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Seismic quiescence or enhanced phenomena are anomalous changes against the
background of normal seismic activity. Preliminary studies have found that
earthquakes with a magnitude of ML≥4 often occur at a low occurrence
frequency before giant earthquakes in Tibet. This study analyzed the catalog of
ML≥4 earthquakes from 2008 to 2022 and examined the anomalous occurrence of
ML≥4 earthquakes preceding most ML≥6 earthquakes. When the monthly
occurrence frequency of ML≥4 earthquakes was lower than 4 times over six
consecutive months, the subsequent occurrence of ML≥6 earthquakes was highly
likely as evidenced by observations. The anomalous characteristics of low-intensity
activities were analyzed as a medium- and short-term forecasting index for large
earthquakes in the Tibetan area.
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1 Introduction

Statistical analysis of quiescent seismic activity anomalies constitutes one of the methods
used in seismological forecasting (e.g., Mogi, 1969; Huang et al., 2001; Wyss et al., 2004; Gentili
et al., 2017; Gentili et al., 2019; Shi, 2020; Liu, 2021). The seismic quiescence area reflects the
accumulation of regional strain during a certain period and thus is meaningful (Sobolev et al.,
2002; Zöller et al., 2002; Chen et al., 2005; Wu and Chiao, 2006; Huang, 2008; Qin et al., 2015;
Wen et al., 2016). Obvious moderate earthquake quiescence before many large earthquakes has
been suggested and considered a precursor of strong earthquakes with physical significance as
an important basis for earthquake forecasting (e.g., Huang et al., 2001; Zhang, 2001; Di
Giovambattista and Tyupkin, 2004; Wyss et al., 2004; Zhu et al., 2012; Wang et al., 2014; Gentili
et al., 2017; Wang et al., 2017; Chen, 2018; Zhang et al., 2018; Gentili et al., 2019; Katsumata and
Nakatani, 2021). The seismic activity in mainland China indicates the alternation of strong and
weak segments and associated fluctuations (e.g., Su, 1996), and the accumulated seismic data for
northern China and southwestern China (Yunnan) suggest an appropriate minimum limit of
the magnitude and quiescence period for seismic forecasting using the optimal parameter
combination (e.g., Han, 1998; Han et al., 2006a; 2006b).

Although the Tibetan Plateau is vast and sparsely populated, earthquakes of magnitude six
and above are highly destructive and can easily result in casualties and property losses
(Tillotson, 1951; Liu et al., 2014; Liu et al., 2015). The destructive earthquakes caused
direct economic losses of approximately 1,280 billion Yuan from 1993 to 2016, nearly
equal to 80% of China’s fiscal revenue in 2016 (e.g., Li et al., 2018). For instance, the
2020 Yutian earthquakes affected an area of approximately 128,310 km2 with
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455,000 inhabitants, causing direct economic losses of 1,080 million
Yuan, and 2,970,054 m2 of houses in rural residential areas were
completely destroyed or seriously damaged (e.g., Ni and Hong, 2014).
From the perspective of reducing earthquake disasters, it is of great
significance to explore and study forecasting methods for large
earthquakes. Previous studies have also suggested that before the
occurrence of M>6 earthquakes in Tibet (e.g., Chen, 2007; Liu
et al., 2008; Yu et al., 2013; Tian et al., 2021), the epicenter and
surrounding regions of earthquakes with a magnitude of ML≥4 were
characterized by a large quiescent area (Chen et al., 2014). To further
explore the relationship between low-intensity activity anomalies of
ML≥4 earthquakes and large earthquakes, we conducted
spatiotemporal scans of ML≥4 earthquakes in the Tibet
Autonomous Region and adjacent areas (hereafter referred to as
Tibet), performed statistical analysis of low-intensity anomalies to
predict their significance and criteria, and determined medium- and
short-term predictors of ML≥6 earthquakes with satisfactory
regularity and reliability.

