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Traditional sandstormdetectionmethods use radiation differences among dust,

underlying surface, and cloud to distinguish them by setting appropriate

thresholds. Owing to the complex structure of the underlying surface, dust,

and cloud, it is difficult to set a uniform threshold to achieve high-precision

separation. Deep learning (DL) has powerful informationmining capabilities and

can fully use spectral differences between dust, land surface, and clouds.

However, under the limited band information provided by satellite sensors,

DL cannot easily distinguish highly heterogeneous land surfaces from multi-

modal dust and cloud. This study proposes a sandstorm detection algorithm

with DL supported by a land surface reflectance (LSR) dataset. The clear sky LSR

dataset was obtained based on the MOD09A1 product. Based on the dataset,

the difference between the reflectance observed by the satellite and the

corresponding LSR is generated, which is used as a characteristic parameter

of sandstorm detection with the deep learning method. The sandstorm

detection of MODIS data is realized using multi-band radiation and radiation

difference with DL. Results showed that the sandstorm detection algorithm

used in this study was consistent with the OMI AI product with a detection

accuracy of 84.6%. Compared with the detection results without the LSR

dataset, this method effectively improves the accuracy of sandstorm

identification.
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1 Introduction

Sandstorms are a common natural weather phenomenon with horizontal visibility of

less than 1 km owing to special geographical environments and meteorological

conditions. Sandstorms play an important role in global climate change and have

become a major environmental issue, while also affecting air quality, water energy

cycles, and ecosystems. Dust aerosols scatter or absorb solar and ground thermal
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radiations and change the properties of clouds, thereby

influencing earth’s radiation budget balance (Garrett and

Zhao, 2006; Andreae and Rosenfeld, 2008; Xie et al., 2013;

Zhao and Garrett, 2015).

Routine detection of sandstorms are mainly performed by

ground stations; however, it is difficult to achieve accurate large-

scale sandstorm detection owing to the limited number of ground

sites. With the rapid development of satellite remote sensing

technology, new types of remote sensing data with high spatial,

temporal, and spectral resolution have been developed on a large

scale. Therefore, using satellite remote sensing can help overcome

several constraints of traditional ground sandstorm detection.

Satellite remote sensing enables large-scale, high-frequency

detection of dust distribution and intensity, which makes up

for the lack of ground observation data, as well as comprehensive

utilization, mutual verification, and complementary advantages

with ground detection data (Fan et al., 2003; Haiping et al., 2003).

At present, sandstorms are mainly detected through empirical

physics-based methods and artificial intelligence (AI) methods

(Shahrisvand and Akhoondzadeh, 2013). Empirical methods are

radiation-based physical methods that depend on the physical

properties and spectral characteristics of dust particles in the

visible, near-infrared, and thermal infrared bands (Yan et al.,

2020).

The physics-based sandstorm detection algorithm is more

mature. It utilizes the difference in reflectance between dust and

different ground objects, the difference in the reflectance of

clouds in the visible and near-infrared bands (Kaufman et al.,

2001), and the brightness temperature difference (BTD) in the

thermal infrared band (Darmenov and Sokolik, 2005). By setting

a single channel or a combination of multiple channels and

setting the threshold, the discrimination of dust pixels can be

realized. Ackerman (1997) proposed a split window BTDmethod

that used the BTD values of 8, 11, and 12 µm channels of

Advanced Very High Resolution Radiometer (AVHRR) and

High Resolution Infra Red Radiation Sounder (HIRS)/

2) satellites to monitor dust over the Arabian Peninsula and

the adjacent Arabian Sea; this method is less effective for dust

detecting over land. Qu et al. (2006) proposed a normalized

difference dust index (NDDI) based on the spectral reflectance

characteristics of dust using reflectance values of 2.13 µm and

0.469 µm. NDDI is generally positive for dust pixels, negative for

clouds, and close to zero for clear sky land surfaces, which

indicates that NDDI can distinguish dust storms from clouds.

However, NDDI is not sensitive to dust density and dust height.

Furthermore, under high-density dust storms, the NDDI value is

very low, making it difficult for NDDI to distinguish dust above

the bright land surface.

