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Urban waterlogging is a major natural disaster in the process of urbanization. It is
of great significance to carry out the analysis of influencing factors and
susceptibility assessment of urban waterlogging for related prevention and
control. However, the relationship between urban waterlogging and different
influencing factors is often complicated and nonlinear. Traditional regression
analysis methods have shortcomings in dealing with high-dimensional
nonlinear issues. Gradient Boosting Decision Tree (GBDT) is an excellent
ensemble learning algorithm that is highly flexible and efficient, capable of
handling complex non-linear relationships, and has achieved significant results
in many fields. This paper proposed a technical framework for quantitative analysis
and susceptibility assessment on influencing factors of urban waterlogging based
on the GBDT in a case study in Guangzhou city, China. Main factors and indicators
affecting urban waterlogging in terrain and topography, impervious surface,
vegetation coverage, drainage facilities, rivers, etc., were selected for the
GBDT. The results demonstrate that: (1) GBDT performs well, with an overall
accuracy of 83.5% and a Kappa coefficient of 0.669. (2) Drainage density,
impervious surface, and NDVI are the most important influencing factors
resulting in rainstorm waterlogging, with a total contribution of 85.34%. (3) The
overall distribution of urban waterlogging susceptibility shows a characteristic of
“high in the southwest and low in the northeast”, in which the high-susceptibility
areas are mainly distributed in Yuexiu District (34%), followed by Liwan District
(22%) and Haizhu District (20%). Tomitigate the impact of frequent urban flooding
disasters, futuremeasures should focus on strengthening drainage networks, such
as optimizing impervious surface spatial patterns, controlling construction
activities in high-risk areas, and preventing excessive development of green
spaces.
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1 Introduction

Urban waterlogging refers to a phenomenon of surface flooding
disasters caused by continuous or heavy rain that exceeds the
capacity of urban drainage system, leading to the collapse of
urban transportation system and significant economic losses
(Tang et al., 2019; Lin et al., 2021). In context of global climate
change, extreme precipitation events are increasing, and urban
waterlogging disasters are becoming more frequent (Wang et al.,
2009; Yi et al., 2020). According to the 5th IPCC (Intergovernmental
Panel on Climate Change) assessment report, the world has
experienced increasing and intensified global extreme climate
events over the last 50 years, and this phenomenon will become
more frequent in the future (IPCC, 2014). On the other hand, rapid
urbanization has significantly affected the underlying surface of
cities, altering the urban hydrological cycles, reducing the water
storage capacity, and increasing the risk of urban waterlogging
disasters (Singh and Singh, 2011; Nowak and Greenfield, 2020;
Zhang et al., 2021b). Urban waterlogging has become a frequent
and devastating natural disaster due to complex urban mechanisms
(Jongman et al., 2012; Jian et al., 2021). In recent years, waterlogging
disasters have occurred frequently in many large cities in China, and
prevention and control of urban waterlogging have become a major
public concern (Wang et al., 2015; Zhao and Wei, 2020). According
to the " Bulletin of Flood and Drought Disasters in China” issued by
theMinistry ofWater Resources in 2017, 104 cities in China suffered
from waterlogging, which impacted a population of up to
2.18 million, and caused the direct loss of up to 16.56 billion
yuan (China Ministry of Water Resources, 2018). Therefore,
effectively mitigating the occurrence of urban waterlogging is a
focal point in China’s urbanization process.

At present, scholars have carried out a plethora of research on
spatiotemporal characteristics of urban waterlogging (Huang et al.,
2018), influencing factors (Wang et al., 2017; Jiao et al., 2020), and
susceptibility assessment (Tang et al., 2019; Tehrany et al., 2019).
Among these, the study of influencing factors is a hot topic in
relation to waterlogging issues, and it is important fundamental
research on disaster management and prevention (Wu and Zhang,
2017). Such research primarily focuses on human-natural factors that
play a vital role in urban waterlogging, such as climatic characteristics,
topography, and land use (Wu and Zhang, 2017; Li and Wu, 2018; Liu
et al., 2021). For example, Zhao and Wei (2020) considered that under
general rainfall conditions, the higher the elevation, the lower the risk of
inundation. The impact of land use on urban waterlogging is
particularly significant, and most studies have focused on two land
use categories, impervious surface, and urban green spaces, respectively.
For example, Yu et al. (2018) took Guangzhou as an example to reveal
the impact of impervious surface expansion on urban waterlogging
from 1990 to 2012; Zhang et al. (2018) analyzed the relationship
between impervious surface composition (buildings, roads) and
waterlogging at different spatial scales. These studies demonstrated
that the increasing impervious surface reduces the infiltration capacity
of rainwater, leading to an increased susceptibility of urban
waterlogging (Yu et al., 2018; Zhang et al., 2018; Yu et al., 2019).
Simultaneously, urban green spaces play an important role in reducing
the susceptibility of urban waterlogging. For example, Qian et al. (2021)
simulated the layout of green spaces under different waterlogging
susceptibility in Shenzhen, and pointed out that strengthening the