2 Data and methods

Regarding the sparse earthquake monitoring network in Tibet and
because the magnitude of completeness is the ML≥3 level, the lower
limit of the magnitude in this study was selected as ML=4.0. The
catalog of M<5 earthquakes used in this study was a catalog of
monthly earthquake reports obtained from the Tibet Regional

Seismological Network from 1987 to 2022 (Seismological Bureau of
the Tibet Autonomous Region), and the catalog of earthquakes of
ML≥5 was compiled by the China Earthquake Network Center (China
Earthquake Administration). The magnitude completeness for the
regional catalog over running time windows has been checked to be
ML≥3.0 and confirmed not to influence the ML≥4 earthquake
occurrence frequency change. During daily earthquake forecasting,
we adopted a very convenient statistical method to track this anomaly.
We defined the occurrence frequency of fewer than
24 ML≥4 earthquakes over half a year in Tibet as a low-intensity
anomaly and conducted time scans for the ML≥4 earthquake low-
intensity occurrence within a 6-month window and 1-month steps. In
this study, we focus on the Tibetan region because a great number of
multidisciplinary studies have been conducted on forecasting methods
for larger earthquakes, and the Tibetan Plateau has one of the highest
seismic hazards in the world, such as the 1950 AssamM8.6 earthquake
(e.g., Tillotson, 1951).

The study area was selected in the Tibet Autonomous Region and
adjacent areas within 50 km around the Tibet Autonomous Region,
covering the majority of the Tibetan Plateau (Figure 1). Considering
the occurrence frequency of ML≥4 earthquakes in Tibet and adjacent
areas, there is a notable difference before and after 2008 (Figure 2).
From 1987 to 2007, the average annual recurrence frequency was
19 times, but from 2008 to 2022, the average annual recurrence
frequency increased to >50 times. This could be explained by the
rapid construction of the seismic monitoring network in 2008, namely,
the 10th Five-Year Plan project. Before 2007, there were only five

FIGURE 1
Epicenter distribution of ML≥6 earthquakes in Tibet since 2008. The background color indicates the height. The colored circles indicate the epicenters of
the ML≥6 earthquakes recorded by the China Earthquake Network Center. The red triangles indicate the seismic stations in Tibet in 2018.
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seismic stations in Tibet, and the recorded ML≥4 earthquake catalog
was incomplete (Gao et al., 2015). However, after 2008, the number of
seismic stations in the Tibetan region significantly increased, and the
monitoring capacity was greatly improved (e.g., Gao et al., 2015).

The minimum magnitude of completeness (Mc) in earthquake
catalogs plays an important role in studying seismicity and assessing
seismic hazards (e.g., Feng et al., 2010; Jiang and Wu, 2011; Yu et al.,

2020). The specific calculation methods for Mc are the maximum
curvature method (MAXC; Woessner et al., 2004) and the goodness-
of-fit method (GFT;Wiemer andWyss, 2000), or the entire magnitude
range method (EMR; Woessner and Wiemer, 2005). Another method
for calculating Mc is based on non-G-R relationships, such as the
magnitude sequence (Schorlemmer and Woessner, 2008). In this
study, we use the combination of MAXC, GFT and magnitude-

FIGURE 2
Magnitude (MAG)-time (TM) and occurrence frequency (FREQ)-time diagrams of the ML≥4 earthquake occurrences from 1987 to 2022. The unit of time
is years (YRS) (A) The earthquake magnitude adopts the ML scale according to the local network (B) The occurrence frequency uses the number (N) of times
per year as a unit.

FIGURE 3
Variation in the minimum magnitude of completeness (Mc, blue curve) over 14 years in this study based on the MAXC and GFT methods using the
software package of ZMAP (Stefan Wiemer, ETH).
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sequence methods based on the software package ZMAP (Stefan
Wiemer, ETH) according to the G-R law and the maximum
curvature of logN-M correlation analysis (Figure 3; Supplementary
Table S1). The advantage of complementing the earthquake-sequence
method is that it can avoid the significant reduction in seismic
monitoring capability in the aftershock area or even in a larger

area after a strong earthquake (Aki, 1965). The observed
earthquakes were randomly sampled, and the statistics were
calculated after each sampling. The standard variance of each
statistic was estimated as ΔMc (Yu et al., 2020). For these reasons,
this study considered the period from 2008 to 2022, during which the
minimum magnitude of the Tibetan network could reach 2.5–3.5 and

TABLE 1 Parameters of the ML≥6 earthquakes in Tibet from 2008 to 2022.