To improve the accuracy of sandstorm detection, visible

light, near-infrared, and thermal infrared bands of sandstorm

detecting algorithms have also been developed. Miller (2003)

proposed a logarithmic-scale normalized difference from the

reflectance in the 0.645 µm and 0.853 µm bands of the

MODIS data and combined it with the BTD between the

11 µm and 12 µm bands to achieve sandstorms detection of

land and water bodies in the sky. Su et al. (2017) analyzed the

spectral characteristics of dust, clouds, and different ground

objects using the reflectance values of the MODIS data in the

visible and near-infrared bands of 0.645 µm, 0.469 µm, and

1.64 µm, and the thermal infrared bands of 3.75 µm and

4.465 µm, 11.03 µm, 12.02 µm brightness temperature to build

a discriminant model and realize the dynamic detection of

sandstorms.

Dust storm detection based on physical thresholds is

mainly based on the radiation and spectral absorption

differences between dust and normal ground objects and

cloud cover areas in different wavelength bands. The

threshold method is better for the detection of thick dust

over a single land surface type. However, for the complex

spatial structure of the land surface, the obvious difference

between light and dark, the uncertainty of the LSR, the

diversity of cloud and dust forms, and different sensor

types, as a result, the threshold method for sandstorm

detection has great complexity and uncertainty, and it is

difficult to achieve high-precision detection of dust storms.

The main limitation of sandstorm detection based on physical

thresholds is the determination of thresholds, which have

great variability relative to changes in land surface types

(Rivas-Perea et al., 2013). This limitation can be overcome

by machine learning-based methods, which can well fuse data

from different sensor types and have been proven useful for

dust storm detection (Shi et al., 2019; Boroughani et al., 2020;

Berndt et al., 2021; Lee et al., 2021; Amiri and Soleimani,

2022).

To achieve high-precision detection and perfection of the

sandstorm, deep learning in artificial intelligence with strong

information mining ability has been introduced (Hou et al.,

2020). Deep learning can extract multi-type features of remote

sensing data and make full use of the differences between dust

and land surface types, as well as the spectrum, color, shape,

texture, and other types of clouds, and has good application

potential in dust storms detection (Zhang et al., 2016; Liqiang

et al., 2020). Chacon-Murguía et al. (2011) proposed an artificial

neural network (ANN) to detect dust, which can distinguish

backgrounds such as dust, vegetation, and soil with high

accuracy. Ma and Gong (2012) used multiple parameters in

the Cloud-Aerosol Lidar and Infrared Path under Satellite

Observation (CALIPSO) satellite as feature vectors to improve

the classification accuracy of thick dust and clouds through a

support vector machine (SVM) classifier. Ramasubramanian

et al. (2021) use the red, green, and blue (RGB) products in

the Geostationary Operational Environmental Satellites-16

(GOES-16) satellite data as the input features of the U-net

model and use the band difference of the GOES-16 satellite to

detect the dust during the day and night. The results showed that

the U-net model has high accuracy in detecting dust and does not
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require a large amount of training data but only uses the

information of three bands, and the detection accuracy of dust

above the bright land surface is low. Jiang et al. (2021) employed

random forests (RF) and convolutional neural networks (CNN)

for 0.47 µm, 0.65 µm, and 0.825 µm channels in the Advanced

Geosynchronous Radiation Imager (AGRI) in the FY-4A satellite

model to monitor dust in the Tarim Basin. Therefore, deep

learning can fully utilize the spectral, spatial, and other

information differences between dust, land surface, and cloud,

and hence, show good application potential in sandstorm

detection. However, the characteristics of clouds and dust are

different owing to their different forms. Particularly, when the

pixels are covered by thin dust and thin clouds, changes in cloud

and dust on the land surface can change the radiation

information, leading to complex uncertainties and limiting the

band information provided by satellite sensors; owing to this,

deep learning technology cannot distinguish between a highly

heterogeneous land surface and polymorphic dust and clouds.

This can be classified as an unknown land surface information

problem.

Therefore, this article proposes priori LSR dataset

products to provide a specific information source for deep

learning. Based on the original single-phase data spectrum,

texture, and other information, we increase the difference

information between the image to be detected and the real

background of the ground and improve the accuracy of dust

storms detection by obtaining the difference between the

changes of dust or cloud to the known land surface

information. MODIS data exhibit high spatial and spectral

resolution, which can provide rich information for sandstorm

TABLE 1 MOD09 band parameters and theoretical accuracy.

