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The velocity of seismic data can initially be established by identifying energy clusters
on velocity spectra at different moments, which is crucial to the migration imaging
and the stacking of commonmidpoint (CMP) gathers in the seismic data processing.
However, the identification of energy clusters currently relies on manual work, with
low efficiency and different standards. With the increasing application of wide-
frequency, wide-azimuth, and high-density seismic exploration technology, the
amount of seismic data has increased significantly, greatly increasing the cost of
manual labor and time. In this paper, an intelligent velocity picking method based on
the Chan–Vese (CV)model andmean-shift clustering algorithmwas proposed. It can
be divided into three steps. First, a velocity trend band is set up on the velocity
spectrum by experts to avoid multiples and other noises. Then, the velocity trend
band is applied to the Chan–Vese model as the initial time condition to segment the
velocity spectrum and obtain the velocity candidate region. Finally, mean-shift
clustering is adopted to cluster the useful energy clusters retained in the
candidate region derived from the Chan–Vese model. When implementing the
mean-shift clustering algorithm, the Gaussian kernel function and the energy of
the velocity spectrum are utilized to control the efficiency and accuracy of the
cluster. The tests of the model and real data prove that the proposed method can
dramatically improve the accuracy and efficiency of velocity picking compared with
the K-means and manual picking method.
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1 Introduction

Velocity analysis of a seismic wave is a critical step in seismic data processing and also the
basis for subsequent data processing procedures and interpretation. For example, the normal
moveout (NMO) correction relies on stacking velocity (Wang et al., 2021a), the migration
imaging relies on migration velocity (Jones et al., 1998; Nemeth et al., 1999; Hou & Marfurt,
2002), and time–depth conversion relies on time-domain velocity (Cameron et al., 2008). If the
velocity field is accurate, the seismic profiles obtained by migration can reflect the underground
structure more clearly. Currently, the velocity is mainly obtained by manually picking the
velocity energy clusters. Although manual picking makes full use of expert experience, it is
labor-intensive and repetitive. Moreover, the manual way is generally of low density in the
picking of a velocity spectrum and has different views on the characterization of complex
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geological structures. Therefore, it is imperative to establish an
efficient automatic velocity picking method to relieve the labor and
improve the accuracy of velocity imaging in structures, following the
main principle of the manual method and making full use of expert
knowledge, especially with the increase in seismic data.

In order to improve efficiency and accuracy, in the early days,
model-driven automatic velocity picking algorithms were developed
rapidly. From the fundamentals, considering the mathematical and
physical relationship between velocity and seismic data is the main
thought behind these model-driven algorithms. A large number of
scholars used an iterative optimization method to search for the
optimal velocity by establishing an objective function that could
represent waveform consistency or stacked energy. Toldi (1989)
was the first to suggest the automatic velocity picking method. He
designed an objective function by maximizing the sum of stacked
energy, and the optimal velocity is obtained by iterative updating.
However, this method assumes that the model is linear but not in
practice, and this brings about inapplicability in low signal-to-noise
seismic data. Moreover, this method considers a lot of constraints and
complicates the model, which makes the practical performance of the
method very poor. Zhang et al. (2015) established a non-linear
objective function by analyzing the selected velocity distribution
rules, which can achieve automatic velocity picking; however, this
still does not solve the large computational effort and low noise
immunity of the model-driven approach. Moreover, Wilson and
Gross (2019) used a particle swarm optimization method to find
the optimal time difference to flatten the hyperbolic curve which solves
the local minimum problems partially. Velis (2021) gave a non-
hyperbolic and anisotropic velocity analysis algorithm. The
objective function of non-hyperbolic energy involved the
anisotropy parameters, and the velocity was established by the
simulated annealing-based iterative search. In this method, static
and dynamic boundaries were used to avoid multiple noises. In
addition, Yuan et al. (2019) proposed that full waveform inversion
can also retrieve the background velocity structure, and the low-
frequency full-waveform inversion result was considered as an a priori
model, which can be applied to reservoir prediction. However, the full
waveform inversion is a strong non-linear inversion. When the
accuracy of the initial velocity model is not enough, there will be
cycle jumps and it will result in failure. All in all, the model-driven
method requires the hypothesis that the mathematical physical model
used can accurately express the relationship between seismic data and
velocity, causing the problems of local minima and large costs of
computation.