Number aDate Latitude
(N°)

Longitude
(E°)

Depth
(km)

Magnitude
(ML)

bEpicenter ML≥4 foreshocks (months,
times/m)

cPoisson
possibility

1 2008-
01-09

32.50 85.20 24 6.9 Gaize, Tibet AR 7, 0.9 2.13%

2008-
01-16

32.45 85.20 15 6.0 Gaize, Tibet AR 7, 0.9 2.13%

2 2008-
03-21

35.60 81.60 33 7.3 Yutian, Xinjiang 7, 0.9 2.13%

3 2008-
08-25

31.00 83.60 10 6.8 Zhongba, Tibet AR 6, 3.3 20.23%

2008-
09-25

30.80 83.60 10 6.0 Zhongba, Tibet AR 6, 3.3 20.23%

4 2008-
10-06

29.80 90.30 8 6.6 Dangxiong,
Tibet AR

6, 3.3 20.23%

5 2009-
07-24

31.25 86.05 13 6.0 Nima, Tibet AR 8, 3.6 20.23%

6 2010-
03-24

32.36 93.05 7 6.1 Nie Rong,
Tibet AR

8, 3.9 20.23%

7 2011-
09-18

27.42 88.10 11 6.8 Sikkim, India 13, 3.2 20.23%

8 2012-
08-12

35.90 82.50 30 6.2 Yutian, Xinjiang 10, 3.1 20.23%

9 2013-
08-12

30.04 97.96 15 6.1 Zuogong, Tibet AR 11, 3.1 20.23%

10 2014-
02-12

36.10 82.50 12 7.3 Yutian, Xinjiang — —

11 2015-
04-25

27.91 85.33 12 8.1 Nepal 12, 2.2 15.76%

12 2016-
10-17

32.81 94.93 9 6.2 Zaduo, Qinghai — —

13 2017-
11-18

29.75 95.02 10 6.9 Milin, Tibet AR 12, 2.2 15.76%

14 2019-
04-24

28.40 94.61 10 6.3 Medog, Tibet AR — —

15 2020-
06-26

35.73 82.33 10 6.4 Yutian, Xinjiang 6, d2.3 15.76%

16 2020-
07-23

33.19 86.81 10 6.6 Nima, Tibet AR 6, d2.3 15.76%

17 2021-
03-19

31.94 92.74 10 6.1 Tibet AR 6, 2.5 15.76%

18 2021-
04-28

26.76 92.50 10 6.2 India 6, 2.5 15.76%

aThe data format follows the yyyy-mm-dd format in this study.
bTibet AR, denotes the Tibet Autonomous Region in this study.
cThe expectation value of Poisson possibility is 3.85 times per month for the ML≥4 foreshock events in this study (Supplementary Table S2).
dThe period calculated is from 2019 to 09 to 2020–02 due to the occurrence of M≥5 earthquakes in 2020–03 and 2020-05, respectively.
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an average of <3.5 (Figure 3; Table 1 and Supplementary Table S1). By
scanning the activity of ML≥4 earthquakes from 2008 to 2022, we
found that the monthly occurrence frequency of M≥4 earthquake
activity was than a certain value (e.g., 4–8 times per month),
concordant with the subsequently occurring M>6 earthquakes. This
type of forecasting index can hardly be applied in forecasting because
the time length of each seismic quiescence period differs. For instance,
the earthquake quiescence phenomena before a strong earthquake and
the quiescence interval between two strong earthquakes notably differ,
which must be solved before using the seismic quiescence period as an
effective earthquake forecasting index (e.g., Ping et al., 2001; Zhuang
et al., 2002; Console et al., 2010; Zhu et al., 2014). The identification of
spontaneous and triggered earthquakes is performed statistically. We
applied the method to the seismicity of Tibet, analyzed the sensitivity
of the results and mapped the background seismicity in Tibetan
seismic areas (Figure 2). In addition, the aftershock elimination

method was not incorporated to this study because the removal of
aftershocks reduces the event number and thus enhances the observed
seismic quiescence, which remains within the range of low-intensity
anomalies and follows our estimates.

3 Results

3.1 Statistics of the low-intensity occurrence
of ML≥4 earthquakes immediately before
strong earthquakes

The formation of the Tibetan Plateau had a profound effect on
geological and geophysical evolution (e.g., Lei and Zhao, 2016). The
eastern Tibetan region is composed of several tectonic blocks and
separated by several very long active faults, such as the Kunlun fault,

FIGURE 4
Magnitude–time and occurrence frequency–time diagrams of the ML≥4 earthquakes during the different periods (A) from June 2007 to March 2008 (B)
from February 2008 to October 2008 (C) from November 2008 to July 2009 (D) from July 2009 to March 2010 (E) from August 2010 to September 2011 (F)
from October 2011 to August 2012.
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the Longmenshan (LMS) fault, the Xianshuihe fault, the Xiaojiang
fault, and the Red River fault (Lei and Zhao, 2016). Along these faults,
numerous large earthquakes have occurred frequently. Tibet upper
crustal faulting is currently active throughout the orogen, with
exceptions along a few north-trending rifts in southern Tibet,
where earthquakes may have occurred within the lower crust or
upper mantle lithosphere (e.g., Taylor and Yin, 2009).

