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Seismic data processing heavily relies on the solution of physics-driven inverse

problems. In the presence of unfavourable data acquisition conditions (e.g.,

regular or irregular coarse sampling of sources and/or receivers), the underlying

inverse problem becomes very ill-posed and prior information is required to

obtain a satisfactory solution. Sparsity-promoting inversion, coupled with fixed-

basis sparsifying transforms, represent the go-to approach for many processing

tasks due to its simplicity of implementation and proven successful application

in a variety of acquisition scenarios. Nevertheless, such transforms rely on the

assumption that seismic data can be represented as a linear combination of a

finite number of basis functions. Such an assumptionmay not always be fulfilled,

thus producing sub-optimal solutions. Leveraging the ability of deep neural

networks to find compact representations of complex, multi-dimensional

vector spaces, we propose to train an AutoEncoder network to learn a

nonlinear mapping between the input seismic data and a representative

latent manifold. The trained decoder is subsequently used as a nonlinear

preconditioner for the solution of the physics-driven inverse problem at

hand. Through synthetic and field data examples, the proposed nonlinear,

learned transformations are shown to outperform fixed-basis transforms and

converge faster to the sought solution for a variety of seismic processing tasks,

ranging from deghosting to wavefield separation with both regularly and

irregularly subsampled data.
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1 Introduction

Geophysical inverse problems are notoriously ill-posed and ad-hoc regularisation

techniques are usually employed to produce solutions that satisfy our available prior

knowledge. A typical example in seismic processing is represented by the problem of

seismic data interpolation where data acquired by sparsely sampled arrays of receivers are

reconstructed onto a regular, finely sampled grid of choice.

Interpolation methods can be divided into four main categories: spatial Prediction-

Error-Filters (PEFs), wave-equation based, rank-reduction, and domain transform. PEFs

interpolation methods (Spitz, 1991; Liu and Fomel, 2011) locally represent seismic data as
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a superposition of a small number of plane waves; such methods

reconstruct aliased data by exploiting their non-aliased low-

frequency components. Wave-equation based algorithms

(Ronen, 1987; Fomel, 2003), on the other hand, fill gaps in

the data by means of an implicit migration-demigration scheme.

Transform-based algorithms (Trad et al., 2002) exploit the fact

that seismic data can be represented by a small number of non-

zero coefficients in a suitable transformed domain, whilst

acquisition gaps introduce noise in such a domain.

Reconstructing missing traces therefore becomes a denoising

problem in the transformed domain, which can be tackled by

means of direct filtering or sparsity-promoting inversion

(Hennenfent and Herrmann, 2008). In the latter case, the Lp
norm (p ≤ 1) of the reconstructed seismic data in the transformed

domain is minimized whilst matching the available traces. The

frequency-wavenumber (F-K) transform (Abma and Kabir, 2006;

Schonewille et al., 2009), Radon transform (Kabir and Verschuur,

1995; Sacchi and Ulrych, 1995), and Curvelet-like transforms

(Herrmann and Hennenfent, 2008; Fomel and Liu, 2010; Hauser

and Ma, 2012) are examples of successful fixed-basis sparsifying

transforms. Alternatively, data-driven sparse dictionaries can be

learned directly from the dataset at hand (Zhu et al., 2017).

Nevertheless, the success of this family of methods is partially

hindered by the slow convergence of most sparsity-promoting

optimizers and by the fact that weaker events are usually poorly

reconstructed. Finally, rank-reduction methods (Trickett et al.,

2010; Oropeza and Sacchi, 2011; Kumar et al., 2012; Yang et al.,

2013) lie their foundation on the observation that fully sampled

seismic data exhibit a low-rank pattern that is deteriorated when

irregular gaps are introduced in the data. This approach is the

generalization of the sparsity-based inversion to matrices, in that

minimizing the nuclear norm of a matrix is equivalent to

minimizing the L1 norm of a vector containing its eigenvalues.

Despite its enormous popularity, interpolation alone is

seldom of interest during a seismic processing project.