Band Wavelength range
(µm)

Center wavelength
(µm)

Spatial resolution Signal-to-noise
ratio

Absolute error

B1 0.620–0.670 0.645 250 × 250 128 0.005

B2 0.841–0.876 0.858 250 × 250 201 0.014

B3 0.459–0.479 0.469 500 × 500 243 0.008

B4 0.545–0.565 0.555 500 × 500 228 0.005

B5 1.230–1.250 1.240 500 × 500 74 0.012

B6 1.628–1.652 1.640 500 × 500 275 0.006

B7 2.105–2.155 2.130 500 × 500 110 0.003

FIGURE 1
Standard false-color composite image of LSR in April 2014 (band:2-1-4).
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detection. Therefore, this study uses the MOD09A1 product

data to construct the LSR dataset, calculate the difference

information between the image to be detected and the real

LSR, and use the difference between the radiation values in

different bands and the LSR dataset as the source information

for deep learning sandstorm detection. MODIS data were

collected from different regions and phases to carry out

sandstorm detection experiments and evaluate the accuracy

of the detection results.

2 Materials and methods

2.1 Data sources

2.1.1 MODIS data
MODIS data has a total of 36 bands, covering visible light,

near-infrared, and mid-far infrared bands, including 250 m

(band 1–2), 500 m (band 3–7), and 1 km (band 8–36) spatial

resolution, the spectral range is 0.4–14.44μm, and the bandwidth

is 2330 km. For this experiment, MOD021KM in MODIS L1B

data of Terra satellite are used to perform geometric correction

and radiometric calibration on the image. It is scaled to

reflectance according to the scaling method.

R � scales(DN − offsets), (1)

where R is the reflectance and scales and offsets are the

calibration gain coefficient and offset coefficient.

This article uses the MODIS/Terra 8-day synthetic global

land surface reflectance product MOD09A1 to construct an LSR

dataset, MOD09 data are the secondary LSR product obtained

from MODIS Level 1B data after strict atmospheric correction

and mainly distributed in the visible light and near-infrared

bands, including a total of seven bands. MOD09A1 is the

estimation of the LSR of each band without the influence of

atmospheric scattering or absorption and an 8-day synthetic LSR

TABLE 2 Example selection of dust samples with different intensities over multiple types of land surfaces.
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TABLE 3 Example of cloud sample selection over multiple types of land surface.

TABLE 4 Examples of multi-type clear sky land surface sample selection.
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product, which is obtained through the optimal observation

value within 8 days. During the synthesis process of the

MOD09A1 product, one must consider the influence of low

viewing angle, no cloud and cloud shadow, and low aerosol

concentration. Furthermore, through the visual interpretation

method, the low-quality sample data containing clouds, fog, etc.

are eliminated to effectively reduce the impact of the atmospheric

environment (Sun et al., 2016a). The relevant parameters of the

MOD09 data are shown in Table 1 (Vermote et al., 2008), and it

can be seen that each band has achieved high accuracy.

2.1.2 Ozone monitoring instrument aerosol
index data products

To verify the results of sandstorm detection by the

proposed method, a comparative analysis was conducted

using the Ozone Monitoring Instrument Aerosol Index

(OMI AI) products (Yang et al., 2017). OMI is one of the

important sensors on the Aura satellite with an orbital

scanning width of 2600 km and spatial resolution of

13 km × 24 km. The absorbing aerosol index of OMI

detection is essential for the detection of dust aerosols,

considering it estimates the total content of dust aerosols in

the upper air of the global region by comparing the observed

upward radiance rates of the two ultraviolet bands (354,

388 nm) and through the radiative transfer model.

Generally, the OMI near-UV aerosol algorithm

(OMAERUV) assumes that the atmospheric scattering at

388 nm is pure Rayleigh scattering and the atmosphere can

be regarded as an opaque Lambertian reflector, using the

Lambertian equivalent reflectance Rp
388 at 388 nm to

approximate its reflectance (Torres et al., 2007), 354 nm

Lambertian Equivalent Reflectance Rp
354 is able to pass Rp

388

calculation as follows:

AI � −100log10( Iobs354

Ical354(Rp
354)) (2)

where Iobs354 is the radiation value recorded by the sensor, and Ical354

is the calculated Lambertian equivalent reflectance.

For strongly absorbing aerosols such as dust and biomass-

burning aerosols, the AI is greater than 0 and increases as the

optical thickness or height of the aerosol layer increases. The

cloud coverage area AI value is approximately 0, whereas the

TABLE 5 Sample data of sandstorm detection of different land surface types.
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FIGURE 2
Atrous spatial pyramid pooling.

FIGURE 3
DeepLabv3+ structure.