From 2008 to 2022, a total of nearly twenty earthquakes of
magnitude ML≥6 occurred in the study areas (Figure 1; Table 1), of
which three earthquakes exhibited magnitude ML≥7, including two
earthquakes of magnitude 7.3 in Yutian and Xinjiang and one
earthquake of magnitude 8.1 in Nepal (within 50 km from the
border). The minimum magnitude of completeness (Mc) in the
study area has been decreasing since 2008 (Figure 3), with the
highest Mc close to 3.5 from 2008 to 2011 and between 3.5 and
2.8 from 2011 to 2015, and the overall decrease in Mc from 2015 to
2021, with a minimum value of roughly 2.3 (Figure 3). The decrease

in Mc value with time reflects the increase in seismic monitoring
capability in the study area with time (e.g., Long et al., 2009). Then,
the monthly occurrence frequency characteristics of
ML≥4 earthquakes before ML≥6 earthquakes and the temporal
correlation between fore- and mainshocks were analyzed (e.g.,
Guo, 2019). We calculate the expectation values of ML≥4 events
times per month preceding the ML≥6 earthquakes in the study
period (Supplementary Table S2) and further analyze the variation
in the Poisson possibility distribution of the ML≥4 foreshock
occurrence over the entire 14 years. The ML≥4 foreshocks
exhibited Poisson probability of >10% in the consecutive
months preceding the ML≥6 events (Fig. S1).

During data analysis, we found that the monthly occurrence
frequency of ML≥4 earthquakes was greatly affected by the
aftershocks of M≥5 earthquakes. In January 2008, two consecutive
earthquakes of magnitude ML≥6 occurred in Gaize, and the activity
characteristics of ML≥4 earthquakes from June 2007 to January

FIGURE 5
Magnitude-time and occurrence frequency-time diagrams of the ML≥4 earthquakes occurring during the different periods (A) from September 2012 to
August 2013 (B) from April 2014 to April 2015 (C) fromNovember 2016 to November 2017 (D) from September 2019 to July 2020 (E) from September 2020 to
April 2021 (F) from November 2021 to June 2022.
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2008 were used for analysis. Figures 4, 5 show the time series and
monthly occurrence frequency of earthquakes of magnitude
ML≥4 from 2008 to 2022. Among the listed groups of
M≥6 earthquakes and their foreshocks, we found no anomaly
before the subsequent M6.0 earthquake (the 2009 Nima
earthquake), which likely contained undetected events. The
remaining earthquakes corresponded well to the quiescence
phenomenon of ML≥4 earthquakes with a monthly occurrence
frequency of ≤4 times over six consecutive months. Before the
M6.6 earthquake in Dangxiong on 6 October 2008, affected by the
M6.8 earthquake in Zhongba on 25 August 2008, and the
M6.0 earthquake in Zhongba on 25 September 2008, the monthly
occurrence frequency of ML≥4 earthquakes was high, and this could
be regarded as an anomaly corresponding to strong earthquakes.
Based on the above analysis, the monthly occurrence frequency of
ML≥4 earthquakes was generally low before the occurrence of
ML≥6 earthquakes in Tibet, e.g., at most 4 ML≥4 earthquakes over
six consecutive months. The potential correspondence between the
monthly occurrence frequency of the time series of ML≥4 events and
distributed ML≥6 events was visualized (Figures 4, 5).

