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In this paper, the material point method (MPM) is used to explore the influence

of matrix (namely soil) in the soil-rock mixture (SRM) on the stability of SRM

slope. Firstly, a typical slope model is established, and a series of circular stone

blocks with different sizes are generated inside the slope, then the SRM slope

model is established. Next, the gravity is linearly loaded. When it is completed,

the kinetic damping is applied, and the kinetic energy of the SRM slope is set to

0 to obtain the initial state of the slope. Then, the stability of the SRM slope

under different soil cohesions and internal friction angles is simulated by MPM.

The simulation results show that the stability of the SRM slope is more affected

by cohesion than the internal friction angle. When the SRM slope enters the

large deformation stage, there are both translational sliding and rotational

sliding modes in the slope. The translational sliding is mainly the soil above

the slope surface, and the SRM under the slope occurs rotational sliding.
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1 Introduction

Soil-rock mixture (SRM) is a heterogeneous geomaterial widely distributed in nature,

which is composed of hard rock and weak soil (Yue and Morin, 1996; Yilmaz et al., 2012).

Considering the vast differences and the multi-directional nature of the SRM itself, the

traditional assumption andmethods (He and Kusiak, 2017; Li et al., 2021a; Cui et al., 2021;

Zhou et al., 2021; Li et al., 2022) of homogeneous geomaterial is often unable to accurately

analyze it (Li et al., 2021b). At present, studies on SRM mainly include in-situ geological

surveys (Graziani et al., 2012), large-scale in-situ experiments (Coli et al., 2011),

laboratory experiment, and numerical simulation. Due to the rapid development of

computer technology and the advantages of numerical simulation methods, numerical

simulation has gradually become an essential part of research work.
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The numerical simulation research can be divided into two

aspects: one is the stability analysis of SRM slope (Xu et al.,

2008). Xu et al. (2008) established the SRM slope model using

digital image processing technology. On this basis, the stability

study was carried out by using the finite element strength

reduction method. They found that the distribution of shear

bands presents prominent rock-surrounding characteristics,

and the stability coefficient of SRM slope is higher than that of

equivalent homogeneous soil slope. Lianheng et al. proposed

an SRM slope model which can consider stones of arbitrary

shape and realize different block size distribution and stones

content. Then, the finite element method (FEM) was used to

simulate the stability of the SRM slope with different block

sizes and stones content. The other is to use the discrete

element method (DEM) to analyze the Micro-Mechanical

Properties of SRM (Zhao and Evans, 2009; Bono et al.,

2012; Graziani et al., 2012; Cil and Alshibli, 2014). Graziani

et al. (2012) carried out a two-dimensional particle flow

simulation of soil-rock mixture near the foundation of a

dam by biaxial test and direct shear test and analyzed the

influence laws of rock content, shape of block stone, and

confining pressure. Zhao and Evans, (2009) used sectional

composite walls, Cil (2014)and de Bono et al. (2012) to

simulate the flexible loading characteristics of rubber film

on confining pressure in indoor tests by replacing

cylindrical walls with flexible bonded granular films, which

solved the irrationality of simulation of confining pressure in

indoor triaxle tests in conventional discrete eleme1nt tests and

achieved good simulation results in practical applications.

At present, the simulation analysis of SRM is primarily

quasi-static, and there is no simulation analysis of the large

deformation stage after its instability and failure. However, it

is necessary to point out that the simulation analysis of the

whole process of large deformation and failure of SRM slope

helps us to deepen the understanding of its failure mechanism

and influence range, which is of great significance to the

prevention and control of geological disasters such as

landslides. The traditional numerical simulation methods

often encounter difficulties in solving significant

deformation problems. For example, the mesh-based FEM

method will reduce the accuracy or even make the solution

wrong due to the mesh distortion. The particle-based DEM

method is challenging to carry out large-scale calculation and

analysis due to a large amount of calculation, and the selection

of micro parameters of materials is always not so easy (Soga

et al., 2018). The material point method (MPM) was first

proposed by Sulsky et al. (1994) based on the particle grid

method, which uses a hybrid Euler-Lagrangian format, where

all the material information is stored on the Lagrangian

particle (Sulsky et al., 1994). The deformed Euler

background grid is discarded at the end of each calculation

step and re-established at the beginning of the next time

step. The information mapping between them is determined

by the shape function established on the grid node (Charlton

et al., 2017; Sulsky et al., 1994). Compared with the FEM

method of the pure Lagrange scheme, MPM does not

encounter the problem that the calculation cannot be

carried out due to grid distortion, and the calculation

amount of MPM is much smaller than that of DEM.