construction of green infrastructure can reduce the susceptibility of
waterlogging. Similar studies, which took Guangzhou and Shenzhen as
examples, tested the effectiveness of urban green infrastructure in
mitigating waterlogging, and proved that the impacts of green
infrastructure on urban waterlogging largely depends on its area and
biophysical parameters (Zhang et al., 2021b). Furthermore, poor
drainage functioning, lagging design standards, and insufficient
maintenance also contribute to urban flooding (Zhang et al., 2012;
Xie, 2013). According to some studies, the drainage pipe network is
closely related to surface runoff, and inadequate drainage network
facilities are one of the major incentives that lead to urban waterlogging
(Jiao et al., 2020). Moreover, rapid urbanization in China has
dramatically reshaped the spatial landscape patterns, particularly
those of water bodies (Xiao et al., 2016; Xie et al., 2019). Relevant
scholars have conducted correlation research on the area of rivers and
lakes and urban waterlogging. Such as, Zang et al. (2020) indicated that
there is a primary coupling coordination relationship between lake areas
and waterlogging in Tianjin; Liu et al. (2019a) believed that the
distribution of rivers is closely related to urban waterlogging.
However, methods such as Pearson correlation coefficient (Wu and
Zhang, 2017; Jiao et al., 2020), Principal component analysis (Liu et al.,
2022), multiple stepwise regression (Wu and Zhang, 2017; Zhang et al.,
2018), and geographically weighted regression (Wang et al., 2017; Yu
et al., 2018; Liu et al., 2021) are often used to analyze the influencing
factors of urban waterlogging. Such methods, with the assumption of a
linear relationship between driving factors and urban waterlogging,
have quantified the impact of influencing factors on urban
waterlogging. However, these methods often tend to ignore the
complex nonlinear relationship that may exist between the
dependent variable and the independent variables, and it is difficult
to quantify the relative contributions of each factor to urban
waterlogging.

In contrast, machine learning provides an effective method for
analyzing the complicated nonlinear relationship between urban
waterlogging and various factors. Exploring existing data and
identifying potential structures for learning strategies, machine
learning simulates humankind using computer-based learning
algorithms, and analyzes and predicts based on the resulting
models (Kohavi and Provost, 1998). With the advancement of
machine learning technology, algorithms such as decision tree
(Merz et al., 2013), artificial neural network (Li et al., 2013),
support vector machine (Tehrany et al., 2019), weakly labeled
support vector machine (Zhao et al., 2019) have been widely
used in research on urban waterlogging. These models have
significantly improved computational capacity and are effective at
solving nonlinear problems. However, most studies are mainly
focused on susceptibility mapping for urban waterlogging. This is
primarily due to the “black box” nature of most machine learning
models (Fang et al., 2019), which prevents researchers from
comprehending the actual operating mechanism of these models.
Furthermore, it is challenging to articulate the relationship between
variables in the model and susceptibility caused by waterlogging.
Ensemble learning, being a trending research field in machine
learning (Liu et al., 2019b), can complete learning tasks by
constructing and combining multiple weak classifiers and can
outperform any single model in terms of performance. Ensemble
learning is often divided into two categories, the Bagging and
Boosting method. Random forest, as a representative of Bagging,
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has advantages such as fast training speed and simple
implementation, and successful applications in urban
waterlogging susceptibility assessment (Woznicki et al., 2019).
However, due to the limited parallel structure of the model,
random forest models are often too general and lack the ability
to handle difficult samples effectively. In particular, another
ensemble learning algorithm based on the idea of boosting,
named Gradient Boosting Decision Tree (GBDT), combines
multiple decision trees to generate robust models in a gradient
boosting manner (Friedman, 2001; Shen and Yong, 2021). GBDT is
highly flexible, efficient, and has good interpretability (Ge et al.,
2017; Zhang et al., 2021c). With strong modeling capabilities in
addressing high-dimensional nonlinear problems, it has been widely
applied in water-related fields such as urban water quality
monitoring (Wei et al., 2019), precipitation estimation (Shen and
Yong, 2021), flood monitoring (Felix and Sasipraba, 2019), and
chlorophyll inversion (Yao et al., 2021), demonstrating robustness
and generalization ability. In other words, GBDT may be a better
method for quantitative analysis of the influencing factors and
susceptibility assessment of urban waterlogging.

One of the cities with the fastest urbanization and frequent
rainstorm waterlogging disasters in China (Guangzhou City) was
selected as the case city. The main objectives of this study are: 1) to
test the feasibility of GBDT in urban waterlogging research, and
compare it with two other widely used algorithms (Support Vector
Machine and Random Forest); 2) to quantify the relative
contributions of various influencing factors to urban waterlogging
based on GBDT, and analyze the relationship between urban
waterlogging and each factor; 3) to develop a distribution map of
urban waterlogging susceptibility levels based on GBDT, in order to
provide theoretical and technical support for urban waterlogging
prevention and management.

2 Materials and methods

2.1 Study area

Guangzhou is located in southernChina, one of the core cities in the
Guangdong-Hong Kong-Macao Greater Bay Area, and one of the most
economically prosperous cities in mainland China. Covering the
districts of Liwan, Yuexiu, Tianhe, Haizhu, Baiyun, and Huangpu,
the central urban area of Guangzhou is located between 23°01′─23°25′N
and 113°08′─113°36′E (Figure 1). The climate of Guangzhou is
subtropical marine monsoon, with highlands in the northeast and
lowlands in the southwest. The average annual precipitation is about
1720 mm (Zhang et al., 2020). There are 1,368 rivers with a width of
above 5m, 22 rivers with a catchment area of more than 100 km2, and a
total length of approximately 5,597.36 km2 (Shu et al., 2021). Over the
past 40 years of the “Reforms and Opening up” policy in China,
Guangzhou has experienced rapid urbanization, which led to the
intensification of disasters caused by urban waterlogging (Li et al.,
2015). For example, on 22 May 2020, a local torrential rain caused four
deaths, both ground and underground parking lots of several new
residential quarters were flooded, and over 10,000 cars were flooded and
scrapped (Huang et al., 2021). Therefore, the study area is representative
and significant for exploring the influencing factors of urban
waterlogging.