Accordingly, in recent decades, the average monthly occurrence
frequency of ML≥4 earthquakes in Tibet has remained above 4.2, and
the meaningful low-intensity seismic activity for ML≥6 event

forecasting indicates that the monthly occurrence frequency should
decrease to <4 over >4 consecutive months (e.g., Li and Li, 1999; Ma
et al., 2017). In detail, we noted that low-intensity earthquake activities
corresponded to the subsequent occurrence of 15 ML≥6 events (>83%
in total), as shown in the subfigures. For example, the low-intensity
events between June 2007 and July 2008 exhibited a suitable agreement
with the Gaize M6.9 (2008-01-09, Figure 4A), Yutian M7.3 (2008-03-
21, Figure 4B), ZhongbaM6.8 (2008-08-25, Figure 4B), ZhongbaM6.0
(2008-09-25, Figure 4B), and Dangxiong M6.6 (2008-10-06,
Figure 4B) earthquakes; the low-intensity events between
November 2008 and May 2009 corresponded with the Nima
M6.0 earthquake (2009-07-24) (Figures 4C, D). A similar
correspondence is shown in Figures 4C–F, Figures 5A–F until
2022. However, there were still 3 ML≥6 earthquakes without the
aforementioned low-intensity precursor of ML≥4 events before
strong earthquakes, i.e., the Yutian M7.3 (2014-02-12), Zaduo M6.2
(2016-10-17), and Medog M6.3 (2019-04-24) earthquakes, which
could be attributable to unclear mechanisms.

The statistical results revealed that 15 of the 18 ML≥6 earthquakes
exhibited low-intensity activity of ML≥4 earthquakes lasting for more
than 6 months before earthquake occurrence, accounting for >83% of
the total number, and these strong earthquakes occurred within
4 months after the end of the low-intensity events. Among them,

TABLE 2 Correspondence of the low-intensity ML≥4 earthquakes to the ML≥6 mainshocks.

Area aPeriod bMonths cActual earthquake occurrence (ML≥6) Intervals (/month) dCorrespondence

Gaize, Tibet AR 2007-06-2007-12 7 2008-01-09 (M6.9) 0 Y

2008-01-16 (M6.0)

Yutian, Xinjiang 2007-06-2008-02 8 2008-03-21 (M7.3) 0 Y

Zhongba, Tibet AR 2008-02-2008-07 6 2008-08-25 (M6.8) 0 Y

2008-09-25 (M6.0)

Dangxiong, Tibet AR 2008-02-2008-07 6 2008-10-06 (M6.6) 2 Y

Nima, Tibet AR 2008-11-2009-05 7 2009-07-24 (M6.0) 1 N

Nie Rong, Tibet AR 2009-07-2010-02 8 2010-03-24 (M6.1) 0 Y

Sikkim, India 2010-08-2011-04 9 2011-09-18 (M6.8) 4 Y

Yutian, Xinjiang 2011-10-2012-06 9 2012-08-12 (M6.2) 1 Y

Zuogong, Tibet AR 2012-09-2013-07 11 2013-08-12 (M6.1) 0 Y

Yutian, Xinjiang Not applicable None 2014-02-12 (M7.3) Y

Nepal 2014-04-2015-03 12 2015-04-25 (M8.1) 0 Y

Zaduo, Qinghai Not applicable None 2016-10-17 (M6.2) Y

Milin, Tibet AR 2016-11-2017-10 12 2017-11-18 (M6.9) 0 N

Medog, Tibet AR Not applicable None 2019-04-24 (M6.3) Y

Yutian, Xinjiang 2019-09-2020-02 6 2020-06-26 (M6.4) 3 Y

Nima, Tibet AR 2019-09-2020-02 6 2020-07-23 (M6.6) 4 Y

Tibet AR 2020-09-2021-02 6 2021-03-19 (M6.1) 0 Y

India 2020-09-2021-02 6 2021-04-28 (M6.2) 1 Y

aThe period of the low-intensity ML≥4 earthquakes.
bThe number of months matching the low-intensity ML≥4 earthquake period.
cThe occurrence time and magnitude of the subsequent ML≥6.0 earthquakes.
dWhether ML≥6.0 earthquakes occurred in the previous ML≥4 earthquake quiescence zone, which was determined by the Seismological Bureau of the Tibet Autonomous Region monthly.
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8 ML≥6 earthquakes occurred during the continuous low-intensity
activity period, 4 ML≥6 earthquakes occurred within 1–2 months after
the low-intensity activity ended, and 3 ML≥6 earthquakes occurred
within 3–4 months. Before the occurrence of large earthquakes, the
monthly occurrence frequency of ML≥4 earthquakes was low on

average, but the low-intensity period was not proportional to the
magnitude of large earthquakes, and the low occurrence frequency did
not significantly increase before large earthquakes, similar to short-
term enhancement, which may be one of the characteristics of local
seismicity in Tibet (Chen and Sun, 2004).