In recent years, due to the significant improvement in computer
performance, machine learning has been applied to various fields, such
as tumor and liver segmentation in CT images (Aghamohammadi
et al., 2021), brain tumor segmentation (Ranjbarzadeh et al., 2021),
and breast tumor segmentation in mammograms (Ranjbarzadeh et al.,
2022). Also, for geophysics, underground structure segmentation,
automatic velocity picking can be achieved by deep learning
methods or unsupervised clustering methods.

Compared to traditional model-driven methods, deep learning
can be regarded as a data-driven method, which can establish an
optimal non-linear mapping relationship between seismic data (e.g.,
common middle point gathers, velocity spectra, or shot gathers) and
velocity. The deep learning method updates the network parameters
mainly through a certain depth of neural network model and a back-
propagation algorithm (Rumelhart et al., 1986), as well as

automatically learning the effective features in data and the
establishment of multi-domain mapping (LeCun et al., 2015;
Goodfellow et al., 2016). Park and Sacchi (2020) proposed the
velocity automatic picking method based on the convolutional
neural network (CNN); this class of methods transforms the
identification of energy clusters on a velocity spectrum into a
classification problem in the field of image recognition; hence, this
method requires a high signal-to-noise ratio of the velocity spectrum.
Biswas et al. (2019) and Zhang et al. (2019) proposed the recurrent
neural network (RNN)-based automatic velocity picking method,
which considers the temporal order of seismic data and treats the
velocity picking as a normalization problem, resulting in higher
accuracy. In addition, Fabien-Ouellet and Sarkar (2020) combined
the CNN and long- and short-term memory (LSTM) network to
estimate the root mean square velocity and interval velocity of seismic
data. The combination of these two networks can simultaneously learn
the characteristics of CMP gathers and velocity spectra to more
accurately predict the velocity. Wang et al. (2020) contrasted the
velocity picking algorithms of the regression-based neural network
and the classification-based neural network and claimed that both
methods could reasonably predict the velocity field. Then, Yuan et al.
(2022) proposed a double-scale gated recurrent unit neural network
method, which uses data-driven methods to learn forward, and
inversion simulations to establish the non-linear relationship
between post-stack data and velocity or impedance; this method
recovers the low-frequency impedance so as to make the velocity
field more accurate, and geological laws and blind wells can verify its
rationality. Recently, Cao et al. (2022) proposed a seismic velocity
inversion method based on the CNN-LSTM fusion deep neural
network, which can simultaneously estimate the root mean square
velocity and interval velocity from the CMP gather. In the proposed
method, a CNN encoder and two LSTMs are used to extract spatial
and temporal features from seismic data, and a CNN decoder is used
to recover the velocity, improving the accuracy of imaging. As a whole,
all the deep learning methods mentioned above that get rid of the ill-
posed inverse problem of the traditional model-driven method use
artificial neural networks to establish a non-linear mapping
relationship between seismic data or a velocity spectrum (input)
and a velocity model (output). However, such supervised neural
network intelligent velocity picking methods require professionals
to manually pick up a rich and large amount of labeled data for
training, which is time-consuming and has weak generalization ability.
When predicting seismic data with different features, the labeled data
need to be reconstructed with a retrained network. In addition, it is
impossible to interpret the process of training since the prediction
process of seismic data is a huge composite function.