2.2 Data sources and processing

We obtained DEM from NASA with a 30 m spatial resolution,
which is featured as high quality and wide coverage range (https://
earthdata.nasa.gov/). Based on DEM data, the elevation (Figure 2A)
and slope (Figure 2B) of the main urban area of Guangzhou were
obtained.

The NDVI of the study area is calculated using Sentinel-2A data
(2015) with a spatial resolution of 10 m. The data was collected from
Google Earth Engine cloud computing platform and obtained the
images with less than 5% cloud coverage. The near-infrared and
infrared bands of Sentinel-2A were used to extract the NDVI values
(Figure 2C). Then, the maximum value of annual NDVI in the study
area was obtained by the maximum value compositing method to
reduce the influence of cloud, fog, and solar altitude (Holben, 1986).
Finally, the NDVI data was resampled to 30 m spatial resolution.

The data for land use was obtained from the Institute of
Aerospace Information Innovation of the Chinese Academy of
Sciences in 2015, with a spatial resolution of 2 m (Aerospace
Information Research Institute, Chinese Academy of Sciences,
2020). In order to verify the classification accuracy of the data in
Guangzhou, we have compared the dataset with the high-resolution
images of Google Earth by means of visual interpretation in this
study, as results shown that the dataset with higher classification
accuracy meets the accuracy requirement of this study. Based on it,
we created the impervious density map by extracting the impervious
surfaces and overlaying them on the 30*30 m grid to maintain the
resolution consistency of the data sources of this research
(Figure 2D). Additionally, the spatial distribution of drainage
outlet data is provided by Guangzhou Urban Planning and
Survey Design Institute, which is used to analyze the drainage
capacity of different spatial units.

The data of waterlogging points in main urban area of
Guangzhou is obtained from the Water Authority and
mainstream media (Liu et al., 2021), the temporal range is from
2011─2018 with a total number of 230 points across the study area
(Figure 2E). To ensure the scientific rationality of sampled data in
this study, we randomly created equivalent sampling points for
230 non-waterlogging points in the study area and obtained a total
of 460 sample point data. Additionally, the flood events are point
data, which is difficult to directly analyze its spatial autocorrelation
characteristics of urban waterlogging. However, kernel density
estimation can provide a more intuitive representation of the
spatial distribution of urban waterlogging in a continuous area
and can be used to investigate its spatial clustering
characteristics. Therefore, this study employs the kernel density
method to generate a continuous and smooth surface, where grid
values represent unit density and decrease to zero at neighborhood
boundaries (Figure 2F).

2.3 Method

2.3.1 Collection of impact factors
According to prior studies, the influencing factors on urban

waterlogging include primarily topography, impervious surface,
vegetation coverage, drainage infrastructure, and rivers and lakes
(Zhang et al., 2018; Jiao et al., 2020; Zang et al., 2020; Zhang et al.,
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2021b; Liu et al., 2021). We selected six influencing factors as
explanatory variables based on previous studies (Table 1). In
order to extract the influencing factors, we generated 30m×30 m
grids with unique value fields using ArcGIS (Woznicki et al., 2019;
Zhao and Wei, 2020), and each grid represents a spatial unit object.
Based on these grids, we extracted the corresponding elevation,
slope, and NDVI mean value of each spatial unit using the regional
statistics function in ArcGIS. Similarly, the area ratio of impervious
surface and water bodies is extracted from the land use data and the
number of drainage outlets in each spatial unit is extracted based on
the spatial distribution of drainage outlet points. Finally, we
obtained six influencing factors, including elevation, slope,
impervious surface, NDVI, drainage density, and water body
(Table 1). Furthermore, since the value ranges of some factors
are varied, which is not conducive to gradient descent of the
model, we used the maximum-minimum normalization approach
to standardize the data to the range of [0, 1] (Zhang et al., 2021b).

The response variables in the study follow a binomial
distribution and are generated from the spatial distribution data
of waterlogging points (230) and non-waterlogging points (230),
where the space unit corresponding to waterlogging points is
assigned a value of 1 and the non-waterlogging points are
assigned a value of 0, indicating whether waterlogging occurs in
each space unit (Table 1).

2.3.2 Analysis of spatial distribution characteristics
of urban waterlogging

Spatial autocorrelation is used to describe the spatial
dependency on spatial units (dispersed, random, clustered),

and is divided into global and local spatial autocorrelation,
and the global spatial autocorrelation is scaled by Moran’s I
index (Zhu et al., 2012). Moran’s I index has a value range of
[-1, 1], I > 0, I = 0 and I < 0, representing positive spatial
autocorrelation, no correlation and negative spatial
autocorrelation, respectively. We further used Hot Spot Getis-
Ord General G*

i to measure and scale the local spatial correlation
characteristics of urban waterlogging, and to identify the spatial
distribution pattern of urban waterlogging hot-spots and cold-
spots in the urban area to be studied (Getis and Ord, 1992; Wang
and Feng, 2016).