Therefore, the MPM method has strong applicability in

solving large deformation problems (Chen and Brannon,

2002).

In this paper, MPM is used to simulate the whole process of

SRM slope failure. Firstly, the SRM slope model is established,

and then the stability analysis is carried out. The shear band

distribution obtained by MPM calculation is compared with the

results of the FEM method to verify the reliability of the MPM

method in simulating the SRM problem. Next, the cohesion and

internal friction angle of soil in SRM are reduced to simulate the

shear band expansion law of SRM slope under external

disturbance (such as rainfall) and the whole process of test

failure.

2 Methodology

MPM was first proposed by Sulsky and Chen et al. and then

extended by Bardenhagen and Kober, 2004 based on the Petrov-

Galerkin method. It is composed of Lagrangian particles and

Euler mesh to describe the framework of the continuum. The

material points play the role of Lagrangian particles and carry

all the material information, such as mass, density, stress,

velocity, etc. The fixed background grid in the space is

responsible for providing a Euler description. It is precise

because the background grid is fixed in the space and does

not move with the particle that MPM avoids the difficulty

caused by grid distortion, so it is very suitable for solving

significant deformation problems (Liangand Zhao, 2019;

Jiang et al., 2020).

2.1 Governing equation and discretization

Based on the updated Lagrangian scheme, the continuous

momentum equation and its boundary conditions can be

expressed as:
ρ€ui � σ ij,j + ρbi (1)
⎧⎪⎨⎪⎩

(njσ ij)
∣∣∣∣∣∣∣Γt � ti

vi
∣∣∣∣∣∣Γu � vi

(2)

In Eq. 1, ρ represents the current mass density of the

continuum, ui represents the displacement, σ ij represents the

Cauchy stress, the subscript represents the component of the

tensor and the partial derivative, and bi represents the volume

force per unit mass. In Eq. 2, Γt and Γu denote the surface force
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boundary and the displacement boundary, respectively, nj is the

unit vector of the outer normal of the surface force boundary Γt ,
�ti is the surface force acting on the boundary Γt, and �vi is the

moving speed of the displacement boundary Γu.

According to the principle of virtual displacement and

boundary conditions, the corresponding weak form of

momentum differential Eq. 1 is:

∫
Ω
ρ€uiδuidV + ∫

Ω
ρσsijδui,jdV − ∫

Ω
ρbiδuidV − ∫

Γt
ρ�tsiδuidA � 0

(3)
In the above equation, δui represents the virtual

displacement equal to 0 on the boundary Γu, σsij � σ ij/ρ

represents the specific stress, and �tsi � �ti/ρ represents the

boundary surface force.

As shown in Figure 1, the continuum is discretized into

material points (MPs), and its density is expressed as:

ρ(xi) � ∑
p

mpδ(xi − xip) (4)

where, δ is the Dirac delta function, mp represents the mass of

MPs, and xip is the coordinate of MPs. Eq. 4 is brought into Eq. 3,

then the weak form is transformed into the form of particle

integration.

