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Recent advances in distributed acoustic sensing (DAS) technology have allowed
more intense measurements of subsurface and environment events, providing
improved geohazard monitoring and subsurface characterization. This study
discussed the subsurface evaluation enabled by the DAS-vertical seismic profiling
(DAS-VSP) system in the East China Sea, China. Taking advantage of a continuous
recording of the vibrational wavefields through the strain deformation of the fiber
deployed along the borehole, DAS-VSP is considered an emerging and promising
alternative borehole acquisition method. It provides a wider-spectrum range of
recordings in a cheaper, denser, and more continuous tense compared to
conventional geophones. We explored the 3D DAS-VSP signal processing and
imaging strategy. Based on a set of 3D DAS-VSP data of exceptional quality, this
study reviewed the common processing challenges and practical solutions for de-
noise, de-ghosting, de-multiple, and wavefield separation arising from the DAS
acquisition mechanism in the offshore VSP scenario. High-quality down-going
multiples were separated and imaged using the pre-stack Gaussian beam depth
migration in addition to the primary reflection wavefield, providing significant
additional illumination to support the subsurface evaluation. The current results
validated the efficiency of the DAS-VSP survey and encouraged better geological
interpretation.
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1 Introduction

Uncertainties in subsurface/geohazard evaluation are among themain concerns for safe offshore
drilling (Hadley et al., 2008; Acocella, 2015). Better subsurface characterization using geophysical
methods can reduce these uncertainties. The emerging fiber-optic distributed acoustic sensing
(DAS) technology has demonstrated strengths in monitoring environmental changes (Zhu et al.,
2021), near-surface hazards (Fang et el., 2020), and deep subsurface events (Daley et al., 2013). The
DAS system uses a fiber optic cable to provide distributed strain sensing based on the internal natural
flaws of the thin glass fibers (Krohn et al., 2014). Compared to conventional geophysical sensors (e.g.,
seismic geophones), the stable performance of the optic fiber under high-temperature, high-
hydrogen, and corrosive environments makes it well adapted for ultra-deep wellbore and deep
water settings (Zhan, 2020; Li et al., 2021). The past decade has witnessed the rapid development of
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DAS surveys in many geophysical surveys, including ocean bottom
acquisition, vertical seismic profiling (VSP), integrated borehole and
surface seismic surveys, 4D reservoir monitoring, and micro-seismic
monitoring (Mateeva et al., 2012, 2017, Yu et al., 2016; Zhan et al., 2019).

Unlike surface seismic surveys, whose source and receiver
arrays are deployed on the surface, VSP surveys equip three-
component (3-C) geophones along the wellbore. Therefore, VSP
is advantageous in providing reliable time-depth registration of
wave propagation and higher-quality subsurface reflectivity
measurements around the wellbore (Stewart et al., 1984;
Oristaglio, 1985). Owing to the shortened travel path, the
subsurface receivers record higher-resolution and higher signal-
to-noise ratio (SNR) wavefields. As the receivers are deployed closer
to the subsurface targets, more reliable kinematic and dynamic
seismic wave information on the formations (e.g., seismic velocity,
quality factor, seismic wavelets, and anisotropy) can be obtained
(Gaiser 2016; Wo et al., 2021; Huang et al., 2022).

DAS-VSP, in particular, has gained increased attention as the DAS
recording system facilitates cheaper, repeatable, and denser spatial
sampling, as well as time-lapse monitoring of subsurface formations
and reservoirs (Li et al., 2015; Willis et al., 2021). Several studies have
reported on subsurface formation parameters and images from DAS-
VSP. Zhang et al. (2020) reported quality factor (Q) estimation for the
DAS-VSP data. Horne et al. (2020) analyzed the anisotropy
parameters from a walkaway DAS-VSP case. Mizuno and Ali
(2021) reported satisfactory results of the application of generalized
radon transform migration to DAS-VSP data. Wilson et al. (2021)
evaluated carbonate sequestration using a time-lapse 3D DAS-VSP
survey.