G*
i d( ) � ∑n

j

Wij d( )xj/∑n
j

xj (1)

Standardized G*
i(d) on:

Z G*
i( ) � G*

i − E G( )[ ]/ 								
Var G*

i( )√
(2)

Where, xi and xj respectively are the space unit i and its attribute
value of j andwij(d) is the space weight defined by the distance rule.
E(G) and Var(G*

i ) are respectively G*
i the mathematical expectation

and coefficient of variation; Z(G*
i ) the larger the value, the higher

the value of spatial clustering is available in this area, which is
defined as hot-spot area.

2.3.3 Gradient Boosting Decision Tree model
Boosting is an integrated learning framework in machine

learning which is used to build a new decision tree in the
gradient direction with reduced residuals on the basis of

FIGURE 1
The central city of Guangzhou.
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Boosting, one of the most powerful techniques for building
predictive models (Friedman, 2001; Friedman, 2002). GBDT
can be interpreted as a combination of Gradient Boosting and
decision tree. Each decision tree is generated by the CART

(Classification and Regression Tree) algorithm. CART adopts a
binary recursive partitioning technique to divide the current
sample set into two subsets, so that each non-leaf node
generated has two branches. In Figure 4, CART_1, CART_2,

FIGURE 2
DEM (A), Slope (B), NDVI (C), Impervious surface (D), Waterlogging points (E), and Kernel density (F).

TABLE 1 Description of explanatory and response variables.

Definitions Influencing factor Type Range

Explanatory Variables Elevation Continuous 0–1

Slope Continuous 0–1

Impervious surface (IS) Continuous 0–1

NDVI Continuous 0–1

Drainage density (DD) Continuous 0–1

Waterbody Continuous 0–1

Response Variables Whether waterlogging occurred (Y) Category 0 or 1
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CART_3. Indicates that multiple classification decision trees are
generated. Finally, by training multiple weak learners and
continuously changing the probability distribution of training
samples during the training process, the algorithm focuses more
on the error of the previous weak learner during each training. By
combining multiple such weak learners, an almost perfect strong
classifier can be obtained (Lu, 2022). The GBDT model can be
expressed as:

FM x( ) � ∑M
m�1

T x;Θm( ) (3)

Where, T(x;Θm) represents decision tree, Θm represents
parameters of the tree, and M represents the number of trees.

When determining the initial boosted tree model F0(x) � 0, the
mth model is expressed as:

Fm x( ) � Fm−1 x( ) + T x;Θm( ) (4)

Where, Fm−1(x) is the current iterative model, and the loss
function of the decision tree can be represented by L (▪). According
to forward distribution algorithm, empirical risk minimization can
be used to determine the parameters of next decision tree Θm:

Θ̂m � argmin∑N
i�1
L yi, Fm−1 xi( ) + T xi;Θm( )( ) (5)

In this study, R language compilation platform (version 4.1.1) was
used to construct themodel. In GBDTmodel, there are three important
parameters, the maximum depth of each tree, shrinkage, and the
number of iterations. The greater the maximum depth of each tree,
the better the model fitting impact, however overfitting is conceivable.
Similarly, a smaller shrinkage can almost always get better model
performance, but it will increase the computational cost, including
storage andCPU time. The response of Bernoulli deviance of the GBDT
model to different parameters is shown in Figure 3C.

FIGURE 3
The process of parameter selection for SVM (A), RF (B), and GBDT (C).
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2.3.4 Support vector machines and random forest
SVM is a supervised learning technique based on the

statistical learning theory. Its basic principle is to find the
optimal separating hyperplane in a high-dimensional feature
space, maximizing the margin between positive and negative
samples in the training set (Tang et al., 2019). SVM has high
accuracy and can avoid overfitting, but it is sensitive to
parameters such as Kernel function, cost and gamma. The four
commonly used kernel functions include Linear Kernel,
Polynomial Kernel, RBF Kernel and Sigmoid Kernel, among
which, Polynomial and RBF are the most common in SVM
research (Marjanović et al., 2011). Based on the R language

compilation platform, we used the ‘e1071′package to construct
the SVM model. The response of error in the SVM model to
gamma and cost parameters is shown in Figure 3A.

RF is an integrated learning algorithm designed based on the
Bagging framework, with the core concept of bootstrap sampling
(BREIMAN, 2001). There are two important custom parameters in
RF, namely, the number of classification regression trees (ntree) and
the number of random variables (mtry). In this study, the
‘randomForest’ module in R language was used for model
construction, and the optimal parameters were explored through
grid search method. The response of error in the RF model to
parameters is shown in Figure 3B.

FIGURE 4
Technical flowchart.
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2.3.5 Evaluation of model training accuracy
The model training accuracy is comprehensively measured by

the four indicators of Precision (P), Recall (R), Accuracy (ACC) and
Kappa coefficient. Where P represents the probability that all
samples predicted to be waterlogging points are actually
waterlogging points; R denotes the probability of being predicted
to be a waterlogging point in a sample of actual waterlogging points;
and ACC represents the percentage of correct prediction results in
total samples. Kappa coefficient is calculated based on confusion
matrix, Kappa coefficient values ≤0, 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8,
and 0.8–1 represent poor, slight, fair, moderate, substantial, and
almost perfect agreement between the model and the reality
respectively (Koch, 1977).