∑
p

mp€uipδuip +∑
p

mpσ
s
ijpδuip −∑

p

mpbipδuip

−∑
p

mp�t
s
iph

−1δuip � 0 (5)

where, subscript p represents the physical quantity carried by the

MP, and h is the imaginary boundary layer thickness. When the

MPM is used to solve the problem, the MPs and the background

grid do not move relatively in each calculation step, so the

information mapping can be realized by the finite element

shape function NI(xi) established on the background grid

node, and the displacement and virtual displacement of the

MPs can be expressed as

uip � NIpuiI, δuip � NIpδuiI (6)

where, subscript I represents the variables on the background

grid node I, and NIp represents the value of the shape function

NI of the grid node I at the MP. According to Eq. 6, and

considering the arbitrary virtual displacement δuiI of the

background grid node, the motion equation of the

background grid node can be expressed as:

_piI � fint
iI + fext

iI , xI ∉ Γu (7)
fint
iI � −∑

p

NIp,jσ ijp
mp

ρp
(8)

fext
iI � ∑

p

NIpmpbip +∑
p

NIp
mp

ρp
�tiph

−1mp

ρp
(9)

where, PiI represents the momentum of the background grid

node I, mI represents the lumped mass matrix, fint
iI and fext

iI

represent the internal force and external force of the node,

respectively, h represents the boundary layer thickness,

σ ijp � σ ij(xp), �tip � �ti(xp), bip � bi(xp).
The continuous time is discretized by the central difference

method, so Eq. 7 is expressed as the form of time integration in

each time step:

pn+1/2
iI � pn−1/2

iI + fn
iIΔt (10)

where, Δt represents the increment of each time step which is a

constant value in the paper, superscript represents the time step,

and pn+1/2
iI represents the resultant force of node force at the nth

time step.

FIGURE 1
Computational cycle for the standard Material Point Method. (A) Map information from particles to grid nodes. (B) Solve node function. (C)
Remap information to particles. (D) Update velocity and position of particles.
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2.2 Computational cycle for MPM

The calculation cycle of MPM is shown in Figure 1. At each

time step, the background grid is reset, and the information of the

MPs is mapped to the grid node, as shown in Figure 1A; the grid

node uses the information to solve the governing equation, and the

constitutive equation is solved on the MPs, as shown in Figure 1B;

then, the information solved on the grid node is mapped back to

the MPs, as shown in Figure 1C; finally, update the MPs and

discard the deformed grid, as shown in Figure 1D. The first,

second, and third stages can be regarded as the Lagrangian stage,

and the last stage can be regarded as the Euler stage.

Compared with the FEM, the computational grid of the FEM is

permanently fixed with the object, while the background grid of the

MPM is only fixed with the object in each time step, and at the end

of each time step, the deformed grid is discarded. The MPs have

carried all the information of the object. At the next time step, the

information of the MPs is mapped to the background grid node

through the shape function to determine the grid information.

Therefore, no information of the grid node at each time is required

to be recorded in the MPM. For large deformation problems, the

FEM will reduce the accuracy due to grid distortion and produce

numerical solution difficulties. The MPM will not encounter the

problem that the calculation caused by grid distortion cannot be

carried out, so it is very suitable for the simulation analysis of large

deformation problems (Soga et al., 2018; Ying et al., 2021).

The momentum at the beginning of the time step is used to

update the stress, that is, the USF format (Bardenhagen et al.,

2001). The main advantages of the USF format are: first, the USF

format has good stability and energy conservation characteristics;

second, the USF format has a small amount of calculation. The

specific calculation process is as follows:

Establish a new background grid, map the mass and

momentum of the MPs to the grid nodes, and solve the node

velocity:

mn
I � ∑

p

mpN
n
Ip (11)

Pn−1/2
iI � ∑

p

Nn
Ipmpv

n−1/2
ip (12)

vn−1/2iI � pn−1/2
iI

mn
I

(13)

Use the node velocity gradient to solve the strain rate _εn−1/2ijp

and rotation rate Ωn−1/2
ijp of MPs, and then update the density and

stress of each MP:

_εn−1/2ijp � ∑
I

1
2
(Nn

Ip,jv
n−1/2
iI +Nn−1/2

Ip,i vn−1/2jI ) (14)

Ωn−1/2
ijp � ∑

I

1
2
(Nn

Ip,jv
n−1/2
iI −Nn−1/2

Ip,i vn−1/2jI ) (15)

ρn+1p � ρnp/(1 + _εn−1/2ijp Δt) (16)

The stress update adopts the return mapping algorithm. The

elastic trial stress ~σnijp is first calculated according to the elastic

constitutive model and then checked by the Drucker-Prager

criterion. The stress exceeding the yield surface is pulled back

to the yield surface to obtain the actual stress σnijp.