Combining multiple processing steps into a single inversion is

in fact likely to reduce the propagation of errors from one step of

processing to the next and increase the processing turnaround

time. Being based on the solution of an inverse problem, rank-

reduction and transform-based algorithms lend nicely to the

introduction of additional physical constraints to further

mitigate the ill-posed nature of the seismic interpolation

problem. For example, by separating the recorded data into its

up- and down-going components as part of the interpolation

process, an explicit ghost model can be introduced to provide

further physical constraints to the sought solution. Such a

strategy can be employed when using either single-sensor data

(Grion, 2017) or multi-sensor data (Ozbek et al., 2010). Similarly,

when receiver-side gradients of the recorded wavefield are also

available, additional data terms can be easily included in the

problem improving the capabilities of the reconstruction process

far beyond the Nyquist sampling criterion (Vassallo et al., 2010;

Ruan and Vasconcelos, 2019).

The success of deep learning in various scientific disciplines

has recently gained the attention of the geophysical community.

Encouraging applications of deep learning in various seismic

processing and interpretation tasks have been reported, ranging

from denoising (Saad and Chen, 2020; Yu et al., 2021; Birnie and

Alkhalifah, 2022), deblending (Richardson and Feller, 2019; Sun

et al., 2020; Luiken et al., 2022), velocity analysis (Yang and Ma,

2019; Sun et al., 2020; Kazei et al., 2021), fault and geobodies

interpretation (Waldeland et al., 2018; Shi et al., 2019; Wu et al.,

2020), to reservoir characterization (Zhao, 2018; Alfarraj and

AlRegib, 2019; Das et al., 2019).We refer the reader to Yu andMa

(2021) for an exhaustive literature review on the topic. A new

family of methods that leverage neural networks within the

context of seismic interpolation has also emerged: Mandelli

et al. (2019) recast the data reconstruction problem as an end-

to-end learning task and use the popular U-Net architecture to

learn a mapping between the sparsely sampled and fully sampled

seismic data. Similarly, Siahkoohi et al. (2018) suggest to use

conditional adversarial networks by augmenting the learning

process with a discriminator network following the Image-to-

Image translation framework of Isola et al. (2017). More recently,

Kuijpers et al. (2021) and Vasconcelos et al. (2022) leverage

Recurrent Inference Machines (RIMs), a special type of learned

iterative solver (Adler and Oktem, 2017) that is specifically

designed to solve inverse problems in a data-driven fashion,

whilst still including prior knowledge about the forward

operator. Such an approach has been shown to outperform

end-to-end supervised learning methods and better generalize

to out-of-distribution data in various applications including MRI

reconstruction (Lønning et al., 2019) and imaging of

gravitational lenses (Morningstar et al., 2019), to cite a few.

Nevertheless, all of the aforementioned approaches share the

same limitation: they require representative pairs of decimated

and fully sampled data, which is usually not available in most

seismic processing projects. Whilst relying on synthetic data or

field data with similar characteristics (e.g., from nearby survey)

may alleviate the arising of generalization issues, the trained

network is usually expected to perform sub-optimally at test time

when applied to a different dataset. We refer to Mandelli et al.

(2019) for an in-depth analysis of the generalization issues of

supervised learning approaches in the context of seismic data

reconstruction. So-called domain adaptation techniques (e.g.,

Alkhalifah et al., 2021; Birnie and Alkhalifah, 2022) may

provide a remedy to this problem; however, such

generalization issues have also motivated the development of a

second wave of deep learning based algorithms that use neural

networks in combination with the known physics of the problem

to drive the solution of the inverse problem towards physically

plausible solutions. Along these lines, Kong et al. (2020) propose

to solve the seismic reconstruction problem in an unsupervised

manner using an untrained network as a deep prior

preconditioner following the Deep Image Prior concept

introduced in Ulyanov et al. (2017). Whilst this approach
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circumvents the need for any training data, it is currently

hindered by very slow convergence and it is shown to be

incapable of recovering strongly aliased events. Anti-aliasing,

slope-based regularization (Picetti et al., 2021) or a POCS-

inspired regularization (Park et al., 2020) have been further

proposed to increase the interpolation capabilities of such

deep prior networks.