The present work reviewed a 3D offshore DAS-VSP case in the
Pinghu oilfield, East China Sea, China. We explored a list of typical
signal processing challenges related to the DAS acquisition system as
well as promising solutions.

2 Geologic background

The study area was located on the Pinghu slope to the west of the
Xihu Sag, East China Sea (Figure 1). The Pinghu oilfield comprises
eight geologic structures, including the Fangheting, Bajiaoting,
Wanghuting, and Shuangzhaoting. All of them have provided
commercial oil and gas flow from drilled wells. The reservoirs are
reported primarily controlled by fractured anticlines (Su et al., 2018).
Therefore, the delineation of the fault and fracture networks may
provide key clues to understanding the reservoir distribution.

The dominant fault system extends over 100 km along the north-
northeast (NNE) direction and plays a key role in retaining the gas
accumulation. Early surface seismic surveys with steamer met great
challenges in supplying quality data for deep targets. Moreover, lateral

FIGURE 1
Survey area (marked in yellow) is located on the Pinghu slope to the west of the Xihu Sag, East China Sea, China. The distances between the survey area
and three adjacent cities, namely, Zhoushan, Ningbo, and Taizhou are 280 km, 338 km, and 346 km, respectively. The map was created using Google Earth.

FIGURE 2
Schematic diagram showing the joint ocean-bottom nodes (OBNs)
and VSP-DAS survey (revised after Walker and Mclntosh, 2011).
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variation around the reservoir in the survey area complicates reservoir
characterization given the less-satisfactory image quality of the
streamer data. Therefore, in 2021, a new 3D survey with joint
ocean-bottom nodes (OBN) and DAS-VSP was carried out to
provide an integrated surface and borehole seismic image. Figure 2
shows a schematic configuration of the 3D joint OBN and DAS-VSP
survey revised after Walker and McIntosh (2011). The present paper
focused on the 3D DAS-VSP survey with the fiber-optical cables
deployed in two wells (B1 and B2). The primary objective of this
survey was to provide better illumination and finer characterization of
the reservoir around the wellbore. This study examined the common
challenges in processing the 3D DAS-VSP data and focused on
providing an optimized solution and imaging strategy to supply an
enhanced final image.

3 3D VSP survey acquisition

To improve the seismic illumination around the target area, the
3D-VSP survey was designed based on the following
considerations: 1. to extend the borehole receiver range closely
to, if not to penetrate, the target formation at a depth of around
3500 m below the mudline; and 2. to increase the lateral
illumination within the maximum capacity of the length of the
source array. Therefore, we designed a DAS fiber covering
measured depths of 3580 m and 3170 m for wells B1 and B2,

respectively. In addition, both wells were planned to deviate to
allow wider lateral illumination. The bottoms of the well offsets
were 1530 m and 350 m for wells B1 and B2, respectively. Table 1
lists the detailed acquisition parameters.

We calculated the theoretical fold coverage at wells B1 and
B2 around the target formation as shown in Figure 3 based on the
designed acquisition parameters. For both wells, the fold counts
were >3000 around the wellbore, with a bin size of 20 m. The
premium imaging areas were > 8 km2. This survey configuration
was believed to be adequate for the 3D-VSP imaging around the
target area.

Figure 4 shows examples of the raw shot gathers at different
offsets from near to far (500 m, 1000 m, 2000 m, 3000 m, and
4000 m, respectively). The raw data were generally of good
quality, with high signal-to-noise ratio (SNR) events observed
throughout the entire depth range in both the down-going and
up-going wavefields. In the up-going wavefield, we noticed strong
converted-wave events below a depth of 2000 m, which required
designated wavefield separation efforts given the acoustic imaging
strategy. Both surface and interval multiples appeared to be fairly
strong, especially at the near and middle offset ranges.
Reverberating noises were observed at several shallow depths,
showing zigzag patterns due to the poor cable coupling effect.
To ensure a satisfactory image, the signal processing focused on
these issues and ensured that the processed wavefield mainly
contained the P-wave primary reflections.

TABLE 1 3D DAS-VSP acquisition parameters.