Finally, this study uses the natural breaks classification method
to classify the waterlogging susceptibility level. Optimized by Jenks
(1967), it minimizes the variance within each level and maximize the
variance between different levels (Wu et al., 2015). Without artificial
interference, the natural breaks classification method is able to
automatically determine the threshold for continuous values.
Therefore, it has been widely used by flood risk studies to
reasonably divide levels (Febrianto et al., 2016; Khosravi et al.,
2016; Tang et al., 2019; Liu et al., 2021). In this study, we used
the natural breaks classification method to categorize the severity of
waterlogging into five levels: lowest susceptibility, low susceptibility,
medium susceptibility, high susceptibility, and highest susceptibility.
Figure 4 shows the entire technical flowchart of this study.

3 Results

3.1 Spatial distribution characteristics of
urban waterlogging

Based on the results of kernel density calculation, we used
Moran’s I index to analyze the spatial agglomeration

characteristics of waterlogging. Figure 5A shows the global
Moran’s I index, which is 0.983, and the Z score is much greater
than 2.58, which has passed the significance test of 0.01, indicating
that urban waterlogging has a significant positive spatial
autocorrelation in spatial distribution with a high spatial
agglomeration state.

A single value is used for global spatial autocorrelation to reflect
the spatial aggregation characteristics of urban waterlogging, while
the hot-spot index can be used to further analyze the local spatial
autocorrelation characteristics of urban waterlogging so that the
local spatial aggregation pattern of urban waterlogging can be better
explored. The regional differences in local spatial correlation
characteristics of urban waterlogging are obvious (Figure 5B).
And the hot-spot areas show obvious flaky distribution, with
large agglomeration patches, strong connectivity between patches,
and weak spatial heterogeneity. The hot spots of waterlogging are
mainly distributed in Tianhe and Yuexiu Districts, and most of them
have passed 99% confidence test. However, a few hot spots are
distributed in Baiyun, Liwan, and Haizhu Districts.

3.2 Quantitative analysis for influencing
factors of urban waterlogging

We analyzed the impacts of each influencing factor on urban
waterlogging using GBDT. Figure 6A shows the relative
contribution rate of each factor to urban waterlogging, with
drainage density, impervious surface, NDVI, elevation, slope, and
water bodies contributing 37.93%, 35.91%, 11.50%, 8.66%, 5.84%,
and 0.16%, respectively. This study is based on a 2/3 majority
principle, which means that the number of factors set may cover
more than 2/3 of the relevance of the entire factor indicator system,
which can be regarded as a key factor (Liu et al., 2019b).
Simultaneously, the number of key factors of urban waterlogging
should not be too large; otherwise, the significance of identifying key

FIGURE 5
Moran’s I value (A) and hot spot analysis results (B) of urban waterlogging.
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factors would be unavailable. According to the results in Figure 6A,
half of the factors cumulatively cover more than 80% of the
contribution rate for the entire urban waterlogging influencing
factors. Therefore, the key factors set in our study are drainage
density, impervious surface, and NDVI.

GBDT models can use partial dependence functions to
visualize the impact of each factor on the response variable. As
shown in Figures 6B–E, the influence shift diagrams of the top
four factors with the highest relative contribution, indicating that
their influences on urban waterlogging have changed in tandem
with the change of value from influencing factors. When the
marginal effect value is greater than 0, the influencing factor has a
positive effect on the degree of urban waterlogging. When it is less
than 0, it has a negative impact, and when it is equal to 0, there is
no impact. In general, the drainage density has a positive
influence on alleviating the susceptibility of urban
waterlogging. However, as the drainage density increases, the
marginal effect value gradually shifts from negative to positive
(Figure 6B), indicating that there is a positive correlation between
urban waterlogging and drainage density, implying that the
drainage density may not be effective in mitigating the
occurrence of urban waterlogging. In consideration of the
impact on the impervious surface during urban waterlogging
(Figure 6C), when the proportion of space unit area occupied
by the impervious surface is less than 27%, the marginal effect
value is less than 0, and the impact of impervious surface on
urban waterlogging susceptibility will be not obvious. The
marginal value then demonstrates a clear increasing trend and

shifts from negative to positive as the proportion of impervious
surface steadily increases, indicating that the areas with a higher
proportion of impervious surface are more vulnerable to
waterlogging. Regarding the impacts of vegetation coverage on
urban waterlogging (Figure 6D), the marginal effect value is
negative and shows an obvious downward trend when the
NDVI value is higher than 0.41. The findings demonstrates
that there is a negative correlation between NDVI and the
severity of urban waterlogging. A higher NDVI value indicates
a stronger influence that can obviously mitigate urban
waterlogging. Our results also show that the marginal effect
value is larger than zero when the NDVI value is from 0.21 to
0.41, indicating that when the NDVI value is below 0.41, the
marginal effect of vegetation cover on alleviating the
susceptibility of urban waterlogging is not obvious. The
marginal effect value is negative when the NDVI value is less
than 0.21, which may be caused by the existence of rivers and
lakes in the region with low NDVI values. However, since rivers
and lakes play a positive role in alleviating susceptibility of
waterlogging, therefore the marginal effect value is slightly less
than 0. When considering the impacts of elevation on urban
waterlogging, the marginal effect value shows a “single peak”
structure that rises first and then falls as elevation increases
(Figure 6E). When the elevation is in the range of 5–28 m, the
marginal effect value is positive, indicating that urban
waterlogging in the main urban area of Guangzhou is more
likely to occur in this elevation range. This is also consistent
with the topography of the main urban area of Guangzhou.