Following a different line of thought, Li et al. (2020) suggests

to train a nonlinear dimensionality reduction model, such as an

AutoEncoder network (AE—Kramer, 1991), in order to identify

latent representations of the expected solution manifold. In a

subsequent step, the pre-trained network is used as a regularizer

in the solution of a physics-driven inverse problem in the medical

imaging context. Obmann et al. (2020) have extended this

procedure to sparse AEs and modified the regularization term

of the inverse problem to penalize solutions that do not belong to

the manifold. Whilst this approach closely resembles classical

sparsity promoting inversion schemes with over-complete linear

basis functions and provides some theoretical guarantees, it

usually renders a more challenging training and inversion

compared to the original method. In concurrent work, Ravasi

(2021) proposed to use the decoder of the trained AE as a

nonlinear preconditioners, solving the inverse problem

directly in the latent space of the network. This naturally

enforces solutions to be consistent with the manifold of the

training data and does not require finding a good balance

between the data misfit term and the regularization term. To

remark the fact that this preconditioner is composed of a neural

network, this approach will be referred to herein as Deep

Preconditioner.

In this work, we further develop the approach of Ravasi

(2021) and show that by carefully designing the AE network

architecture, loss function, and the pre-processing pipeline

associated with the training data, strong representations can

be obtained that ultimately improve the quality of the

downstream inversion task. We showcase various applications,

ranging from deghosting to wavefield separation with both

regularly and irregularly subsampled data, applying them to

synthetic datasets of increasing complexity and a marine field

dataset. Both the deghosting and wavefield separation modelling

operators will be introduced in details in the Numerical examples

section. Finally, we notice that contrary to medical applications

where a set of representative models is usually available upfront,

this is not always the case in seismic applications: we show that a

representative latent manifold can nevertheless be identified

using data that are not exactly in the same form of the model

we wish to invert for. For example, in the problem of joint

deghosting and data reconstruction, the AE is trained on the

available ghosted data whilst the learned decoder is used to invert

the recorded data for a finely sampled, deghosted data.

The paper is organized as follows. In Section 2, we introduce

the theory of Deep Preconditioners and the training process of

the associated AE network. In Section 3, we first apply the

proposed approach to a toy problem of one-dimensional

signal reconstruction. Subsequently, the same approach is

used to solve the joint deghosting and seismic data

reconstruction as well as the joint wavefield separation and

interpolation problems. In Section 4, we discuss a number of

avenues for future research, whilst some conclusive remarks are

presented in Section 5.

2 Theory

An inverse problem is the process of estimating from a given

set of observations the unknown underlying factors that

originated them. Due to their ill-posed nature, geophysical

inverse problems cannot be solved relying on the observations

alone, instead additional prior knowledge is also required; such

information can be provided either in the form of regularization

or preconditioning. In this section, we first recap some basic

concepts of the theory of regularized inverse problems. Second,

we introduce nonlinear, learned regularizers and preconditioners

and discuss how to interchange them with their more commonly

used linear counterparts. Finally, the training process devised to

learn strong latent representations from a collection of training

data is described.

2.1 Introduction to inverse problems

In this work, we are concerned with finding a stable solution

to a linear inverse problem of the form:

y � Gx, (1)

where y ∈ Rn and x ∈ Rm are the data and model vectors,

respectively, and G: Rm → Rn represents a linear mapping

between these two vectors. The nature of such an operator

will be further detailed for each of the problems considered in

this work. Note that the presented framework can be also

extended to nonlinear operators.

When the problem is well-posed, the solution of Eq. 1 can be

obtained by simply inverting the modelling operator: x̂ � G−1y.
For ill-posed problems, prior information must be added to

encourage the inversion process to produce realistic solutions;

this can be done by approximating Eq. 1 with a neighbouring

well-posed problem that accommodates for a stable solution. A

common approach to include prior knowledge in the inversion

process is represented by regularized least-squares inversion:

x̂ � argmin
x

‖y − Gx‖22 + ϵR‖Rx‖pp, (2)

where R is the regularization operator and ‖x‖p � (∑i|xi|p)1/p is

the Lp-norm. Examples of regularization with p = 2 are the so-

called Tikhonov regularization, where R is chosen to be the

identity operator to enforce the norm of the solution to be small,

Frontiers in Earth Science frontiersin.org03

Ravasi 10.3389/feart.2022.997788

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.997788


or the Laplacian operator to favour smoothness in the recovered

model. Similarly, Total Variation (p = 1 and R = ∇) represents a

popular choice in the case where the model is expected to be

piece-wise constant. Here, ∇ is the gradient operator that

computes first-order derivatives of the input vector over its

spatial coordinates.