The internal force and external force of nodes are calculated

according to Eqs 8, 9, and the node momentum is updated by

Eq. 10.

The incremental node velocity is mapped back to the MP by

the FLIP momentum mapping scheme, and the position of the

material point is updated:

vn+1/2ip � vn−1/2ip + Δtn ∑
I

Nn
Ipf

n
iI

mn
I

(17)

xn+1/2
ip � xn

ip + Δtn+1/2 ∑
I

Nn
IpP

n+1/2
iI

mn
I

(18)

2.3 Contact algorithm

In order to avoid the adhesion of rocks when they are close,

this paper employs the contact algorithm (Bardenhagen et al.,

2001; Remacle et al., 2012) to separate them. Considering two

approaching objects r and s, the contact criterion is:

(vriI − vsiI)nriI > 0 (19)

where, nriI represents the outer normal unit vector of the

boundary of object r at node I. To make it satisfy the

collinear condition, nriI is taken as

nriI � −nsiI �
n̂riI − n̂siI∣∣∣∣n̂riI − n̂siI

∣∣∣∣, nriI �
∑pmpNIp,i∣∣∣∣∣∑pmpNIp,i

∣∣∣∣∣ (20)

When calculating the contact force of the node, the node

momentum is updated independently according to the

calculation method of the original MPM without considering the

contact, denoted as the test momentum p̂b,n+1/2
iI ; then, the contact is

judged according to Eq. 19. When the contact condition is not

satisfied, the testing momentum is the real momentum. If the

contact criterion is satisfied, the contact force is solved according

to the continuous condition of the velocity field.

fr,c,k
iI � 1

(mr,n
I +ms,n

I )Δt (mr,n
I p̂s,n+1/2

iI −ms,n
I p̂r,n+1/2

iI ) (21)

The contact force of sliding contact is

fb,c,k
iI � fb,nor,k

iI + μ
����fb,nor,k

iI

���� fb, tan ,k
iI����fb,nor,k
iI

���� (22)

where, fb,nor,n
iI � fb,c,n

iI nb,njI n
b,n
iI , is the normal contact force,

fb, tan ,n
iI � fb,c,n

iI − fb,nor,n
iI , is the tangential contact force, and

then the contact force is used to correct the node momentum
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to obtain the real momentum pb,n+1/2
iI ; the subsequent calculation

process is still carried out according to Section 2.2.

3 Model

The geometric size of the model is shown in Figure 2A. The

grey disc represents the block stone, and there are 83 blocks in the

soil-rock mixed slope model, with the minimum diameter of

0.2 m and themaximum diameter of 1.6 m. The discrete model of

material points is shown in Figure 2B. The edge length of the

background grid is set to 0.1 m, and four material points are

arranged in each grid. The spacing between the internal material

points is 0.5 grid lengths, and the material point of the boundary

is 0.25 grid lengths from the boundary. A total of 53636 material

points are in total. The soil and the block stone account for

38750 and 14886, respectively, and the stone content is 27.75%.

In the simulation, essential boundary conditions are applied on

both sides, and the bottom of the model and other surfaces are

free. The mechanical parameters of the material are shown in

Table 1. The parameters are mainly from Zhao and Evan, (2009).

The Young’s modulus of the rock is 400 times that of the soil, the

ratio of the internal friction angle to the dilatancy angle is less

than twice, and the ratio of the internal friction force is 30 times.

In the actual simulation process, the rock will not reach the

plastic state.

To make the simulation more stable, this paper sets a small-

time step, 0.01 ms, in the simulation. The simulation process

lasted for 12 s, which was divided into two stages. 0–2 s was the

first stage, and a stable PIC momentum mapping format and

elastic constitutive model were adopted. The gravity is linearly

loaded until g = 9.8 m/s2, and then the momentum is set to 0 to

obtain the initial state of the slope. 2–12 s is the second stage,

using a FLIP momentum mapping scheme with good

momentum conservation characteristics (Jiang et al., 2020),

adopting the D-P criterion to calibrate the stresses.