FIGURE 6
Distribution of theML≥4 earthquakes and subsequentML≥6 earthquakes. The blue solid circles indicate theML≥4 foreshocks. The red stars represent the
ML≥6 mainshocks (A) Gaize M6.9 (2009-01-09) and Gaize M6.0 earthquakes (2008-01-16) (B) Zhongba M6.8 (2008-08-25), Zhongba M6.0 (2008-09-25),
and Dangxiong M6.6 earthquakes (2008-10-06) (C) Nie Rong M6.1 earthquake (2010-03-24) (D) Sikkim M6.8 earthquake (2011-09-18) (E) Zuogong
M6.1 earthquake (2013-08-12) (F) YutianM6.4 earthquake (2020-06-26) (G) Schematic illustration of estimating the loci of impendingML≥6 earthquakes
based on ML≥4 foreshocks from November 2021 to July 2022.
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3.2 Spatial location analysis of large
earthquakes

Seismic quiescence before large earthquakes has been found and
demonstrated in several regions of the world, such as the
1995 M7.2 Kobe (Japan) earthquake (Huang et al., 2001), 2000 Mw
6.8 Uglegorskoe (Russia) earthquake (Wyss et al., 2004), 2016 Mw
6.0 Amatrice (Italy) earthquake (Gentili et al., 2017), 2017 Mw
7.3 Sarpol Zahab (Iran) earthquake (Gentili et al., 2019). Wyss and
Habermann (1988) defined the above precursory seismicity quiescence
as a statistically significant reduction in the activity rate before
mainshock occurrence compared to the background rate within the
same study area. Chen et al. (Chen et al., 2014) studied the moderate
seismic activity in the surrounding areas of M>6.5 mainshocks in
western China since 1970 and found that precursor large-scale
seismicity quiescence occurred at the epicenter and surrounding
areas of the mainshock. Spatially, a rate decrease occurred in the
main shock source region and its vicinity. Currently, the detection of
seismic quiescence before a major earthquake remains an exciting new
possibility in earthquake physics (Chen et al., 2005) and represents a
new and promising method to realize earthquake forecasting
(Kisslinger, 1988; Wyss et al., 1997; Hainzl et al., 2000; Rundle et al.,
2000; Keilis-Borok, 2002; Zöller et al., 2002; Turcotte et al., 2003;
Takahashi and Kasahara, 2004).

We analyzed the spatial distribution of the abovementioned
15 ML≥6 large earthquakes corresponding to low-intensity
precursory anomalies and found that most of these large
earthquakes occurred in the quiescence area of ML≥4 earthquakes.
Among them, 13 earthquakes (86%) occurred within the quiescence
area, and two earthquakes did not occur in the quiescence area
(Table 2). Here, we compare the location of the epicenters of the
fore- and mainshocks (Figure 6). Since November 2021, low-intensity

anomalies of ML≥4 earthquakes have again occurred, and
ML≥4 earthquake quiescence areas have been formed in western,
central and southeastern Tibet. These areas are high-risk areas for
future ML≥6 earthquakes after July 2022.

4 Discussion

Earthquake quiescence or enhancement represents an anomalous
change against the background of normal activity, and this anomaly
could provide a certain predictive significance for the time and
location of strong earthquakes (e.g., Ping et al., 2000; Ma and
Chen, 2011; Chen et al., 2013). From the perspective of reducing
earthquake disasters, it is important to improve the forecasting
methods for M>6 earthquakes. In Tibet, there is no systematic
study of the forecasting performance of the earthquake quiescence
anomaly due to technical and instrumental limits, but based on a
recently greatly improved seismic network, we found that the
ML≥4 seismic activity in Tibet was consistently associated with a
low monthly occurrence frequency and moderate intensity in this
region.

Earthquake occurrence imposes a certain effect on forecasting
(Zhang et al., 2019). Subsequently, it is necessary to determine the
anomalous characteristics ofML≥4 seismic activities to further explore
the relationship between low-intensity ML≥4 seismic activity
anomalies and strong earthquakes and to determine additional
short-term forecasting indicators for strong earthquakes. The
period of low-intensity seismicity is related to the magnitude of
earthquakes above M6. However, there exists no direct
proportional relationship between the period of low-intensity
seismicity and subsequent strong earthquake magnitude according
to our current study (Figures 4, 5), and more comprehensive

FIGURE 7
Occurrence frequency–time diagram of the ML≥4 earthquakes in Tibet from 2008 to 2022. The black curve indicates the cumulative events in the past
6 months. The red threshold line indicates the occurrence frequency of fewer than 24 ML≥4 earthquakes over half a year in Tibet, and the green arrows
indicate ML≥6 earthquakes.
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evaluation research should be performed for hazardous earthquake
forecasting.