Frontiers in Earth Science frontiersin.org07

Qu et al. 10.3389/feart.2022.999427

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.999427


non-absorbing aerosol AI is negative (Zandkarimi et al.,

2020). AI can provide information on the strength and

range of absorbing dust aerosols and is positively correlated

with the aerosol optical thickness. Therefore, AI can help

accurately monitor the occurrence of sandstorms and their

trajectory, considering it has a good indication effect on dust

(Torres et al., 2007).

2.2 Deep learning model for sandstorm
detection

The deep learning model is widely used in remote sensing

image segmentation and target recognition and has achieved

greater advantages than traditional methods (Liu et al., 2020;

Zhu et al., 2020). Compared with traditional methods, it has

the ability to perform feature learning in an unsupervised or

semi-supervised manner. It also uses the advantages of

hierarchical feature extraction instead of manual

recognition (Woo et al., 2018). The deep learning model

adopts the convolution module to achieve end-to-end

semantic segmentation, which provides an effective

framework for the automatic detection of sandstorms. The

sandstorm detection model includes (1) construction of a

land surface reflectance database, (2) training and

verification dust sample library, and (3) model training

and construction.

2.2.1 Construction of the land surface
reflectance database

Construction of a high-quality LSR database can provide

accurate land surface prior information for sandstorm detection,

provide the difference between the image to be detected and the

real background of the land surface, obtain the LSR information

of the specified time and space, and effectively eliminate the

cloud. It can also provide basic data for the accurate

determination of the LSR of clear sky pixels, highlight the

reflectance differences between dust and complex forms and

clouds, and improve the accuracy of sandstorm detection.

The analysis of the MOD09A1 product synthesized in 8 days

in the obtained LSR data showed that there were still small

amounts of clouds, haze, smog, and other concerns in some areas,

which could significantly impact the accuracy of LSR. Therefore,

to reduce the influence of clouds and fog, we obtained high-

quality LSR data as priori data to support sandstorm detection

and simultaneously reduce the amount of data calculation to

improve the efficiency of data processing. Finally, this study is

based on theMOD09A1 product synthesized in 8 days, generated

using monthly synthetic data, to significantly reduce the impact

of clouds during sandstorm detection.

FIGURE 4
Sandstorm detection network model.
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We selected the MOD09A1 product synthesized in four

scenes and 8 days in 1 month constructing a land surface

reflectance database based on the monthly minimum synthesis

method of Sun et al. (2015) and Sun et al. (2016b) expressed as

follows:

I(i, j) � Min((I1(i, j), I2(i, j), I3(i, j), I4(i, j)), (3)

where Iis the synthetic LSR image, I1 I2 I3 I4are the

MOD09A1 product data of four scenes in a month, and i, jare

the rows and columns of a scene image.

Figure 1 shows the LSR database of northern China and

southern Mongolia in April 2014, assembled into a partial

standard false-color composite image (band: 2-1-4). The

constructed LSR dataset exhibited less cloud cover and high

image clarity.

2.2.2 Construction of the dust training and
validation sample library

A large number of high-quality and widely representative

sandstorm detection sample data sets are prerequisites for the

high-precision detection of dust storms. To reflect the broad

representativeness of the sample and enhance the adaptability

of the sandstorm detection algorithm in some special cases,

the construction of the sample data set comprehensively

considers the following information. First, the dust sample

data should cover all possible dust intensity ranges, including

thick and thin dust, and different intensities of dust are

combined with most typical land surface types, especially

when selecting thin dust samples should include bright

land surface, dark land surface, and thin cloud areas.

Second, the existence of clouds with different

characteristics should be considered to improve the ability

to identify dust and clouds. Third, as many land surface types

as possible should be covered when selecting clear sky land

surfaces, especially the selection of high-brightness land

surface type samples (Wei et al., 2021).

According to Tables 2, 3, 4, this study uses the land surface

classification product MCD12Q1 of MODIS data as the coverage

data of different land objects and selects thin and thick dust over

deserts, buildings, vegetation, and waterbody, and thin clouds

and thick clouds over different types. It can be seen that the

combination of different forms and dust presents obvious

differences in reflectance, which can highlight the differences

between different land surface types and different cloud forms,

FIGURE 5
Spatial distributions of MODIS RGB image (bands:1-4-3) (A), OMI AI product (B), detection results of space sandstorms in MODIS images with
LSR (C), and detection results of space sandstorms in MODIS images without LSR (D) on 15 March 2021.
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while selecting deserts, buildings, vegetation, water body, etc.

Clear sky pixels reduce the random error of dust training and

improve the universality of dust storm detection.