Alternatively, a constrained inverse problem can be created

to ensure that the sought after solutions satisfies certain

conditions:

x̂ � argmin
x∈P

‖y − Gx‖22, (3)

where P identifies a subspace of Rm with given properties (e.g.,

solutions containing only positive values). A common way to

solve this problem is to identify a linear projection (or

preconditioner) that enforces the solution to belong to the

subspace of interest:

ẑ � argmin
z

‖y − GPz‖22 + ϵP‖z‖pp, (4)

where P ∈ Rz → Rm is the so-called preconditioner and z ∈ Rz is

the projected variable. Once the minimization problem is solved,

the model is finally obtained as x̂ � Pẑ. Smoothness in the

solution can be accomplished in this case by using a

smoothing operator as preconditioner together with the L2
norm in the penalizing term of the projected variable.

Another popular choice of preconditioner is represented by a

transformation that projects the model into a possibly over-

complete space (z ≥ m) where the model can be explained by a

small number of non-zero coefficients. This concept lies at the

basis of so-called sparsity-promoting inversion where the L1
norm of the projected variable is minimized alongside the

data term to enforce sparsity in the obtained solution (Candès

et al., 2006; Hennenfent and Herrmann, 2008).

2.2 Deep regularization and
preconditioning

In both of the approaches discussed so far, the choice of the

regularizer and preconditioner is generally driven by experience

and it can take a great deal of human effort and time to find a

suitable transform for a specific problem. Whilst dictionary

learning can partially overcome this limitation (Zhu et al.,

2017), linear bases struggle to accurately approximate complex

vector spaces such as those spanned by seismic data. This is

however not the case for nonlinear dimensionality reduction

techniques that leverage deep neural networks as we will see in

the following.

To begin with, Eqs 2, 4 must be adapted to accommodate for

such nonlinear transformations. Starting from the regularized

inverse problem, Eq. 2 can be recast as (e.g., Obmann et al.

(2020)):

x̂ � argmin
x

‖y − Gx‖22 + ϵR‖Fθ x( ) − x‖pp, (5)

Alternatively, the preconditioned inverse problem in Eq. 4

can be rewritten as (Ravasi, 2021):

ẑ � argmin
z

‖y − GFθ′ z( )‖22 + ϵZ‖z‖pp, (6)

where Fθ: R
m → Rm and Fθ′: Rz → Rm are nonlinear

transformations, possibly represented by a neural network

with learned parameters θ. Whilst this network can be

obtained in different ways, in this work we will consider AE

network architectures. In the first case, Fθ(x) = Dθ(Eϕ(x)) where

Eϕ and Dθ are the encoder and decoder parts of the network,

respectively. The regularization term in Eq. 5 does therefore

assess the similarity between a given solution of the inverse

problem, x̂, and the output of the network to which such solution

is fed as input. When the solution is not part of the manifold of

expected models (identified by the training data), the

regularization term will be large and therefore it will drive the

inverse process away from such a solution and towards a more

representative model vector that minimizes the data misfit term

at the same time. In the latter case, the network simply becomes

the decoder of the AE architecture (i.e., Fθ′ � Dθ). Here, similarly

to traditional linear preconditioners, the decoder takes any vector

z in the latent space and transforms it into a vector x in the

original space. This naturally ensures that the produced vector x

belongs to the manifold of expected solutions present in the

training data. Note that in both cases, since the functionals in Eqs

5, 6 are nonlinear, nonlinear solvers are required to estimate the

latent variable z. The second-order, nonlinear L-BFGS solver

(Nocedal, 1980) is used in this work. Moreover, the choice of the

starting guess z0 represents an important factor in the success of

the inversion process as we will discuss in the Numerical

examples section.

2.3 AutoEncoder training

In both of the above scenarios, the solution of the inverse

problem in Eqs 5, 6 is formulated as a two-steps process as

depicted in Figure 1: first, an AE network is trained to learn a

latent representation from a set of training data that share high-

level features with the expected solution of the inverse problem at

hand. Subsequently the entire network (in the regularized case)

or the decoder part of the network (in the preconditioned case) is

used to drive the solution of the inverse problem towards a

solution that belongs to the manifold of the training data.