Well
name

Depth
range (m)

Sampling
interval (m)

Source
azimuth (°)

Source
offset (m)

Source
interval (m)

Source array
interval (m)

Total shot
number

B1 1-3580 1 120 -4000–4000 37.5 50 48411

B2 1-3170 1 120 -4000–4000 37.5 50 62473

FIGURE 3
Fold coverage map calculated under the designed acquisition configuration for wells (A) B1 and (B) B2. The outermost coral areas mark the coverage of
shots while the green lines denote the receiver array.
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FIGURE 4
DAS-VSP raw shot gathers at different offset ranges from near to far (500 m, 1000 m, 2000 m, 3000 m, and 4000 m, respectively).

FIGURE 5
Characteristics of the DAS-VSP zigzag reverberation noise. (A) Raw record. (B) Frequency spectrum. (C) Autocorrelation of the reverberation noise.

FIGURE 6
Example shot gathers (A) before and (B) after the zigzag cable-reverberation noise is removed, as shown in (C). Red arrows: appearance of cable-
reverberation noises.

Frontiers in Earth Science frontiersin.org04

Chen et al. 10.3389/feart.2023.1033456

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1033456


4 3D DAS-VSP data preparation

The general process of offshore 3D VSP imaging processing
includes data loading, geometry setup, trace editing, first break
picking, static correction, de-noising, amplitude compensation,
deconvolution, wavefield separation, velocity analysis, and
migration imaging. Several new challenges in processing offshore
DAS-VSP data are reviewed in the following sections.

4.1 Cable-reverberation suppression

Although fiber-optical cables can easily cover the entire borehole
with densely distributed sensors, one common issue with fiber cable
recording is that proper cable coupling or wellbore cementation

cannot always be guaranteed. Poorly coupled sections result in
coherent reverberation noise, often referred to as “ringing” or
“zigzag” noises (Martuganova et al., 2021). Figure 5A shows a raw
section with cable-reverberation noise in the time domain. The signal
behaves periodically in both the frequency spectrum and its auto-
correlation spectrum, as shown in Figures 5B, C, respectively. The
cable reverberations share a frequency range with the primary
P-wavefield. Thus, eliminating the cable-reverberation noise at a
specific depth range without affecting the reflections can be
complicated (Willis et al., 2019).

The present study applied a cable-reverberation suppression
method based on a τ − p transform, where τ refers to the two-way
intercept time at the slowness p � 0, given the periodic feature in the
cable-reverberation’s auto-correlation spectrum domain. This
transforms the offset-time (x-t) domain seismic records to the

FIGURE 7
Example shot gather showing the (A) raw record flattened by the first arrivals, (B) de-ghosting record, and (C) removed ghost wave. Red dashed box:
ghost wave following the first arrival with the identical move-out but reversed polarity.

FIGURE 8
Example shot gather showing the wavefield separation processing. (A) Raw shot gather. (B) Separated P-wave primary reflection. (C) Removed down-
going field.
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time-slowness (τ − p) domain, allowing the periodically appearing
ringing noises to be predicated using a least-squares linear fit (Turner,
1990).

Figure 6A shows an example of the raw shot gather with the cable-
reverberation noises appearing at the shallow depths (indicated by red
arrows). Figures 6B, C show the processed shot gather using a τ − p
domain filter and the removed cable-reverberation noises,
respectively. The τ − p domain allows better separation of the
primary reflection from the cable-reverberation noise. By
subtracting the predicted noise from the full record and applying
the inverse τ − p transform, we obtain the primary wavefields without
sacrificing many of the useful signals. The current application proves
that the τ − p filter can efficiently eliminate DAS-VSP cable-
reverberation ringing noise.