For the attractive unsupervised clusteringmethod, it can search for
energy cluster features of velocity without constantly establishing
labels and training according to different data. This type of
intelligent picking method groups the energy clusters of velocity
with the same features used to obtain the approximate distribution
of the data. It has a simple algorithm and is easy to implement. In
addition, it is highly interpretable and generalizable, adapting to
seismic data of any features. Therefore, it is more extensible in
industrial applications. Agudelo et al. (2017) and Araya-Polo et al.
(2017) use the K-means clustering algorithm that uses the distance of
samples as a similarity indicator to process the seismic data, and the
class center is regarded as the picking location. However, it poorly
clusters non-spherical energy clusters of velocity, and the K values
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need to be fixed manually. Chen et al. (2018) proposed a bottom-up
strategy, considering the problem of different K values for different
velocity spectra, which solves the drawback of fixed K values to some
extent. Waheed et al. (2019) also applied the density clustering method
to pick up the energy clusters of velocity to achieve automatic velocity
picking, which avoids the problem of choosing K values manually in
K-means clustering. In addition, Wang et al. (2021b) proposed an
approach based on adaptive threshold-constrained K-means; this
method can improve the identification of the energy cluster of
velocity which was weak on the velocity spectrum. Wang et al.
(2022) also suggested a Gaussian mixture clustering method to
achieve automatic velocity picking, as an extreme case of the
Gaussian mixture model, and K-means is difficult to characterize
velocity energy clusters with low focus ability, while the Gaussian
mixture model can accurately fit and provide uncertainty analysis at
the same time. These unsupervised clustering algorithms, however,
only consider the ability to identify energy clusters of the velocity,
without taking into account the complexity of the actual seismic data
and expert experiences, resulting in the velocity picking methods
affected by the multiples and some other noises on the velocity
spectrum.

In this article, we proposed an automatic velocity picking method
based on the Chan–Vese (CV) model and mean-shift clustering
algorithm, which can effectively improve the accuracy and
efficiency of velocity picking and solve the interference of
multiples. Meanwhile, the method we proposed can also reduce the
manual labor and improve the adaptability of unsupervised clustering
methods in actual seismic data. First, a velocity trend band is set up on
the velocity spectrum by experts to avoid multiples and noises. Then,
the velocity trend band is applied to the CV model as the initial time
condition to segment the valid energy clusters of velocity on the
velocity spectrum. Finally, the mean-shift clustering algorithm is
adopted to cluster the valid energy clusters in the candidate region
derived from the CV model. In order to improve the accuracy and

efficiency of mean-shift clustering, the Gaussian kernel function and
the energy value of velocity are applied for weighting, which allows the
identification of not only the isolated and highly focused energy
clusters of velocity but also the interconnected energy clusters.

2 Methods

We started with a brief analysis of how seismic data processors
perform velocity picking. After obtaining a CMP velocity spectrum,
the processor first analyzes the trend and range of velocity for that
CMP using empirical and geological knowledge; then, the energy
clusters of effective reflected waves within the correct trend are
identified with the naked eye and cluster centers are picked up as
the velocity for that location. The entire picking is the process by
which processors translate geophysical and geological theories into the
geometry of energy clusters on the velocity spectrum (Wang et al.,
2022). Our method follows this process to achieve automatic velocity
picking. Corresponding to the first step of manual picking, the valid
velocity trend and range are identified using the CVmodel with expert
experience constraints, and the second step of manual picking is
replaced by the mean-shift clustering method.

The main body of our method in this article can be divided into
three parts, as shown in Figure 1. The first step is the pre-processing of
the velocity spectrum, including the size regularization of the velocity
spectrum and the random noise filtering. The size regularization of the
velocity spectrum is to make the time dimension of each velocity
spectrum consistent so as to ensure that the velocity curve picked up in
every velocity spectrum, subsequently, has the same sampling time for
stacking; generally, this time dimension is consistent with the seismic
records. Random noise filtering is used to filter some salt-and-pepper
noises on the velocity spectrum by using the median filtering method
so as to improve the accuracy of energy cluster identification of the
subsequent CV model. The second step is the output of the effective

FIGURE 1
Intelligent velocity picking workflow.
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candidate region of velocity by the CV model, the expert experience
constraints, and the grayscale based on velocity spectrum energy,
which is the normalization of velocity spectrum energy that is
performed in this step. The third step is the use of the mean-shift
clustering method to pick up the centers of the effective reflected
energy clusters, and the Gaussian kernel function and energy
weighting constraints are applied in this step. These steps are
discussed in the following sections in detail.

2.1 CV model in velocity spectrum
segmentation

Image segmentation is an important image analysis and
processing technology that has been widely used in medical image
analysis, intelligent traffic management, remote sensing image
processing, and other fields (Li et al., 2021). Image segmentation
methods include threshold segmentation, region segmentation, edge
segmentation, and the active contour model and level set methods
(Osher & Sethian, 1988). Getreuer (2012) shows that based on level set
methods, Chan and Vese proposed the CV model which solves the
problem of computational difficulty caused by the primary length term
and the secondary area term in the expression. Keegan et al. (2017)
proposed that the CV model be the basis of multi-phase image
segmentation, and the model does not need to define the boundary
by gradient, which significantly reduces the complexity and improves
the efficiency of segmentation.