Starting from the training phase, this process is performed by

using a training dataset of ns samples,X � {x0, x1, . . . , xns}, and it
is accomplished by minimizing the following cost function:

ϕ̂, θ̂ � argmin
ϕ,θ

1
ns

∑ns
j�1

L xj, Dθ Eϕ xj( )( )( ) + ϵE‖Eϕ xj( )‖pp, (7)
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where L̂ is the main loss function, and a regularization term

acting on the latent space vectors zj = Eϕ(xj) is also introduced.

More specifically, the loss function can be expressed as:

L xj, Dθ Eϕ xj( )( )( ) � ∑nl
i�1

L̂i xj, Dθ Eϕ xj( )( )( ), (8)

where L̂i represents the ith loss function, and nl indicates

that multiple losses can be used to form the overall cost

function.

The training process of an AE network is usually impacted by

the choice of the network architecture, loss function(s), and

training data (and their associated pre-processing). In the

subsequent subsections, we highlight a number of strategies

that have been adopted in our numerical examples to enhance

the reconstruction capabilities of the AE network, whilst

ultimately producing more expressive latent representations.

This will in turn impact the quality of our downstream task

(e.g., deghosting and interpolation). As such, the effectiveness of

the different training strategies will be evaluated both by

computing the Mean Square Error (MSE �
�������
‖x − x̂‖22

√
/m) of

the reconstructed samples in the validation dataset, as well as by

computing the signal-to-noise ratio (SNR � 10log10(‖x‖22/‖x −
x̂‖22)) of the estimated wavefield of the downstream processing

task against the ground truth solution.

2.3.1 Network architecture
When dealing with gridded, multi-dimensional signals such

as natural images or seismic data, Convolutional Neural

Networks (CNNs) represent the most natural choice for the

network architecture. Convolutional AEs (Masci et al., 2011) are

usually composed of a number of convolutional layers followed

by downsampling (implemented via average or max pooling) in

the encoder (or contracting) path, and similarly by a number of

convolutional layers followed by upsampling (implemented via,

for example, bilinear interpolation) in the decoder (or

expanding) path; moreover, a 1 × 1 convolutional layer or a

dense layers may be used at the end of the encoder path and at the

start of the decoder path to transform the convolutional features

into a vector of size z (i.e., the latent code). Here, we use the latter

choice of layer. A final convolutional layer is also added to the

decoder to restore the number of channels to 1 like in the

input data.

FIGURE 1
Schematic representation of the proposed two-step approach for the solution of geophysical inverse problems. (A) Training phase: an AE
network is trained to reproduce patches of seismic data with the aim of learning robust latent representations. (B) Inversion phase: the pre-trained
decoder is coupled to a physicalmodelling operatorG to solve a geophysical inverse problemof choice. Note that since training has been performed
using patches, the latent vector z is composed of a stack of latent codes from different patches of themodel vector that wewish to reconstruct.
Moreover, since during training all patches have been scaled between [−1, 1] an adaptive scaling operator S is applied to the different patches before
combining them together via a patching operator W.
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FIGURE 2
Network architectures. (A) Convolutional AE, (B) Convolutional AE with ResNet blocks, (C) Convolutional AE with MultiRes blocks.
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In this work, a purely convolutional network architecture is

chosen as baseline (Figure 2A). Each block in the contracting and

expanding paths is composed of two convolutional layers followed

by batch normalization and a Leaky Rectified Linear Unit (or Leaky

ReLU) activation function (with α = 0.2). A hyperbolic tangent

(TanH) activation function is used for the dense layer in the

encoding path to ensure boundness of the latent space, whilst a

ReLU activation function is used for the dense layer in the decoding

path. Max pooling with stride of 2 is used in the encoding path and

bilinear interpolation with upsampling factor of 2 is chosen for the

decoding path. Two additional network architectures are also

considered: the first replaces all the convolutional blocks with

residual blocks, or ResNet blocks (He et al. (2015)—Figure 2B),

whilst the latter uses MultiRes blocks (Kong et al. (2020)—

Figure 2C), which have shown promise in the context of deep

image prior bases seismic interpolation.