FIGURE 6
GBDT model analysis of the relationship between urban waterlogging and influencing factors.
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3.3 Susceptibility assessment for urban
waterlogging

Based on the constructed GBDT model and analysis of
influencing factors on urban waterlogging, this study intends
to anticipate the possibility of waterlogging in each spatial unit of
the study area. We began by dividing the study area into about
1.68 million spatial units (30 × 30 m). Then the influencing
factors are unified to 30 m spatial resolution and input into
the GBDT model. Following that, we obtained the predicted
susceptibility values from each spatial unit, which ranged
from −2.54 to 2.22, indicating that the higher the susceptibility
prediction value, the greater the likelihood of waterlogging in
the spatial unit. Finally, we used the natural breaks classification
method to categorize the severity of waterlogging into five
levels (Figure 7A). The reason for using natural breaks
classification method for classification can be found in
Section 2.3.3.

From the perspective of spatial distribution (Figure 7A), the
distribution of urban waterlogging susceptibility is obviously
different, exhibiting characteristics of “high in the southwest
and low in the northeast”, with the highest susceptibility areas
primarily distributed in Yuexiu District, southern Tianhe
District, northern Liwan and Haizhu District, accounting for
9.16% of the entire study area in the northern part; the lowest
susceptibility areas are mainly distributed in the eastern part of
Baiyun District and northern part of Huangpu District,
accounting for 36.41% of the entire study area. We used the
regional statistics function based on ArcGIS to compare and
evaluate the distribution of waterlogging susceptibility in
different administrative divisions, and the area proportions at
different susceptibility levels in each region are estimated
independently (Figure 7B). According to our results, Huangpu
district is dominated by lowest-susceptibility locations, followed
by Baiyun district, accounting for more than 50% and 33% of total
area, respectively. Whereas Yuexiu district has the highest
susceptibility locations (34%), followed by Liwan and Haizhu

districts, with Huangpu and Baiyun districts accounting for 6% of
the total area.

4 Discussion

4.1 Model performance comparison

We used four metrics to evaluate the feasibility and effectiveness
of the GBDT model and compared it with multiple linear regression
(MLR), SVM, and RF in terms of accuracy. From Table 2, it can be
seen that the Kappa coefficient of MLR is low, at 0.518. This is
mainly because the explanatory variables in the study are continuous
variables, while the response variable is a categorical variable (the
number 1 represents flooded points and the number 0 represents
non-flooded points), and the relationship between the explanatory
variables and the response variable is a nonlinear one. The
hyperparameters are searched and optimized while using all three
machine learning algorithms, RF and GBDT of ensemble learning
outperform SVM in terms of training accuracy. Both RF and GBDT
exhibit higher training accuracy in various indicators, with the
accuracy of Precision, Recall, and Accuracy all greater than 80%
and the Kappa coefficients greater than 0.60, indicating that the
training results obtained by applying these two models are highly
consistent when compared with actual results. However, as
compared to RF, GBDT performed better in terms of training
accuracy, accurately classified 83.5% of the spatial units with a
Kappa coefficient of 0.669, while RF underperformed (81.2%
overall accuracy, Kappa coefficient 0.624). Furthermore, the
precision and recall of GBDT are 82.9% and 85.3%, respectively,
indicating that 82.9% of data identified to be waterlogging areas are
correct, while 85.3% of the real waterlogging locations are accurately
determined in all measured data. Consequently, GBDT outperforms
SVM and RF in terms of training accuracy in predicting urban
waterlogging susceptibility, and it can be used to carry out
quantitative analysis and susceptibility assessment of urban
waterlogging influencing factors.

FIGURE 7
Assessment of susceptibility to urban waterlogging (A) and zonal statistics (B) based on GBDT.
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4.2 Influencing factor analysis and
susceptibility assessment

In the past 10 years, a large number of studies have focused on
the analysis of the influencing factors of urban waterlogging, and the
research methods used are mainly based on the analysis of
traditional regression analysis methods (Naren et al., 2022; Tang
et al., 2022). However, traditional regression analysis methods are
often based on the assumption that there is a linear relationship
between urban waterlogging and various influencing factors, and it
is difficult to quantify the relative contribution of each factor to
urban waterlogging. Considering the possible complex relationship
between urban waterlogging and various influencing factors, this
study uses Gradient Boosting Decision Tree with a high Kappa
coefficient to reveal the relative contribution of each factor to urban
waterlogging, and reflects the relationship between urban
waterlogging and various influencing factors through the
marginal effect curve. The results show that drainage density,
impervious surface and NDVI are the three key factors affecting
urban waterlogging, and the contribution rates of each factor are
37.93%, 35.91%, and 11.50% respectively. Jiao et al. (2020) also
pointed out that drainage density, impervious surface and vegetation
coverage are the three main factors affecting urban waterlogging,
and such results are mutually supportive with our results. The
difference is that we quantified the relative contribution of each
influencing factor, which provides a closer understanding for
analyzing influencing factors on urban waterlogging.