4 Simulation results

MPM simulation was carried out based on the material point

model in Figure 2B and themechanical parameters in Table 1; the

distribution of shear bands is shown in Figure 3.

εv � tr(ε) (23)
εq � ε − Iεv (24)
εq � ε − Iεv (25)

FIGURE 2
(A) Geometric parameters of SRM slope model. (The red marked points are the monitoring points of the shoulder and foot of the slope) (B)
Discrete model of slope by MPs. (53636 material points in total, 38750 MPs for soil, 14886 MPs for stone).

TABLE 1 Mechanical parameters of the SRM slope.

Parameters Soil Stone

ρ/(kg/m3) 1800 2410

E/MPa 50 20000

] 0.35 0.2

ϕ/° 24 42

c/kPa 30 900

ψ/° 24 42 FIGURE 3
Shear zone distribution.
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In the above equations, ε, εv and εq represent strain, volume

strain, and partial strain, I represents unit matrix consistent with the

strain tensor dimension, and e represents generalized deviatoric strain.

In Figure 3, the dark blue circular area is stone, and the other

areas are soil. It can be found that the shear failure area is mainly

located at the bottom of the slope, and their distribution has a

strong correlation with the distribution of stones. Compared with

the regular distribution of arc plastic zone of homogeneous soil

slope, the distribution of shear bands of SRM slope shows

multiple interlaced effects. These shear bands are around the

rock showing a strong correlation with the distribution of rock.

Consistent with the report of Xu et al. (2008), the shear band

distribution calculated in this paper can also be divided into three

types, namely, the shear band distributed along the side of the

block, the closed shear band distributed along both sides of the

block and the non-closed shear band distributed along both sides

of the block. In summary, the reliability of MPM in simulating

SRM slope is sufficient. In the later part of this section, the soil

properties of SRM slope are reduced to explore the influence of its

properties on the stability of SRM slope.

4.1 Development of shear bands with
decreasing cohesion

Figure 4 shows the development of the SRM slope shear zone

with the decrease in soil cohesion.

When the cohesion decreases by 10 kPa, as shown in

Figure 4A, the maximum shear deformation increases to

0.027, the shear deformation develops further, the shear zone

expands gradually, and the shear zone below the slope develops

most violently. The shear zone at the toe of the slope gradually

penetrates the slope, and the internal shear zone gradually

expands to the surface of the slope. However, at this time, the

maximum shear deformation area is still distributed in the slope.

When the cohesion decreases by 20 kPa, see Figure 4B,

currently, more shear bands extend to the slope surface and

top, and the maximum shear deformation increases to 0.05,

almost twice as much as Figure 4A. There are two main

differences from the results in Figure 4A. First, the maximum

shear deformation area is no longer inside the slope, but at the

foot of the slope, and the shear deformation degree at the slope

angle is much larger than that inside the slope. Second, the range

of shear deformation is extended to the bottom of the slope and

runs through the slope surface.

When the cohesion is reduced to 1 kPa, see Figure 4C, the

primary shear zone is formed at this time, which is located on the

slope surface, and a shallow landslide occurs. In addition, there is

also a shear band that runs through the slope toe to the top of the

slope, forming a potential sliding band. Between the two

prominent shear bands, many shear bands are distributed

around the block stones that connect them.

Figure 4D shows the displacement map when the cohesion is

reduced to 1 kPa. The main sliding area is the soil at the slope

surface, and the maximum displacement reaches 2.52 m. In

addition, the rock and soil between the two main shear bands

have an overall sliding, and the displacement value is about

0.5 m. The sliding surface is similar to the circular failure surface

of the homogeneous soil slope.

4.2 Shear band with internal friction
angle down

Figure 5 shows the development of the SRM slope shear zone

with the soil internal friction angle decrease.