4.2 De-ghosting in the frequency-slowness
domain

Another source of noise is the offshore acquisition environment.
Offshore acquisition often utilizes an airgun source that fires below the
sea surface. When the up-going wave travels across the sea surface,

which shows strong impedance contrast at nearly a reflectivity
coefficient around -1, a strong reflection (often referred to as a
“ghost wave”) with a reversed polarity occurs and propagates
downwards. Hence, the ghost wave appears to be similar to the
primary wave with a reversed polarity and a delay time window in
the shot record. Attenuating ghost waves is critical to ensure the
quality of the final image of the primary reflection wavefield. The
present study adopted a de-ghost method based on the
frequency–wavenumber domain filtering, which is briefly described
as follows (Bernth and Sonneland, 1983; Weglein and Dragoset, 2005;
Yilmaz and Baysal, 2015; Wang et al., 2016).

We first simplified our problem by assuming that the seismic
records contained only the primary and the ghost wavefields. We
assumed that other types of noises of interferences were already
separated.

Thus, the seismic record ( ‘S’) can be expressed as follows:

S � P + G, (1)
where P and G represent the primary reflections and ghost waves,
respectively.

With the time delay between the ghost wave and the first arrival of
the primary wave, denoted by Δτ, we can represent the ghost
wavefield as

G � Re−iω△τP, (2)
where R is the reflectivity coefficient at the boundary of the sea surface
to air, which is close to -1. Hence, the polarity of the ghost wave is
reversed compared to the primary wave. We further introduce Eq. 2 to
equation (1) and rewrite the total wavefields in the frequency-slowness
(f-p) domain (or, equivalently, frequency–wavenumber domain) as

Re−iω△τP + Re−iω△τe−iω△τP � e−iω△τ
pr S. (3)

Thus, Dμ � e−iω△τ , which is the linear f-p transform operator.
Therefore, Eq. 1 can be represented as

DM + RDME
−IΩ△TP � DMS. (4)

The resulting Eq. 4 corresponds to a linear decomposition of the ghost
and the primarywavefields that can be solved using the conjugate gradient
method by approximating the least-squares solution.

Figure 7 shows the applied de-ghosting result in an example
flattened shot gather. Figure 7A shows the raw record with its first
arrival event aligned at 100 ms. The dashed red box indicates the
strong ghost wave following the first arrival event with identical move-
out but reversed polarity, as opposed to the first arrivals. After
applying the f-p domain de-ghosting filter, the ghost waves
(Figure 7C) were efficiently attenuated, resulting in a more focused
primary wavefield (Figure 7B).

4.3 Wavefield separation

After noise suppression, we next separated the P-wave reflection
field for imaging. The wavefield separation plays a critical role in VSP
data preparation and greatly affects the final image. One of the most
common and effective references to differentiate different wave modes
is through their varying apparent velocities. A variety of velocity-based
filters have been designed for desired wave modes, including the
median filter, F-K filter, and τ − p filter (Blias, 2007).

FIGURE 9
An example upgoing wavefield showing (A) the raw record
flattened by the first arrivals, and (B) the separated P-wave reflection
wavefield. Blue solid lines: P-waves; red dashed lines: SV-waves.

FIGURE 10
Cross-section of the smoothed 3D P-wave velocity model used for
VSP imaging plotted on top of the surface seismic image. Red solid line:
projected trajectory of Well B1.
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Figure 8A shows an example raw shot gather. As the raw record
includes complex wavefields whose behaviors can be differentiated in
various domains, we utilized a combination of filters to separate the
P-wave primary reflections: we first applied the median and τ − p
filters to isolate the down-going and up-going fields. As the reflections
in this area are distributedmostly in the up-going wavefield, we further
separated the P-wave reflections using the F-K and the median filters,
as shown in Figure 8B. Figure 8C shows the removed down-going field,
which contained the transmitted P- and S-waves.

The current study primarily utilized P-wave and compared it to
the surface seismic image. However, the S-wave field showed a fairly
strong recording even at the near-offset range, given the well deviation.
Figure 9 shows an example up-going wavefield of a near-offset shot
gather in two-way-time (TWT). The P- and converted S-wave
reflections are marked by blue solid and red dashed lines,
respectively. Both wavefields are of sufficient quality for utilization.
In this example, we further separated the P- and S-mode using an F-K
filter in TWT. The separated P-wavefield for acoustic imaging is
shown in Figure 9B. A shear-wave image can be achieved when a
reasonable S-wave velocity model is available, which is not covered in
the present study.