The input data of the deep learning technology

sandstorm detection method proposed in this article is the

difference image of the apparent reflectance of MOD021KM

and the land surface reflectance data set in the 1, 2, 3, 4, 6, and

7 bands. The difference calculation formula is given as

follows:

IDiffer image[Bandk] � Bandk(IMOD021KM(i, j)
− ISurface reflectance data(i, j)) (4)

where IDiffer image[Bandk] is the difference image, Bandkis the

band, k is 1, 2, 3, 4, 6, 7, and i, jare the row and column of the

pixel.

Through visual interpretation, and FY-4Asatellite remote

sensing data products, the MODIS data of dust storms in

different regions in different phases (2014–2020) were

selected, and the sandstorm detection sample data set is

obtained through the abovementioned formula with the LSR

database. Based on this, a sandstorm detection sample data set

was constructed, and a total of 76 images were obtained in the

sample set. The sample example set is shown in Table 5, a is the

MODIS image (band:1-4-3), and b is the land surface reflectance

difference image (band:1-4-3).

According to the characteristics of selected various types

of sample data, the MODIS image and the land surface

reflectance difference image are compared and analyzed.

The sandstorm detection sample data has a high degree of

diversity; the sample data comes from different times, and the

regional characteristics are obvious. Therefore, it can clearly

reflect the distribution of thick and thin dust over different

land surface types, highlight the differences in texture and

spatial characteristics between dust and land surface types,

and reduce interference of factors such as clouds and bright

ground, for land surfaces such as the desert, Gobi, ice and

snow, and other high-bright land surfaces in the difference

image color. The boundary information characteristics exhibit

a certain coherence; snow and ice appear blue in the

differential image. Bare ground appears dark grey in the

different images. Additionally, the land surface

characteristics of vegetated areas change over time. Hence,

the selection of multiple land surface types and a sufficient

number of each type can help understand the generation of

FIGURE 6
Spatial distributions of MODIS RGB image (bands: 1-4-3) (A), OMI AI product (B), detection results of space sandstorms in MODIS images with
LSR (C), and detection results of space sandstorms in MODIS images without LSR (D) on 16 March 2021.
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sandstorm detection algorithms on different land surface

types, thereby making the sandstorm detection algorithm

more comprehensive and reducing misjudgment.

2.2.3 Construction of the sandstorm detection
model

During sandstorm detection, similar spectral information

and shape characteristics will be encountered; therefore,

deserts, Gobi, ice and snow, vegetation, bare ground,

clouds, etc., present in the image to be identified will affect

the accuracy of sandstorm detection. In the case of

maintaining the spatial information characteristics of

sandstorms, this study designs a sandstorm detection

network model based on DeepLabv3+ (Chen et al., 2018),

which is characterized by atrous spatial pyramid pooling

(ASPP), also known as dilated convolution. The structure

is shown in Figure 5. It uses atrous convolution with different

expansion rates (also called sampling rates) to extract multi-

scale information from the feature map output by the feature

extraction network, as shown in the following:

y(i) � ∑
k
x[i + rpk]w[k], (5)

where x is the input dust difference image, y is the output

sandstorm detection result, w is the convolution kernel, k is

the size of the convolution kernel, and r is the expansion rate of

the convolution kernel. The parameter interval of the

convolution kernel w is r-1.

Compared with other models, the advantage of the

DeepLabv3+ network structure is that it adds hole

convolution, sets different expansion coefficients to obtain

multi-scale context information without losing image feature

information, and expands the local receptive field. Therefore,

each of the convolution outputs contains a wide range of spatial

information. DeepLabv3+ inherits the depth-wise separable

convolution in the DeepLabv3 version, where the depth-wise

separable convolution divides the computation into two steps:

channel-wise convolution and point-wise convolution. Channel-

wise convolution uses convolution filters to perform independent

spatial convolutions on each input channel, while point-wise

convolution is used to combine the weighted outputs of channel-

wise convolutions (Guo et al., 2019). Compared with the

standard convolution, the depth-wise separable convolution

considers the image space dimension and the channel

dimension, which reduces the number of parameters and the

FIGURE 7
Spatial distributions of MODIS RGB image (band:1-4-3) (A), OMI AI product (B), detection results of space sandstorms inMODIS images with LSR
(C), and detection results of space sandstorms in MODIS images without LSR (D) on 17 March 2021.
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computational cost and effectively improves the model training

efficiency while ensuring that only a small amount of accuracy is

lost. DeepLabv3+ includes two parts, the structure is shown in

Figure 3: An encoder and a decoder. In the encoder, the ASPP

module is used to expand the receptive field of dust regions,

capture contextual information at multiple scales, highlight dust

and targets (clouds, deserts/Gobi, etc.), and dark differential

characteristics of the target (vegetation, water, etc.). Using

ASPP with different rates for feature extraction, five sets of

feature images are obtained. In the decoder, the obtained

feature image is remapped to each pixel, and the resulting

output by the encoder is subjected to feature learning and

bilinear interpolation of the convolution module to obtain the

resolution of the input image. The structure is shown in Figure 2.