2.3.2 Loss function
The choice of the loss function involved in the training process

is usually dictated by the expected statistics of the noise present in

the training data. More specifically, the MSE loss (LMSE(x, x̂) �
‖x − x̂‖22) is chosen in the presence of white, Gaussian noise, whilst

the Mean Absolute Error (MAE) loss (LMAE(x, x̂) � ‖x − x̂‖1)
is preferred in the presence of Laplace noise. However, such

losses are local in the sense that they measure the element-wise

difference between each value of the predicted and target

training samples. Whilst signal fidelity is of great importance

in seismic applications, local losses may be unable to provide

useful feedback to the network in terms of higher-level

characteristics of the signal of interest. In the context of

natural images, Bergmann et al. (2018) suggested to use a

perceptual loss function based on structural similarity index

(SSIM) to captures inter-dependencies between local regions of

the predicted and target samples. Along similar lines,

Ovcharenko, (2021) suggested to combine point-wise losses

and trace-wise correlation coefficients as a way to inform the

training process about both local and global features of the

target data. Examples of trace-wise, scale-independent losses

are the Pearson correlation coefficient or the Concordance

correlation coefficient (CCC), the latter defined as:

CCC x, x̂( ) � 2ρx,x̂σxσ x̂

σ2x + σ2x̂ + μx − μx̂( )2, (9)

where μx and σx are the mean and standard deviations of x,

respectively (and similarly for the vector x̂), and ρx,x̂ is the

correlation coefficient between the two variables. Note that

since CCC tends to zero for uncorrelated signals and one for

correlated signals, we define the loss to minimize as,

LCCC(x, x̂) � 1 − CCC.

In this work we follow this second strategy and combine the

MSE and CCC losses together. Instead of choosing their relative

weighting upfront, each loss is equipped with a learned weighting

factor σi and defined as follows:

L̂i � 1
2σ2i

Li + logσ i, (10)

following the multi-task loss function proposed by Kendall et al.

(2018). Intuitively σi quantifies the complexity associated with

the ith task. The network is therefore naturally encouraged to

learn the easy task first and tackle the harder task later. The

network achieves this by initially increasing the weight of the loss

associated to the hard task, which effectively reduces the

contribution of the associated gradient into the minimization

of the multi-objective functional. The network is however not

allowed to completely ignore a task as that would require

increasing the associated weight to infinity: this is avoided by

the presence of the logarithmic term. Putting all together for our

specific problem, the loss function in Eq. 8 becomes:

L xj, x̂j( ) � 1
2σ21

LMSE xj, x̂j( ) + 1
2σ22

LCCC xj, x̂j( ) + log σ1σ2( )
(11)

2.3.3 Pre-processing
In order to identify robust representations and avoid the

network to learn the identity mapping, various regularization

strategies have been proposed in the literature for training of AE

networks. Denoising AEs (Vincent, 2008) partially corrupt the

input vectors by adding noises to or masking some of their values

in a stochastic manner. The target is however kept unchanged.

This design is motivated by the fact that humans can easily

recognize objects even when they are partially occluded or

corrupted because they are able to focus on the key

characteristic of such objects. Similarly, an AE can successfully

learn robust latent representations only when it is forced to

discover and capture high-level relationships in the input data

whilst ignoring its missing parts. Since we are mostly interested in

reconstructing missing gaps in seismic data as part of the

downstream processing task, we follow the second procedure

and randomly mask 20% of the traces from each training sample.

This is done differently from epoch to epoch. This approach is

becoming very popular in the machine learning community in

the context of self-supervised learning for both text [e.g., Devlin

et al. (2018)] and image [e.g., He et al. (2021)] analysis.

3 Numerical examples

3.1 Toy example: Reconstruction of one-
dimensional sinusoidal signals

The proposed methodology is initially applied to a 1D,

sinusoidal signal with the aim of interpolating irregularly
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spaced gaps in the data. Despite its apparent simplicity, this

inverse problem is severely ill-posed and requires prior

knowledge of the sought model vector in order to be able to

fill the gaps in the recorded signal. This examples is therefore

aimed at providing the reader with an intuitive understanding of

the value of finding a suitable nonlinear latent representation of

the model vector to solve problems in the form of Eq. 6. As a

comparison we also solve the reconstruction problem with:

• a regularizer that penalizes the second-order derivative of

the model (i.e., enforces smoothness) using Eq. 2;

• a preconditioner based on a linear dimensionality

reduction technique using Eq. 4. Here, Principal

Component Analysis (PCA—Hotelling, 1933) is chosen

as the dimensionality reduction technique.