2.1.1 Theory of the CV model
The differences in location, size, and shape of velocity spectrum

energy clusters make the level-set-based CVmodel more effective. The
energy function of the CV model can be expressed as follows:

E C( ) � μLength C( ) + υArea C( ) + λ1E1 C( ) + λ2E2 C( ), (1)
where the first term of E(C) is the length constraint of the
evolution curve, in which the curve (C) is originally provided
by an effective velocity trend band on the velocity spectrum; the
second term is the shape constraint of C; and the third and fourth
terms are the pixel losses based on the grayscale map of the
velocity spectrum inside and outside C, respectively, which are
calculated by Eqs 2, 3. μ, υ, λ1, and λ2 are the constant coefficients,
which are generally taken as 1.

E1 C( ) � ∫
inside C( )

I0 x, y( ) − C1

∣∣∣∣ ∣∣∣∣2dxdy, (2)

E2 C( ) � ∫
outside C( )

I0 x, y( ) − C2

∣∣∣∣ ∣∣∣∣2dxdy, (3)

where I0(x, y) denotes each pixel value of the inner region and outer
region of the evolution curve C. C1 and C2 are the average of the pixels
in the inner and outer regions of curve C, respectively. E1(C) and
E2(C) are minimized when the evolution curve C can correctly
partition the effective reflected energy clusters of the velocity
spectrum.

To correctly solve the evolution of C, the CV model uses the level
set method when the energy function is minimized, and the level set
method replaces the evolution of C with the evolution of a curved
surface ϕ(x, y). The specific programs are as follows:

C � zω � x, y( ) ∈ Ω: ϕ x, y( ) � 0{ }
inside C( ) � ω � x, y( ) ∈ Ω: ϕ x, y( )> 0{ }
outside C( ) � Ω\�ω � x, y( ) ∈ Ω: ϕ x, y( )< 0{ }

⎧⎪⎨⎪⎩ . (4)

C is denoted by ϕ(x, y) � 0. The inner region of C is denoted by
ϕ(x, y)> 0, and the outer region of C is denoted by ϕ(x, y)< 0. Then,
we define a step function and its derivative as

H z( ) � 1, z> 0,
0, z< 0,

{ (5)

δ0 z( ) � d

dz
H z( ). (6)

Substituting Eqs 4–6 into Eq 1, the energy function of the curved
surface based on the level set is obtained as follows:

E(ϕ(x, y)) � μ∫
Ω

∇H ϕ x, y( )( )∣∣∣∣ ∣∣∣∣dxdy + ]∫
Ω

H(ϕ(x, y))dxdy
+λ1∫

Ω

I0 x, y( ) − C1

∣∣∣∣ ∣∣∣∣2H ϕ x, y( )( )dxdy
+λ2∫

Ω

I0 x, y( ) − C2

∣∣∣∣ ∣∣∣∣2(1 −H(ϕ(x, y))dxdy

. (7)

Using the energy function E and its corresponding
Euler–Lagrange to minimize Eq 7, the result is

zϕ

zt
� δ0 ϕ( ) μdiv

∇ϕ

∇ϕ
∣∣∣∣ ∣∣∣∣( ) − ] − λ1 I − C1( )2 + λ2 I − C2( )2[ ], (8)

C1 �
∫
Ω
I0 x, y( )H ϕ x, y( )( )dxdy
∫
Ω
H ϕ x, y( )( )dxdy , (9)

C2 �
∫
Ω
I0(x, y)(1 −H(ϕ(x, y))dxdy
∫
Ω

1 −H(ϕ(x, y))dxdy( . (10)

Therefore, the final evolution partial differential equation of the
CV model is

zϕ

zt
� δ0 ϕ( ) μdiv

∇ϕ

∇ϕ
∣∣∣∣ ∣∣∣∣( ) − ] − λ1 I − C1( )2 + λ2 I − C2( )2[ ]