With the deepening of the network and the huge amount of

data available, the learning efficiency of DeepLabv3+ becomes

lower, the optimization effect becomes worse, the accuracy of

test data and training data decreases, and the encoder has a

problem due to spatial resolution loss. To this end, the ResNet50

(He et al., 2016) model is coupled based on DeepLabv3+, which

avoids the gradient disappearance and degradation problems of

the deep network, and normalizes the input data and the data of

the intermediate layer, which can ensure that the network

adopts randomness in backpropagation. Gradient descent

increases the training speed of the model and improves the

training effect. Therefore, this study builds a sandstorm

detection model based on DeepLabv3+ and

ResNet50 networks, as shown in Figure 4.

FIGURE 8
Comparison of sandstorm detection results in the desert/Gobi/cloud region on 23 April 2014. Spatial distributions ofMODIS image (band:1-4-3)
(A), OMI AI product (B), detection results of space sandstorms with LSR (C), and detection results of space sandstorms in MODIS images without
LSR (D).
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Considering the computational efficiency and redundancy of

image features, the difference image data are cropped pixel by

pixel into 4576 images through a 512 × 512 sliding window.

Then, the training data are resampled to 256 × 256 × 6 for

training, and the difference image dataset is augmented by

various methods such as rotation, normalization, adding

noise, horizontal mirror flipping, and random saturation.

Randomly assign 80% of the dataset as training data and 20%

as test data. Dust training network model parameters as shown

Table 6. Under the same environment and parameter conditions,

the sand and sandstorm detection models supported by the

surface reflectance database and without the support of the

surface reflectance database were trained respectively.

2.2.4 Evaluation approach for sandstorm
detection

The performance of the model was evaluated in the

test area using accuracy, precision, recall, F1-score, and

mean pixel accuracy (MPA). Accuracy refers to the

percentage of correct predictions in the total sample;

MPA refers to the average metric for each category, where

the dust and non-dust pixel count class are 1 and 0,

respectively; recall indicates that the dust is correctly

predicted to account for the number of all marked pixels;

precision refers to the percentage of pixels that recognize

dust, and F1-score is based on the harmonic average of recall

and precision.

FIGURE 9
Comparison of sandstorm detection results in cloud/bare land the region on 3 March 2016. Spatial distributions of MODIS image (band:1-4-3)
(A), OMI AI product (B), detection results of space sandstorms with LSR (C), and detection results of space sandstorms in MODIS images without
LSR (D).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Accuracy � TP + TN

TP + FP + TN + FN

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 − score � 2TP
2TP + FP + FN

MPA � 1

|QR| ∑
q∈QR

AP(q)

, (6)

where TP and TN are dust and non-dust pixel correctly identified

by the sandstorm detection model, respectively. FN and FP are

the pixels that are predicted to be non-dust and dust and are

recognized by the model as dust and non-dust pixels,

respectively. AP is the average of multiple validation data sets

and QR is the number of validation sets.

3 Results

3.1 Sandstorm detection results

This article selects three dust storm events from March 15 to

March 17 and March 27 to March 28 for detection in 2021. The

abovementioned dust events are detected by deep learning

techniques with LSR and no LSR as prior data, respectively.

The sandstorm detection results were analyzed and verified

FIGURE 10
Comparison of sandstorm detection results in cloud/ice and snow in the region on 16 March 2021. Spatial distributions of MODIS image (band:
1-4-3) (A), OMI AI product (B), detection results of space sandstorms with LSR (C), and detection results of space sandstorms in MODIS images
without LSR (D).
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FIGURE 11
Comparison of sandstorm detection results in cloud/bare land the region on 28March 2021. Spatial distributions of MODIS image (band:1-4-3)
(A), OMI AI product (B), detection results of space sandstorms with LSR (C), and detection results of space sandstorms in MODIS images without
LSR (D).