FIGURE 4
Development of shear bands with decreasing c. (A) Distribution of shear band at the cohesion of 20 kPa. (B) Distribution of shear band at the
cohesion of 10 kPa. (C) Distribution of shear band at the cohesion of 1 kPa. (D) Distribution of displacement (m) at the cohesion of 1 kPa.
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When the internal friction angle drops to 20°, the distribution

of shear deformation is shown in Figure 5A. From the perspective

of the magnitude of shear deformation, compared with Figure 3,

the maximum shear deformation increases by only 0.01, and the

shear zones inside the slope are further developed. The shear

zones with the maximum shear deformation are still those inside

the slope, but their lengths are further extended and extend to the

top of the slope. The development of the shear zone at the toe of

the slope is apparent: compared with Figure 3, it can be found

that the shear zone at the toe of the slope gradually extends into

the slope surface; a series of interlaced small shear zones are

gradually formed under the slope.

When the internal friction angle drops to 16°, the shear

deformation map is shown in Figure 5B. Compared with the

size of shear deformation, the maximum shear deformation

still does not increase significantly. Compared with Figure 5A,

the size and distribution of shear deformation are almost the

same. Therefore, it can be said that the decrease in

internal friction angle has little effect on the stability of the

SRM slope.

4.3 Shear bands developwith the decrease
of cohesion and internal friction angle

Figure 6 shows the development of the SRM slope shear zone

with the decrease of soil friction angle and cohesion.

Figure 6A shows the simulation results when the cohesion is

20 kPa, and the internal friction angle is 20°. Compared with

Figure 3, the shear deformation develops rapidly, and the

maximum value increases to 0.032. The maximum shear

deformation areas are mainly located at the toe and inside the

slope and extend to the top and surface. The shear band inside the

slope extends to the rock and soil mass at the bottom of the slope.

FIGURE 5
Development of shear bands with decreasing ϕ. (A) Distribution of shear band at the angle of 20°. (B) Distribution of shear band at the cohesion
of 16°.

FIGURE 6
Shear bands develop with the decrease of c and ϕ. (A) Distribution of shear bands at ϕ � 20+ and c � 20 kPa. (B) Distribution of shear bands at
ϕ � 20+ and c � 10 kPa. (C) Distribution of shear bands at ϕ � 20+ and c � 1 kPa. (D) Distribution of displacement (m) at ϕ � 20+ and c � 1 kPa.
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When the cohesive force is 10 kPa, and the internal friction

angle is 20°, the simulation results are shown in Figure 6B. At this

point, multiple shear bands extend to the slope surface and

top. Compared with Figure 3, the maximum shear

deformation increases to 0.087, which is 4.6 times higher. The

results are different from those in Figure 6A in three aspects: first,

the maximum shear deformation area is no longer inside the

slope but at the foot of the slope, and the shear deformation

degree at the slope angle is much larger than that inside the slope;

second, the range of shear deformation is extended to a farther

position at the bottom of the slope and runs through the surface

of the bottom of the slope; third, the shear zone at the foot of the

slope runs through the slope and extends to the top of the slope,

forming a primary shear zone, and many shear zones run

through the top of the slope are also formed within the slope.

When the cohesion is 1 kPa, and the internal friction angle is

20°, the simulation results are shown in Figure 6C. At this time,

two main shear bands are formed, one near the slope, the other

runs through the slope toe to the top of the slope, and many shear

bands are distributed around the rocks that connect them.

Figure 6D shows the displacement map currently; the

displacement of the soil near the slope is the largest, reaching

3.5 m; the integrity of the rock and soil mass between the two

shear bands is good, and the circular sliding occurs. The

displacement of this part is about 1.5 m, and the displacement

is almost unchanged in this region.

Figure 7 shows the displacement variation of the monitoring

points with the decrease of soil friction angle and cohesion.

According to Figure 7A and Figure 7C, the displacement as well

as the vertical displacement of the slope shoulder changes very

slightly until the nature of the matrix is reduced to c = 1 kPa, ϕ =

20°. Meanwhile, according to Figure 7B and Figure 7D, we can

find that the displacement as well as the vertical displacement of

the slope foot also changes very slightly, and the displacement

FIGURE 7
The displacement variation curve of the monitoring points. (A) Displacement variation curve of the slope shoulder. (B) Displacement variation
curve of the slope foot. (C) Vertical displacement variation curve of the slope shoulder. (D) Vertical displacement variation curve of the slope foot.
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magnitude are basically the same as the slope shoulder. It proves

that the slope body has good integrity.