ϕ|t�0 � u x, y( )
⎧⎪⎪⎨⎪⎪⎩ , (11)

whereu(x,y) denotes C at the initial moment of the evolution equation.
In our method, to obtain faster and more accurate segmentation results,
experts are required to combine geophysical and geological theories to
give the original range of velocity, which is treated as u(x,y), and the
energy clusters outside the u(x,y) are not involved in the subsequent
clustering. Then, the following advantages can be obtained:

1) The curve evolution speed can be accelerated
2) The interference of multiples and other noises can be avoided
3) The valid velocity candidate region can be provided for mean-shift

clustering

Also, the process of segmenting the velocity spectrum using the
CV model can be summarized as follows:

1) Size regularization and random noise filtering for the velocity
spectrum

2) Energy-oriented grayscale of the velocity spectrum
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3) Provide an initial evolutionary curve by experts
4) Evolve segmentation curves to obtain an effective velocity

candidate region for mean-shift clustering

2.1.2 Velocity spectrum segmentation examples
Our aim is that the CV model can segment the velocity energy

clusters that are truly effective as shown in Figure 2 and Figure 3, just
as the manual pickup of energy clusters. We applied the CV model
with expert constraints previously to the velocity spectra of one
synthetic data and one real data. Depending on the lateral
variation of the velocity, the expert constraint bands were
implemented at intervals of 10 and 500 velocity spectra. Figure 2
shows the segmentation result of the 40th velocity spectrum of the
Marmuosi model (Martin et al., 2006). For high signal-to-noise ratio
synthetic data, the CV model can well identify the effective energy
clusters of the velocity. Figure 3 shows the segmentation results of the
3900th velocity spectrum of the real data, which develops multiples in
6–9 s. The energy clusters of multiples velocity are interference signals,
which generally appear in the high-time low-velocity region in the
velocity spectrum as shown in Figure 3, and the CV model can avoid
the effect of multiples energy clusters after the expert experience
constraint and just obtaining the valid energy clusters of the velocity.

2.2 Mean-shift clustering for energy cluster
picking

Mean-shift clustering based on density does not need to artificially
determine the number of clusters and the initial cluster center

locations like other algorithms, such as K-means. It can
automatically select the number of clusters based on the density
distribution of the data (Wang et al., 2018). Therefore, mean-shift
clustering can be well adapted to a case of a continuous distribution of
energy clusters on the velocity spectrum. At the same time, mean-shift
clustering is less computational, faster, and more stable, so we use
mean-shift clustering to improve efficiency.

2.2.1 Theory of mean-shift clustering
The mean-shift algorithm (Comaniciu and Meer, 2002) is an

iterative process in which the mean value position of the energy
cluster is calculated. In each iteration, the mean value position is
updated and then the updated position is used as a new start to
calculate the shift value until it reaches the threshold. The calculation
of the shift value can be expressed as

Mh � 1
k

∑
xi∈Dh

xi − x( ), (12)

where x is themean value position of the circleDh with x as the center and
h as the radius, and xi is the position of every energy point withinDh. k is
the number of energy points within Dh. Then, the x is updated by

x* � x +Mh. (13)
Eqs 12, 13 allow the mean value position to continuously move

toward the center of energy clusters, and the update stops when the
shift value Mh is less than the threshold value.

As shown in Eq. 12, the contribution of energy points within Dh

are the same when calculating the shift value; however, the energy of

FIGURE 2
(A) 40th velocity spectrum with a high signal-to-noise ratio of the Marmuosi model, (B) expert experience constraint band, and (C) segmentation result.
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each point on the velocity spectrum is different, leading to different
contributions. The larger the energy, the more the contributions will
be. Therefore, we applied an improved calculation of the shift value
based on energy weighting to improve the accuracy of energy cluster
picking:

Mh �
∑n

i�1G
xi−x
h

���� ����2( )ω xi( ) xi − x( )
∑n

i�1G
xi−x
h

���� ����2( )ω xi( )
, (14)

where G is the Gaussian kernel function, h denotes the radius of the
region Dh, and ω(xi) is the energy of xi within the region Dh.
Substituting Eq. 14 into Eq. 13 to obtain the new update equation,
we get

x* � ∑n
i�1G

xi−x
h

���� ����2( )ω xi( )xi
∑n

i�1G
xi−x
h

���� ����2( )ω xi( )
. (15)

Eq. 15 is used to iterate the mean value position of the energy
cluster, until x* moves to the position where the energy of the cluster is
maximum, which is regarded as the picking position.