TABLE 6 Dust training network model parameters.

Learning rate BANCH SIZE EPOCH Weight decay Number
of training samples

0.001 16 8 0.0005 4576

TABLE 7 Evaluation index of the sandstorm detection accuracy.

Category Accuracy Recall Precision F1-score MPA

Sandstorm detection with the LSR database 0.985 0.988 0.846 0.874 0.986

Sandstorm detection without the LSR database 0.974 0.970 0.786 0.784 0.972
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through visual interpretation and OMI AI data products. See

Figures 5–7.

Figures 5–7 show the detection results of a sandstorm

from March 15 to 17, 2021. On the morning of 15 March

2021, the sandstorms moved eastward along the Hexi

Corridor, and the area of influence expanded eastward; by

the morning of the 16th, the area of influence of the

sandstorms further expanded, and areas such as central

and western Inner Mongolia and southern Mongolia were

affected by varying degrees of dust weather. Influence on the

morning of the 17th, it continued to move slowly to the

northwest, and thin dust appeared in most parts of

Northwest and North China.

In Figures 5–7, Figure c is the detection result of the sandstorm

supported by the deep learningmethod based on the LSR data. Thick

and thin dust was accurately identified. Particularly, the extraction

effect of thin dust above the land surface with high reflectance was

better, thin dust shapes and textures were clearly visible, and thin dust

over vegetated areas and bare land were easy to identify. On the edge

of the cloud and dust, thin dust, thick dust recognition effect with

OMI AI products, dust area of the true color composite image was

consistent. These factors indicate that the dust aerosol intensity and

range were consistent with the sandstorm detection results. Figure d

is the sandstormdetection result of the deep learningmethodwithout

the support of the LSR dataset. It is difficult to identify thin dust in

desert areas such as deserts and Gobi, and the detection range of

FIGURE 12
Model training land surface reflectance support accuracy and MPA vs. epoch.

FIGURE 13
Model training without land surface reflectance support accuracy and MPA vs. epoch.
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blowing sand weather is small, and it is easy to be confused between

thin dust and clouds. The detection effect of thin dust over the bright

land surface or the dark land surface is poor, and the detection of a

sandstorm in the mixed area of thin clouds and bare ground is

misjudged. It is difficult to accurately identify dust in a heterogeneous

area composed of amixture of dust and clouds, bare ground, and ice/

snow.

3.2 Accuracy verification

To verify the sandstorm detection results of different land

surface types, three sandstorm events that occurred in northern

and northwest China in April 2014, May 2016, and March

2021 were selected for detection and research to verify the

stability of the LSR product as a priori data to support the

deep learning for sandstorm detection. Figures 8–11 shows the

detection results of mixed areas of thick dust, thin dust, and

clouds over different land surface types (desert, Gobi, bare land,

ice and snow, vegetation, etc.).

Figure 8 shows a strong dust storm that occurred in Northwest

China on 23 April 2014. Occurs in desert/Gobi and bare ground

areas, from the comparison of the detection results of the two

methods, the deep learning method with the priori LSR dataset is

better for desert/Gobi, dust above bare ground, and thick dust

around cloud edges. It not only overcomes the problem of

sandstorm detection on the bright land surface but also monitors

the dust at the edge of the cloud and around the thin cloud, dust edge

consistent with visual interpretation; Without using the detection

results supported by the LSR dataset, the overall thick dust can be

accurately identified, however, the detection results in desert/Gobi,

bare ground, cloud, and other areas are discontinuous, the dust

boundary is unstable and prone to misidentification, misjudgment

of high-brightness land surface sandstorms and omission of thin

dust. Figure 9 is a comparison of thin/thick sandstorm detection

results in cloud/bare land in the region on 3 March 2016. The deep

learning supported by priori LSR dataset for the thin dust above the

bare ground, its trajectory can basically be detected. However, the

sandstorm detection result without the support of priori LSR, the

thin dust above the bare ground and the edge of the thin cloud are

wrongly detected as dust, and the detection effect is not ideal.