The forward problem is defined by a restriction operator that

extracts values from the finely sampled signal x ∈ R500 (black line

in Figure 3A) at irregular locations to form the data vector

y ∈ R100 (black dots in Figure 3A). To train both dimensionality

reduction techniques, we assume that our signal originates from a

parametric family of curves: x(t) � ∑N
i�1ai sin(2πfit + ϕi) where

N, a, f and ϕ are sampled from uniform distributions. We sample

30,000 curves and split them as follows: 90% for training and 10%

validation. Based on trial-and-error, the dimensionality of the

latent space is chosen to be equal to k = 40. The encoder and

decoder are fully connected neural networks composed of two

layers, and both of their hidden layers have size of 80. The

Rectified Linear Unit (or ReLU) activation function is used for

the hidden layers of both networks, apart from the last dense

layer in the encoding path where a hyperbolic tangent (TanH)

activation function is chosen to ensure boundness of the latent

space. Training is performed using the Adam optimizer (Kingma

and Ba, 2014) with learning rate lr = 10–3, and weight decay

regularization ϵθ = 10–5, using a single MSE loss in Eq. 7. After

15 epochs, the reconstruction error for both the train and

validation set is virtually zero. The trained decoder is used

to solve Eq. 6 with 30 iterations of L-BFGS (green line in

Figure 3A). This solution is compared to that of the regularized

problem after 30 (red line in Figure 3A) and 200 (magenta line

in Figure 3A) iterations of LSQR, respectively, and to the

solution of the PCA preconditioned problem after

30 iterations of LSQR (blue line in Figure 3A). Given the

simplicity of the problem, the initial guess z0 (or x0) is

chosen equal to the null vector in all cases. Faster

convergence is observed in terms of the residual norm for

both preconditioned solutions compared to the regularized

ones (Figure 3B). More importantly, the error norm of the

regularized solution decays very slowly compared to their

preconditioned counterparts (Figure 3C).

A major difference is also observed between the PCA and AE

error norms: the former plateaus at around 2.5 after a few

iterations, whilst the latter goes to zero after about

20 iterations. In other words, the latent representation found

by means of PCA is not able to fully capture the signal we wish to

recover, whilst that of the AE is more successful at mitigating the

ill-posed nature of the inverse problem and drive the nonlinear

optimizer to a satisfactory solution.

FIGURE 3
(A) Sinusoidal signal reconstruction for the different inversion approaches. (B) Residual norm and (C) error norm as function of iterations.
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3.2 Seismic datasets

We turn now our attention onto the various seismic datasets

that will be used in the subsequent numerical examples. The first

synthetic dataset is modelled using a rather simple layered

medium (Figure 4A) using a first-order, staggered-grid,

acoustic finite-difference modelling code openly available in

the Madagascar toolbox (Fomel et al., 2013). The acquisition

geometry is composed of 201 sources spaced every 15 m at a

depth of 10 m below the free-surface. Two receiver arrays are

placed at a depth of 50 m below the free-surface and along a

dipping seabed, respectively, both with receiver sampling equal to

15 m. The dataset is modelled using a Ricker wavelet with fdom =

15 Hz and two subsampled versions of it are created by

decimating the receivers as follows: 1) irregularly, by a factor

of 30%, or 2) regularly, by keeping one receiver every 4 (25%

available data). A second synthetic dataset is created using a more

realistic geological model obtained by adding a water column of

275 m to the Marmousi model (Brougois et al., 1990, Figure 4B).

The acquisition geometry is composed of 199 sources spaced

every 20 m at a depth of 10 m below the free-surface. A receiver

array is placed at a depth of 50 m below the free-surface with

receiver sampling equal to 20 m. The dataset is modelled using a

Ricker wavelet with fdom = 15Hz and also subsampled as follows:

1) irregularly by a factor of 40%, 2) regularly by keeping one

receiver every 3 (33% available data). Finally, we consider the

openly available Mobil AVO viking graben line 12 field dataset1.