The degree of urban waterlogging is mainly positively correlated
with the drainage density, and the higher the drainage density, the
more prone to waterlogging. The reasons for such findings can be
explained as follows: 1) the drainage pipe inlets are typically located
in low-lying areas within neighborhoods, making them prone to
flooding; 2) the drainage pipe network facilities in the major
metropolitan area of Guangzhou are insufficient, that’s why
backflow is prone to occur during rainfall, resulting in serious
flooding during every rain (Zhao and Wei, 2020); 3) Some
drainage outlets in Guangzhou are clogged to varying degrees,
resulting in the fact that these existing drainage pipe outlets may
no longer function under heavy rain events. From the perspective of
the relationship between impervious surface and urban
waterlogging, there is a positive correlation between impervious
surface and urban waterlogging degree. In areas with a higher
proportion of impervious surface area, waterlogging is more
likely to occur. This result affirms the findings of other studies
(Huang et al., 2021). Therefore, the prevention and control of urban
rainstorm waterlogging should pay attention to the optimization
and adjustment of urban impervious surface pattern. From the

perspective of the relationship between NDVI and urban
waterlogging, NDVI has played a positive role in alleviating
urban waterlogging. Relevant scholars have also drawn similar
conclusions in the research of other cities. This shows that
vegetation coverage has a hydrological regulation function. In
areas with vegetation coverage, rainwater has good permeability
and can reduce the direct flow of rainwater into the drainage system,
thereby reducing the pressure on urban drainage systems. However,
our study further shows that when the NDVI value is lower than 0.4,
its effect on mitigating urban waterlogging susceptibility is not
obvious. From the perspective of the relationship between
elevation and urban waterlogging, the marginal effect value for
areas below 5 m elevation is smaller than zero, which may be
because rivers and lakes predominate in low-altitude regions, and
there is less susceptibility of waterlogging. While in higher-altitude
areas, rainwater flows from high to low altitudes. Hence the
susceptibility of floods is likewise minimal. In contrast to
previous studies, which primarily uses a single value to reflect the
relationship between elevation and urban waterlogging (Jiao et al.,
2020; Zhang et al., 2021a; Liu et al., 2021), we employed GBDT,
which is able to directly show the changes of influence on urban
waterlogging in case of variable value being changed, after average
effect being considered for all other variables in models.

This study developed the distribution map of urban
waterlogging susceptibility in the main urban area of
Guangzhou is drawn, which is particularly important for
urban waterlogging susceptibility prevention and future urban
renewal planning, and helps local governments and urban
planners to fully understand the spatial distribution pattern of
urban waterlogging susceptibility. Our research shows that
Yuexiu District, Liwan District, and Haizhu District are the
main distribution areas with high waterlogging susceptibility,
and Yuexiu District has the highest proportion of areas with
high waterlogging susceptibility. The main reason for this is that
Yuexiu, Liwan and Haizhu District are the three traditional old
urban areas in Guangzhou, of which Yuexiu District is the oldest
central downtown with large population and higher proportion of
impervious area, meanwhile, such old downtown has a long
history, and some drainage facilities may have lagged design
standards and have not been updated and maintained in a
timely manner (Xie, 2013), which results in waterlogging in
this area much easier. From the perspective of the spatial
pattern of waterlogging susceptibility in the study area, the
assessment results of GBDT, SVM and RF all demonstrate the
spatial distribution feature of “high in the southwest and low in
the northeast”. Among them, the assessment results of RF and
GBDT are similar through visual interpretation (Figures 7, 8).
However, compared to SVM and RF, GBDT has higher
proportion for the lowest susceptibility areas, the low
susceptibility areas, and the highest susceptibility areas. The
proportion of the high susceptibility areas obtained by GBDT
is relatively small (Table 3). Moreover, it is worth noting that
SVM evaluation results for waterlogging susceptibility are
generally high, especially for identifying high susceptibility
areas (42.33%), which is significantly higher than that of RF
and GBDT. However, SVM performs poorly in identifying the
lowest and low susceptibility areas, with proportions of 16.25%
and 15.05%, respectively. This is consistent with the analysis

TABLE 2 Classification accuracy comparison.

Model Precision (P) Recall (R) Accuracy (ACC) Kappa

MLR 0.762 0.738 0.759 0.518

SVM 0.870 0.691 0.789 0.581

RF 0.812 0.824 0.812 0.624

GBDT 0.829 0.853 0.835 0.669
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result of low recall rate of SVM in Table 2. In addition, as shown
in Figure 8A, SVM did not identify rivers and lakes belonging to
the lowest susceptibility areas very well.

4.3 Implications for waterlogging control

In this study, we quantitatively analyzed the impact of various
factors on urban waterlogging, which will help us provide theoretical
and practical references for urban waterlogging prevention and
sustainable urban development. Among them, drainage density is
one of the most important factors affecting urban waterlogging. This
study exposed the current situation of insufficient drainage capacity
of the pipe network in the main urban area of Guangzhou.
Therefore, in the process of future urban renewal planning, it is
recommended to strengthen the renovation and upgrading of
drainage pipes, especially focusing on the transformation of the
drainage network in the old urban area, so as to ensure the smooth
flow of the city’s overall drainage pipes. Secondly, it is necessary to
take practical and effective measures to do a good job in the daily
maintenance of the drainage pipe network, repair and clean the
drainage pipe network in time, and ensure that the drainage network
can function normally when the summer flood season comes. In
addition, according to the natural conditions of the region, rainwater
storage tanks can be set up in natural depressions, ponds, park pools,

etc., and the water stored in the storage tanks can be evenly
discharged after the flood peak flow drops to the design flow of
the pipeline.