Through analysis, we found that there occurred a suitable
correspondence between strong earthquakes and the low-intensity
activities of ML≥4 earthquakes, lasting for more than 6 months (e.g.,
Yan et al., 2012). The average monthly frequency of
ML≥4 earthquakes in Tibet and neighboring areas since 2007 is
4.71 times, and the monthly frequency is generally considered low
when it is less than 4 (Supplementary Table S2). In this study, the
cumulative semiannual frequency of ML≥4 earthquakes in Tibet and
neighboring areas is defined as low-frequency anomalies when the
semiannual frequency is less than 24. However, sometimes influenced
by aftershocks of large earthquakes or ML4 clusters, there are
individual months with more than four earthquakes of
ML≥4 during the duration of low frequency. The statistics of this
study find that better correspondence with earthquakes of M≥ 6 is a
period of sustained weak ML ≥ 4 seismic activity, and these occasional
slightly higher frequencies have less impact. We compared different
time windows to assess the low-intensity activity of events and found
that the time window of the month range is one of the most effective
and convenient windows for analyzing the event occurrence
frequency, possibly due to the triggering effect of short-period
Earth tides, including semidiurnal and diurnal tides (e.g., Klein,
1976). In this study, we counted the low-intensity anomalies from
January 2007 to July 2022, with a window length of 6 months, in
sequence, as shown in Supplementary Table S3. Since 2007, a total of
12 low-intensity anomalies have occurred, and except for the ongoing
anomalies indicating subsequent corresponding earthquakes, nine of
the previous 11 anomalies corresponded to ML≥6 earthquakes, with a
corresponding rate of 82%. After eight low-intensity anomalies ended,
ML≥6 earthquakes occurred within 2 months, accounting for 73% of
the total number (Figure 7). To scientifically and objectively evaluate
the effectiveness of this method for forecasting earthquakes, this study
uses the R-value calculation method proposed by Xu (1993) in the
evaluation of forecast effectiveness: R � c − b, c � n11 −N1,
d � n00 −N0, where n11 denotes the number of correctly forecasted
earthquakes, N1 denotes the total number of earthquakes that should
be forecasted, n00 denotes the forecast occupation time, andN0 denotes
the total forecast study time. In this study, the total forecast study time
is from January 2007 to March 2022, for a total of 182 months. During
this period, 18 earthquakes of magnitude six or higher occurred. The
forecast occupation time is 6 months from the beginning to the end of
the anomaly, and the forecast occupation time for 11 anomalies is
143 months. The earthquakes that occurred during this period, called
correctly forecasted earthquakes, are 16 in total. It is calculated that
R = .1 > 0, indicating that the method is more effective than random
forecasting and has predictive significance. Therefore, we suggest
using this low-intensity anomaly as a short-term forecasting index
for earthquakes of magnitude six or above. The forecasting threshold
of the low-intensity anomaly is half a year, the predicted occurrence
time of impending ML≥6 earthquakes is less than 2 months, and the
earthquake location is within the quiescence zone of the
ML≥4 foreshocks. The catalog and monthly count of the
ML≥4 events used in this study are shown in Supplementary Table
S4 and the supplemental dataset.

5 Conclusion

In this study, spatial and temporal scanning analysis of
ML≥4 earthquakes and subsequent ML≥6 earthquakes in Tibet and
adjacent areas was conducted via statistical test methods, and the
following conclusions could be drawn: (Katsumata, 2011;
Traitangwong and Pailoplee, 2017).

1) The low-intensity occurrence (≤24 times every 6 months) of
ML≥4 earthquakes lasting for more than 6 months from
2008 to 2022 corresponded well to the subsequent occurrence
of ML≥6 earthquakes in Tibet.

2) ML≥6 mainshocks preferentially occurred in the quiescent area
of the epicenters of ML≥4 foreshocks. This anomalous feature
could be used to predict the location of strong earthquakes in
Tibet.

3) The period of low-intensity ML≥4 earthquakes was not
proportional to the magnitude of subsequent strong earthquakes.
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