Yang, D., Cai, Y., Hu, G., Yao, X., and Zou, W. (2020). “Seismic fault detection
based on 3D Unet++ model,” in Seg technical program expanded abstracts.

You, J., Xue, Y-J., Cao, J., and Li, C. (2020). “Attenuation of seismic swell noise using
convolutional neural networks in frequency domain and transfer learning,” in
Interpretation, 1–77.

Yuan, S., Jiao, X., Luo, Y., Sang, W., and Wang, S. (2022). Double-scale
supervised inversion with a data-driven forward model for low-frequency
impedance recovery. Geophysics 87 (2), R165–R181. doi:10.1190/geo2020-
0421.1

Yuan, S., Wang, J., Liu, T., Xie, T., andWang, S. (2020). 6D phase-difference attributes
for wide-azimuth seismic data interpretation. Geophysics 85 (6), IM37–IM49. doi:10.
1190/geo2019-0431.1

Frontiers in Earth Science frontiersin.org11

Wang et al. 10.3389/feart.2023.1047626

https://doi.org/10.1190/geo2017-0666.1
https://doi.org/10.1190/geo2020-0421.1
https://doi.org/10.1190/geo2020-0421.1
https://doi.org/10.1190/geo2019-0431.1
https://doi.org/10.1190/geo2019-0431.1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1047626

	Transformer assisted dual U-net for seismic fault detection
	1 Introduction
	2 Methodology
	2.1 Architecture of Unet model
	2.2 Loss function

	3 Numerical experiments
	3.1 Performance of loss functions on synthetic data
	3.2 Fault prediction on synthetic data using different architectures

	4 Application of real data
	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