Although the drainage pipe network has played an important
role in alleviating urban waterlogging, simply relying on the
improvement of engineering drainage system standards cannot
effectively solve the waterlogging problem. Compared with other
land use types, impervious surface and NDVI have important
impacts on urban waterlogging, and their contributions are
higher than that of topography (elevation and slope). In the
process of urban renewal planning, it is recommended to
consider both the surface impermeable surface and the
underground drainage network to achieve the coupling
optimization of the two. Therefore, the underground drainage
network should be considered while optimizing the spatial
pattern of the impervious surface, and vice versa. In addition, in
terms of urban green space planning, local governments should try
to increase the urban green area, thereby reducing surface runoff and
flood peak flow. For example, it can be carried out by building roof
gardens, plant-planting walls, and sunken green spaces. From the
perspective of topography, in areas above 28 m above sea level, the
susceptibility of waterlogging decreases with the increase in altitude.
Therefore, it is suggested that local governments can appropriately
increase the consideration of terrain conditions when carrying out
urban renewal planning, and should scientifically plan and manage
urban development in flat areas. In addition, for areas with higher
susceptibility, it is urgent to formulate relevant spatial use control
plans, strictly control construction activities in high-susceptibility
areas, and prevent the occurrence of urban waterlogging disasters
from the planning (Zhao and Wei, 2020). At the same time, local
governments should improve the construction of drainage and
waterlogging emergency response systems in order to strengthen
early warning and prevention. By promptly detecting waterlogging
issues, they can provide sufficient time for personnel to avert

FIGURE 8
Susceptibility assessment of urban waterlogging based on SVM (A) and RF (B).

TABLE 3 Comparison of waterlogging susceptibility assessment results (%).

Model Lowest Low Medium High Highest

SVM 16.25 15.05 24.18 42.33 2.19

RF 32.02 16.56 12.95 29.95 8.53

GBDT 36.41 19.71 18.22 16.50 9.16
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disasters and effectively reduce the impact of waterlogging on cities
and citizens (Kong et al., 2021).

4.4 Limitations

It is necessary to point out the limitations of this study. First,
causing factors are closely related to climate change, especially the
change of precipitation (Deng et al., 2022). Based on the Guangzhou
Statistical Yearbooks from 2011 to 2018, the mean annual rainfall
remained relatively stable. Besides, it is also difficult to obtain the
specific precipitation corresponding to each waterlogging point.
Therefore, we assume that the precipitation in this study area is
constant. The results of this study might be improved if climate
change within the study period could be considered. Secondly,
emergency management capability is also an important factor
affecting urban waterlogging. Future studies should address the
duration of waterlogging to assess the susceptibility of
waterlogging disasters more accurately. Third, this study takes
the main urban area of Guangzhou as a case study, and the
research conclusions are primarily focused on the situation of the
main urban area of Guangzhou. Still, research on other cities may
need to be further analyzed and verified according to real conditions.
In addition, GBDT has some inherent limitations that are worth
mentioning. Since each basic decision tree in GBDT needs to be
trained based on the residual of the previous one, parallelization of
the algorithm can be difficult and training time can be long. If data
contains large noise, GBDT may overfit during the training process
due to its step-by-step residual fitting approach. Additionally,
hyperparameters such as the number of trees, depth of trees, and
learning rate need to be tuned for optimal results, making parameter
tuning a time-consuming and cumbersome process.

5 Conclusion

This paper takes the main urban area of Guangzhou with
frequent waterlogging as an empirical case, which quantitatively
analyzes the relationship between urban waterlogging and various
influencing factors based on the GBDT model. And develops the
urban waterlogging susceptibility distribution map, which can be
used to prevent and manage urban waterlogging disasters and urban
renewal planning, providing an auxiliary decision-making basis. The
main conclusions are as follows:

(1) The technical framework proposed in this study, based on
the GBDTmodel, can adequately reveal the quantitative relationship
between urban waterlogging and various influencing factors, with
better prediction performance, with an ACC of 83.5% and a kappa
value of 0.669. Furthermore, this model outperforms SVM and RF in
terms of performance. (2) The urban waterlogging in Guangzhou
represents significant positive spatial autocorrelation characteristics,
with a significant spatial agglomeration degree of waterlogging, and
obviously distributed block in hot-spot areas. The results contribute
to a better understanding of the spatial distribution characteristics of
urban waterlogging. (3) Drainage density (37.93%), impervious
surface (35.91%), and NDVI (11.5%) are the main influencing
factors of urban waterlogging. Among them, drainage density
and impervious surface both exhibit positive correlation with

waterlogging, while NDVI exhibits a negative correlation.
Therefore, the results imply that efforts should be directed
toward optimizing the spatial pattern of impervious surfaces and
the layout of the drainage network in order to minimize urban
waterlogging. In consideration of the positive effects of vegetation
coverage with functions of regulating and storing rainwater,
especially when the NDVI value is above 0.41, as the NDVI
increases, the effect on alleviating disasters caused by urban
waterlogging becomes more apparent. Therefore, there is an
urgent need to consider urban green space development in order
to ensure natural rainfall penetration. (4) Some locations in the main
urban area of Guangzhou are more vulnerable to waterlogging.
Among them, Yuexiu District is the main distribution area of high
susceptibility of waterlogging. In such high-susceptibility locations,
urban waterlogging susceptibility prevention and control, as well as
planning and construction for a sponge city, should be addressed in
the future.
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