4.4 3D DAS-VSP imaging

Among a variety of well-developed depth migration algorithms,
the pre-stack Gaussian beammigration (GBM) has proven advantages
in efficiency compared to wave-equation-based methods (e.g., reverse-
time-migration) as well as high imaging accuracy compared to the
standard Kirchhoff migration (Hill, 1990 and 2001; Etgen et al., 2009).
Therefore, we applied this method to migrate the 3D VSP datasets of
considerable volume. By constructing the Green’s function with the
Gaussian beams, the GBM method allows a weighted summation of
the effective rays around the imaging point, which can be expressed as

G x, x′,ω( ) � i
4π

∫ dPx

Pz
uGB x, x′,ω( ) � i

4π
∫ dPx

Pz
AGB exp iωtGB{ },

(5)
where the positions of the source and the calculation point are
represented by x and x′, respectively. The horizontal and vertical
components of the initial slowness of the central ray are denoted by Px

and Pz, respectively. tGB and AGB are the complex travel time and
amplitude, respectively. Finally, uGB represents the energy of the
Gaussian beam.

FIGURE 11
Final images of the 3DDAS-VSP primary reflectionwavefields fromwells (A) B1 and (B) B2. The original depthmigration profiles are converted to the time
domain for display.

FIGURE 12
Schematic diagram showing the first-order multiple imaging
principle.
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FIGURE 13
Separation of upgoing wavefield and down-going multiples in the τ − p domain for wells (A) B1 and (B) B2.

FIGURE 14
Final images of the 3D DAS-VSP down-going multiples from wells (A) B1 and (B) B2. The original depth migration profiles are converted to the time
domain for display.

FIGURE 15
Comparisons of images from the (A) streamer, (B) OBN, and (C) DAS-VSP data.
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Based on the characteristics of the VSP acquisition configuration,
the down-going wavefield from the source to the reflector is
considered a forward wavefield, while the up-going wavefield from
the reflection point to the receiver is taken as a reverse wavefield. The
VSP common-shot-gather pre-stack Gaussian beam depth migration
is implemented by first tracing the ray between the source and the
receiver. Then, the forward wavefield on the source side and the
reverse wavefield on the receiver side are calculated. Finally, we obtain
the VSP image by cross-correlating the forward and reverse wavefields.
Eq. 6 gives the image condition of the offset VSP common-shot-gather
pre-stack Gaussian beam depth migration:

I X( ) � −1
2π

∫ dω∫ dXS ∫ dXS
zG* X,XR,ω( )

zzR

× G* X,XS,ω( )DS XS,XR,ω( ), (6)
where G*(X,XS,ω) and G*(X,XR,ω) denote the Green’s function
from the source to the image point and from the image point to the
receiver, respectively.

4.4.1 Migration of the primary P-wave reflection
wavefield

We first image the primary P-wavefield using a 3D velocity
profile built from the surface seismic survey. Figure 10 displays an
example cross-section of the velocity model projecting the
trajectory of Well B1. The final 3D DAS-VSP imaging profiles
for both wells are shown in Figure 11. Some fine and enriched
details of the layer boundaries, as well as the fault planes around the
borehole region, can be revealed on the VSP images to support a
better interpretation of the fault/fracture networks and the
subsurface evaluation.

4.4.2 Migration of down-going multiples
The offshore DAS-VSP data recorded high-quality down-going

wavefields, as shown in Figure 8C, which includes not only the

primary transmissions but also rich multiples following the first
arrivals, which can potentially be utilized for imaging. As the
corresponding reflectors of the multiples showed a much wider
distribution than the primary reflectors, they can effectively
broaden the VSP image range given the proper imaging
condition. Although many studies have discussed the mirror
migration of down-going multiples in VSP, including
interferometric migration by He et al. (2007), generalized Radon
transform (GRT) migration by Li et al. (2019), and reverse time
migration (RTM) by Jiang et al. (2016); Cheng et al. (2022), no or
very few publications have yet proposed migrating the multiples in
a DAS-VSP survey using GBM. Inspired by the idea of mirror
migration of the down-going wave of the OBN data (as illustrated
in Figure 12), we performed mirror migration in the VSP common-
receiver gather to migrate the down-going multiples using the
GBM method (Jiang et al., 2022; O’Brien et al., 2013). In
addition, the down-going multiples show attenuation and
dispersion due to the increased travel distances compared to the
primaries. Thus, the Q-compensated GBM (Gray and Bleistein,
2009) was reinforced to achieve higher-resolution images.