Figure 10 is a comparison of thin sandstorm detection results in

cloud/ice and snow in the region on 16 March 2021. The results of

using no LSR as prior data show that the edge detection effect of dust

and ice/snow/thick cloud/bare ground is poor, and the Gobi and

some mixed areas with thin clouds are identified as dust. As shown

in Figure 11, for sandstorm detection in the cloud and bare ground

areas, using without LSR dataset support MODIS image space dust

storm detection will have some areas with similar brightness to dust

that are identified as dust. The sandstorm detection boundary

around the cloud edge is prone to misjudgment. There is no

accurate boundary between dust and cloud, and thin dust is

basically not detected. When using the deep learning method

supported by LSR to detect MODIS image space dust around

clouds and bare ground, it can accurately identify thin dust, and

can correctly identify dust on the edges of clouds, deserts, and the

Gobi, with good detection accuracy and stability.

Additionally, synthesizing the aforementioned analysis by

the deep learning sandstorm detection method supported by LSR

products can accurately and stably detect thick dust, thin dust,

and dust around cloud edges over different land surface types

such as deserts, Gobi, ice and snow, and bare ground. Therefore,

the boundary of the mixed zone of cloud edge and dust edge can

be clearly identified.

Table 7 shows the results of the dust extraction accuracy. The

MPA, accuracy, and recall of the sandstorm detection supported

by the LSR database were all found to be above 0.980. The

accuracy and F1-score of extracting dust reached 0.846 and 0.874,

respectively. The accuracy, recall, and MPA of sandstorm

detection without LSR support were all approximately 0.970,

whereas the F1-score was only 0.784. Results showed that the

deep learning technology method supported by the LSR database

exhibited better detection accuracy and stability for the mixed

areas of thin dust, thin clouds, low reflectance, etc. Compared to

sandstorm detection without the support of the LSR database.

Figures 12, 13 depict the trained sandstorm detection model

accuracy and MPA trends. Epoch indicates that a forward

computation and a backward propagation process were

completed. Figure 12 is the model trained on the LSR

difference image. When the model is trained to 125 Epochs,

the training and test data accuracy stabilized and gradually

increased. At 200 epochs, the model training and test data

accuracy were 0.985 and 0.987. Furthermore, high variability

was observed when the test data MPA was trained 25 times. At

85 epochs, the training and test data MPA gradually increased,

before reaching 0.987 and 0.991, respectively. Figure 13 is the

result of training on MODIS data without LSR support, the test

data accuracy and MPA were more variable and continued to

increase till 125 epochs. They were less variable and steadily

increased after 125 epochs.

4 Conclusion

Because of the complex spatial structure of the land surface,

the obvious difference between light and dark, uncertain land

surface reflectance, and various types of dust, the radiation

characteristics of thin dust and thick dust are significantly

different. Under the limited band information provided by

satellite sensors, it is difficult for deep learning technology to

distinguish the highly heterogeneous land surface from

polymorphic dust and clouds. A method for detecting

sandstorms using deep learning technology supported by land

surface reflectance products is proposed. The difference between

the reflectance data of different bands obtained by satellite and

the LSR dataset is used as the input feature of the sandstorm
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detection model, whereas the sample dataset obtains

characteristic images of typical ground object types, such as

thin dust, thick dust, clouds, bare land, vegetation, and ice/

snow, through visual interpretation from MODIS images of

different time series of sandstorms in northern China.

Comprehensive use of multi-band radiation information was

realized, and the deep learning technology supported by LSR

products was used to detect dust. Considering the sandstorm in

March 2021 as an example, the sandstorm detection results were

verified through OMI AI products. The overall results showed

that the sandstorm detection algorithm used in this study was

consistent with the OMI AI product with an extraction accuracy

of 84.6%. Simultaneously, we compared these results with the

recognition results of MODIS images without the support of the

LSR database. Results showed that the automatic detection of

thin and thick dust above the dark and high-reflectance land

surfaces was effectively realized under the conditions supported

by the LSR dataset. Areas with thin dust, thin dust at cloud edges,

and bright land surface dust areas have obvious advantages when

identifying sandstorms.

The LSR dataset-based deep learning method effectively

detected sandstorms. However, it experienced certain

limitations listed as follows: 1) this study constructed the LSR

database in 2014 and used that data to support the sandstorm

detection in 2021 and later, 2) the detection of some cloud edges,

high-reflectance land surfaces, and dust edge areas require

improvement, and 3) the orbital data OMI AI products were

affected by the imaging time differences between OMI AI and

MODIS, and thereby resulted in image mismatches. The

limitations would need further investigations to enhance the

accuracy and stability of sandstorm detection. We would like to

construct long-time series of LSR datasets, improve dust edge

identification by increasing the sandstorm detection sample data

diversity, and validate the observations by detecting the dust

station data,consider OMPS AI for comparison due to its smaller

gaps, in our future studies.
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