2.2.2 Examples of velocity picking using mean-shift
clustering

We applied the mean-shift clustering method proposed previously
to identify the segmentation results of the CV model in subsection 2.2.
Due to the constraints of expert experience, the CV model only selects
the valid energy clusters of the velocity of effective reflection seismic
waves and abandons the incorrect energy clusters of the velocity of
disturbing multiples in deep regions. In fact, the most classic manual

method is based on personal experience to roughly pick up the valid
velocity energy clusters, while there is no valid energy cluster in the deep
region of a velocity spectrum, and they obtain the velocity by using
velocity curve fitting. So, when using the mean-shift clustering method,
only the energy clusters segmented by the CV model several times are
picked up. At other sampling times without valid energy clusters, we
obtain the velocity by fitting the velocity curve according to the expert
experience trend and accurate velocity obtained intelligently. To
illustrate the correctness of our proposed method more intuitively,
we place the real velocity of the Marmousi model and most classic
manual picking results of real data in Figure 4 and Figure 5 for
comparison, respectively. Furthermore, Figure 4 shows the picking
results of the 40th velocity spectrum of the Marmuosi model, and
Figure 5 shows the picking results of the 3900th velocity spectrum of the
real data. These tests show whether the velocity spectrum has a high
signal-to-noise ratio or interfering multiples development, and the
intelligent picking results we proposed in this article always conform
to the manual picking result; this means that our automatic picking
method can replace manual picking for high accuracy and efficiency,
with each velocity spectrum being picked up in just 1 s.

3 Examples

3.1 Synthetic data

To test the feasibility of the proposed method, we tested the 2D
Marmousi model shown in Figure 6A with 60 velocity spectra

FIGURE 3
(A) 3900th velocity spectrum with multiple developments in 6–9 s of real data, (B) expert experience constraint band, and (C) segmentation result.
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FIGURE 4
40th velocity spectrum of the Marmuosi model. (A) Segmentation result, (B) intelligent picking result by using themethod proposed, and (C) real velocity
curve.

FIGURE 5
3900th velocity spectrum with multiple developments in 6–9 s of real data. (A) Segmentation result, (B) intelligent picking result by using the method
proposed, and (C) manual picking result by semblance analysis.
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FIGURE 6
(A) True interval velocity field, (B) 40th CMP seismic records of synthetic data without noise, and (C) 40th velocity spectrum of synthetic data without
noise.

FIGURE 7
Stacking velocity field of synthetic data without noise. (A) True velocity, (B) K-means intelligent picking velocity, and (C) intelligent picking velocity by the
method proposed.
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responding to 60 CMPs, while the distribution of energy clusters of
velocity is different for each velocity spectrum. We selected a
representative part of P-wave velocity in the Marmousi model and
directly replaced the depth domain with the time domain. Through
Dix’s equation, we calculated the stacking velocity as a reference, as
shown in Figure 7A. It has a complex structure, in which the lateral
velocity changes sharply and the fault dip angle is large. There are
60 velocity spectra (CMPs) in the horizontal direction and 749 time
sampling points in the vertical direction, and the time interval is 2 ms.
All the velocity curves picked up on the 60 velocity spectra form a

complete two-dimensional velocity field. In fact, every velocity
spectrum is produced from seismic records through a series of
mathematical calculations; hence, the signal-to-noise ratio of the
seismic record determines the signal-to-noise ratio of the
corresponding velocity spectrum. First, we tested the velocity
spectra without noise which come from the seismic records, as
shown in Figure 6B and Figure 6C.

Figure 7B and Figure 7C show the two-dimensional stacking
velocity of traditional K-means and the method we proposed,
respectively, which are combined with the 60 picked curves of the

FIGURE 8
Stacking profiles of synthetic data without noise. (A) True velocity, (B) velocity of K-means, and (C) velocity of the method proposed.