When the property of the matrix was reduced to c = 1 kPa, ϕ =

20°, the displacements of both the shoulder and the foot of the slope

changed abruptly, and the change of the foot of the slope was a bit

larger, which was mainly caused by the strong mobility of the

matrix at this stage. From the change of vertical displacement,

the vertical displacement of the slope foot is slightly larger

than that of the shoulder of the slope, which is since the stones

slide toward the foot of the slope in the process of landslide

and keep a whole without destruction all the time, so the soil

around them is raised up by the stones.

Figure 8 shows the velocity cloud at different times with

cohesion of 1 kPa and internal friction angle of 20°. The duration

of the landslide is about 5 s. At 1s, the maximum rate is about

0.8 m/s, mainly distributed in a very shallow soil layer on the

slope surface, and the SRM rate under the surface is about 0.3 m/s.

At 2 s, the rate of landslide reaches the maximum, reaching 1 m/s,

and the rate of SRM under the slope surface is still maintained

at about 0.3 m/s. At 3 s, the soil slid to the bottom of the slope,

the rate decreased and gradually accumulated, and the lower

SRM rate closed to 0. The slope returned to a stable state in

5 s. By comparing the rate maps at each time, it can be found

that the maximum rate is always distributed in the soil on the

slope surface; the speed of SRM has almost no change in the

sliding process and presents the characteristics of uniform

distribution.

5 Discussion

In this paper, the effect of slope matrix on the SRM slope

deformation behavior is studied based on MPM. The cohesion and

internal friction angle of the soil were analyzed parametrically,

respectively, and the deformation response of the slope was

investigated when both of them were reduced simultaneously.

However, there are some shortcomings in this study, which need

to be optimized, and they were discussed in the following.

1) In actual engineering, the distribution and morphology of stones

of SRM slopes are highly random. In this paper, when conducting

the research, only round stones were selected for the study due to

the limitation of calculation ability. In the future, we should set the

stone distribution more in line with the engineering reality for

research, or analyze the simulation results by means of artificial

intelligence, whichmay be able to get some guiding results, which

are self-evident to the practical engineering.

2) In this paper, when reducing the cohesion and internal friction

angle of soil, the correlation between the two is not considered,

but the values of both are mechanically reduced, which may lead

to some unreasonable results. A more reliable research work can

be carried out by using the principle of strength reduction or

establishing the MPM framework of fluid-solid coupling to

consider the effect of water on soil properties.

3) Stones are very critical to the stability of SRM slopes, and the

deformation of stones during landslides was not considered in

this paper. In the future, an algorithm can be set up to track

the movement of the stones during the landslide, and next, a

crack extension algorithm can be set up to be able to track the

cracking of the stone blocks.

6 Conclusion

Based on MPM, the stability of SRM and the large

deformation stage after instability are simulated. Firstly, the

FIGURE 8
Slope velocity (m/s) map. (A) Sliding time t = 1 s. (B) Sliding time t = 2 s. (C) Sliding time t = 3 s. (D) Sliding time t = 5 s.
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SRM slope model with circular stones of different diameters is

established, and then its stability is analyzed by MPM, and the

following main conclusions are obtained.

(1) The establishment of the SRM model of the MPs is

relatively simple. The MPs carry all the information of

MPM, and When establishing the model, the

corresponding SRM model can be obtained by giving

different properties to the material points representing

the stone and the soil. Comparing with other methods, the

calculation results of MPM have high reliability, which

proves the effectiveness of MPM in analyzing SRM

problems.

(2) By comparing the influence of different matrix properties

on the stability of SRM, it is found that the decrease of

cohesion has a more significant influence on the stability

of SRM than the internal friction angle. When the two are

reduced simultaneously, the shear band expands rapidly

and enters the stage of large deformation.

(3) When the SRM slope is unstable, and then large deformation

occurs, the sliding mode of the surface soil is translational. In

contrast, the geomaterial below the slope shows good

integrity, and the sliding mode is rotation.
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