A separated down-going multiple wavefield is a prerequisite before
imaging. As shown in Figure 13, the primary reflection in the P-wave
upgoing domain and the down-going multiples (after the first arrivals
were rejected) were mostly separated in the τ − p domain. The
primary upgoing reflections appeared to be more focused in the
negative wavenumber domain, while the down-going multiples
were likely to be more extensively distributed in the positive
wavenumber domain. However, it remains challenging to
distinguish the first- and higher-order multiples for the massive
volume of 3D field data when the velocity model is highly
uncertain. Future studies are needed to further improve the first-
and higher-order multiple wavefields separation for more enhanced
images.

The 3D DAS-VSP down-going wavefields for wells B1 and B2 are
migrated and displayed in Figures 14A, B. Both images were converted

FIGURE 16
Enlarged images around the target areas of the (A) streamer data, (B) OBN data and (C) DAS-VSP data from Well B1; as well as the (D) streamer data
(E) OBN data and (F) DAS-VSP data from Well B2.
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to the time domain to compare time domain surface seismic sections.
Figures 15A–C show a comparison of the 2D projected images of the
streamer data, OBN data, and the DAS-VSP, respectively. Among the
three images, that of the streamer data was more contaminated by
noises, especially deeper in the section. The OBN image showed better
SNR compared to the streamer image. However, the image quality
degraded in the deeper section. The DAS-VSP image was superior,
with (1) greatly improved SNR even for deep targets, as indicated by
the red circle; and (2) more continuous and smoother events
compared to the other two images. Moreover, some details
(indicated by the red arrows) were enhanced in the DAS-VSP
image, which might support better formation and fault network
interpretation. Enlargement of the portion around the target area
(marked by the red circles in Figure 15) for the streamer, OBN, and
DAS-VSP data, respectively, as shown in Figures 16A–C, showed that
the deep target was clearly improved in the 3D DAS-VSP survey, with
higher SNR and better amplitude recovery. Similarly, we observed
enhancements in the 3D DAS-VSP image (Figure 16F) obtained from
Well B2 compared to those from the streamer (Figure 16D) and OBN
(Figure 16E) surveys.

5 Conclusion

The results of this study demonstrated the capability of the evolving
DAS technology to characterize the subsurface complexity using an offshore
3D VSP survey acquired in the East China Sea. We explore practical
solutions to several characteristic challenges related to this emerging fiber-
optic sensing technology applied in a marine VSP acquisition case. We
analyzed the cable-reverberation ringing noise in the DAS acquisition
system and effectively eliminate it using the τ − p domain filter. The
strong ghost waves/surface multiples often observed in offshore seismic
surveys were separated and suppressed in the f − k/f − p domain. We
migrated both the primary reflection wavefield and the down-going
multiples using the pre-stack Gaussian beam depth migration. Taking
advantage of the high-quality down-going multiples, we provided
illumination coverage in addition to the primary reflection field. The
Q-compensated migration can be helpful to improve the resolution of
the images of multiples. Given that the incident angle of the multiples is
often smaller than the primary waves to the same source–receiver pair for
the flat layers investigated by a VSP configuration, utilizing the multiple
wavefields might benefit the DAS sensing system, as the fiber cable loses its
sensitivity large-angle incident P-wavefields. The final image of the down-
going multiple supplements the primary reflection image with significantly
improved lateral illumination of shallower depth ranges. The current 3D
DAS-VSP image showed improvement compared to both streamer and
OBN surveys, allowing better subsurface interpretation and formation
evaluation.
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