FIGURE 9
(A) 40th CMP seismic records of synthetic data with random noise. (B) 40th velocity spectrum of synthetic data with random noise and strong energy
regular noise.
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FIGURE 10
Stacking velocity field of synthetic data with random noise and strong energy regular noise. (A) True velocity, (B) K-means intelligent picking velocity, and
(C) intelligent picking velocity by the method proposed.

FIGURE 11
Stacking profiles of synthetic data with random noise and strong energy regular noise. (A) True velocity, (B) velocity of K-means, and (C) velocity of the
method proposed.
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FIGURE 12
Velocity function of the 3500th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.

FIGURE 13
Velocity function of the 4300th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.
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60 velocity spectra. Every 10 velocity spectra are constrained by an
expert experience. In general, the two-dimensional stacking velocity
field obtained by our method is basically consistent with the real

velocity field shown in Figure 7A on the tectonic trend, while the one
with K-means contains a lot of background noise and incorrect
construction. Compared to the two-dimensional stacking velocity

FIGURE 14
Velocity function of the 100th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.

FIGURE 15
Velocity field of a 2D real data established by (A) manual, (B) K-means, and (C) the method proposed.
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field of K-means, our method is more continuous and stable, since
almost all the velocity spectra energy clusters are picked correctly just
like the real velocity spectra. In detail, local structures such as a deep
high-velocity body and shallow weak reflection interface in the
velocity field are also well portrayed by using our method. In
seismic data processing, the higher the accuracy of the velocity
field, the more realistic the stacked tectonic profile obtained is, and
then the subsurface structure is reflected more accurately. In addition,
we made an NMO stack using seismic records and the three velocity
fields in Figure 7 for further comparison in the tectonic profile, and the
stacked tectonic profiles are shown in Figure 8. Compared to the
K-means profile, the profile obtained by our method is closer to the
real structure shown in Figure 8A, and hence both the shallow and
deep structures’ imaging accuracy of our method is higher than the
K-means. With regards to efficiency, compared to the time required
for manual picking, our method is very efficient. It takes only
approximately 1 s to pick up one velocity spectrum, which
significantly improves the efficiency similar to the K-means
method, but our method has a highly accurate structure imaging
result.

In order to test the noise immunity of our proposed method, we
tested the 2D Marmousi model, from which the seismic records have
30% random noise, and the velocity spectra from the seismic records
had 30% random noise and, additionally, strong energy regular noise

rotated by valid energy clusters, as shown in Figure 9A, B. Compared
to the velocity field of K-means, as shown in Figure 10B, the velocity
field obtained by our method shown in Figure 10C is more consistent
with the real velocity shown in Figure 10A on the overall trend;
therefore, we can see that the K-means velocity has a large error both
in the shallow and deep regions of the velocity field. In addition, we
made an NMO stack using seismic records and the three velocity fields
of Figure 10 for further comparison from the tectonic profile. As
shown in Figure 11, the stack profile obtained by our method still has a
higher accuracy in structure imaging than the K-means, especially for
the deep region. The test results show that our method could obtain
better noise immunity. This means that our method is better adapted
to real noise-bearing seismic data in the field.

3.2 Real data

To further verify the applicability of the method we proposed, 2D
land data with 4,880 velocity spectra (CMPs) were first picked up
manually and then picked up intelligently by using K-means and our
method. There are often many energy clusters in the CMP velocity
spectrum of seismic data. In fact, these energy clusters are generated by
effective primary reflection seismic waves and interference multiple
reflection waves, each energy cluster corresponding to one velocity

FIGURE 16
Stacking profiles of (A) manual, (B) method proposed, and (C) K-means.
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value at that time. Compared to the energy clusters of primary
reflection waves, the interference energy clusters generated by these
multiple waves are often located at a lower velocity (near the left side of
the velocity spectrum). In the process of manual velocity picking by
the processors, it is necessary to identify and discard the energy
clusters generated by multiple reflection waves to avoid false
structures in the subsequent velocity field and stack profile.
Compared to traditional unsupervised clustering methods, such as
K-means, our method introduces expert experience to evade the
energy clusters in the deep region of the velocity spectrum
generated by the multiples in the real data so as to achieve the
accuracy of manual picking, while the K-means incorrectly picks
up the energy clusters of multiples and makes some false structures
on the subsequent velocity field and stack tectonic profile. The 3900th
velocity spectrum with multiples developing at 6–9 s shown in
Figure 4A is one of the 4,880 velocity spectra. In fact, after the
3500th velocity spectrum, this real data has obvious multiple
interference signals. Expert experience constraints are performed
every 500 velocity spectrums when we performed the intelligent
velocity picking method we proposed.

As shown in Figure 12 and Figure 13, the 3500th and 4300th
velocity spectrum of the land data are processed by experts, the
K-means method, and the method we proposed. Obviously, our
method can effectively avoid the interference of multiples, which
conforms to the trend of manual picking, while the K-means
regard the multiples as effective signals to be picked up. Figure 14
shows the picking results of the 100th velocity spectrum (CMP). The
signal-to-noise ratio of the velocity spectrum is low, and it is difficult to

see effective energy clusters. However, our method can maintain
consistency with the trend of manual results, as shown in
Figure 14A, due to the expert experience constraints, while the
K-means results are abnormal. Figure 15 shows the velocity field of
this 2D real data constructed by manual picking, K-means, and our
method. It is found that the velocity field established by K-means is
significantly different from the manual velocity field, and its accuracy
is seriously affected by the interference multiples. However, the
velocity field established by our method has the same trend and
structure as the manual one both in the shallow and deep regions,
and at the same time, the efficiency of our method is much faster than
that of manual picking, as it only takes about 1 s to pick up one velocity
spectrum while manual picking takes at least 30 s. As a whole,
compared to unsupervised clustering methods, such as K-means,
our method can better replace experts to pick up the velocity
spectrum, which improves efficiency and frees manpower, while
meeting the picking accuracy.

In addition, for a more intuitive comparison, we made an NMO
stack with the three velocity fields in Figure 15 for further
comparison in the tectonic profile, and as shown in Figure 16C,
the subsurface structure imaging profile of K-means has fuzzy
structures in the shallow red frame and false structures caused
by multiples in the deep red frame. However, the profiles of our
method and manual are the same as each other, both in the shallow
and mid-deep layers, and the subsurface imaging results of them
can provide references for subsequent geological understanding.
Moreover, since our method can pick up velocity spectra one by
one owing to the significantly decreased picking time, the profile of

FIGURE 17
Local enlarged stacking profiles of (A) manual, (B) method proposed, and (C) K-means.
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our method even has a better imaging performance in the local
positions than the manual one at the red arrows in Figure 17A, B,
where the weak reflection events are strengthened and are more
continuous. For the K-means, its stack tectonic profile loses some
important structures, especially in the deep region, as shown in the
red frame of Figure 17C. All in all, from the tectonic profile, our
method has better image results than those of the manual and
K-means; hence, the method we proposed improves efficiency,
frees up manpower, and can better replace experts to pick up
the velocity spectrum automatically.

4 Conclusion

Up to now, manual velocity picking in seismic data processing was
the primary way; however, it is labor-intensive and repetitive. An
intelligent velocity picking method considering the expert experience
based on the Chan–Vese model and mean-shift clustering is proposed
by imitating the process of manual velocity picking so as to improve
efficiency and free up manpower. In our method, the valid velocity
energy clusters are identified by using the CV model with expert
experience constraints, which corresponds to the first step of manual
picking. Meanwhile, the clustering of the valid energy clusters
corresponds to the second step of manual picking by using the
mean-shift clustering method. These two steps translate geophysical
and geological theories into the geometry of energy clusters on the
velocity spectrum. The theoretical model and actual data test prove
that our method has several advantages as can be seen in the following
paragraph.

Compared to the manual and K-means, the method we proposed
can obtain a highly accurate velocity field and subsurface tectonic
imaging profile, which can provide a better reference for subsequent
geological understanding, while the K-means method always falls into
the wrong picking result. In terms of efficiency, our method takes only
approximately 1s to pick up one velocity spectrum similar to other
automatic methods such as K-means, while manual picking takes at
least 30 s. All in all, our method can replace manual velocity picking by
experts, which improves efficiency, frees up manpower, and enhances
picking accuracy.
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