This dataset has been collected using streamer acquisition system

that contains 1001 sources (dxS = 25m) and 120 receivers (dxR =

25m) with minimum offset equal to 262m. Sources and receivers

are placed at a depth of 6 and 10 m below the free-surface,

respectively. In our experiment, the dataset is further by

randomly selecting 60% of the available receivers.

3.3 AutoEncoder training

In this section, we discuss the training process of the AE

network performed on the first synthetic dataset. To begin with,

the dataset is sorted into common receiver gathers (CRGs) for all

of the available receivers; overlapping patches of size 64 × 64 are

created (a 50% overlap in both time and space is used in our

experiments), and a data augmentation strategy is employed to

increase the number of patches that contain events near the direct

arrival; this is usually the arrival with largest slope and therefore

exhibiting stronger aliasing effects in poorly sampled datasets.

Here, we randomly select the center of the patch in a window

around the traveltime of the direct arrival and each patch is also

flipped horizontally to double the number of patches with similar

characteristics. Each patch is also normalized by their absolute

maximum value to ensure a maximum dynamic range of (−1, 1)

for all of the available patches. As discussed in more details later

in the paper, the main assumption made by our methodology is

that we have access to well sampled seismic data in one domain of

choice that is representative for the data in the poorly sampled

domain. As seismic data are usually acquired in configurations

where either the source or the receiver arrays are well sampled,

exploiting reciprocity is a well known strategy, not only in this

context but also in other traditional or data-driven (Picetti, 2022)

seismic interpolation methods.

The entire dataset is composed of 30 k patches, which,

similarly to the previous example, are randomly split into

FIGURE 4
Velocity models. (A) Layered model with dipping seabed. Sources (red triangles) and receivers are placed inside the water column (white
triangles) and along the seafloor (green triangles). (B) Marmousi model with sources and receivers located inside the water column.

1 See https://wiki.seg.org/wiki/Mobil_AVO_viking_graben_line_12 for
details.
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train (90%) and validation (10%) sets. Although the training

process is fully unsupervised, the choice of retaining a number of

patches for validation is motivated by the fact that we want to

assess a variety of training strategies and compare them in terms

of their reconstruction capabilities. The training process is

performed using the Adam optimizer for 20 epochs, using an

initial learning rate equal to 1e−4 in all experiments and modified

during the training process using a scheduler: on-plateau

scheduling is selected for the networks with single loss

function, whilst the one-cycle scheduling (Smith and Topin,

2017) is chosen for the networks using multiple losses with

learned weights. Finally, independent of the network

architecture, the latent space vector is chosen as z ∈ R300,

which represents a 13.6x compression factor over the size

of the original space, x ∈ R64×64. All experiments are

performed on a Intel(R) Xeon(R) CPU @ 2.10 GHz

machine equipped with a single NVIDIA GEForce RTX

3090 GPU. Overall, the training process takes

approximately 7 min (with small variations depending on

the different training strategies). Although this represents

an overhead compared to conventional methods based on

fixed-basis sparsifying transforms, it can be justified with the

improved reconstruction capabilities as later shown in the

numerical examples.

Figures 5, 6 display four randomly selected patches from the

validation dataset of the true and predicted data for the different

training strategies, as discussed in the previous section.

Moreover, the MSE over the entire validation dataset is

reported in each subplot title. From these results, we can

clearly observe an improvement in terms of the overall

reconstruction capabilities when moving from a purely

convolutional AE with single loss to an AE with ResNet

blocks and multiple losses. On the one hand, a more

sophisticated network architecture with MultiRes blocks led to

poorer reconstruction and it is therefore dropped from

subsequent analyses. Similarly, a slight decrease in the overall

reconstruction error is observed when introducing the masking

procedure in the pre-processing of each patch. However, as we

will see later, the masking approach seems to help in producing

stronger latent codes when it comes to the ultimate goal of using

FIGURE 5
AutoEncoder reconstruction of 4 samples from the validation dataset and MSE computed over the entire validation dataset. (A) True, (B) Pure
convolutional AE with MSE loss and no-preprocessing, (C) ResNet AE with MSE loss and no-preprocessing, (D) MultiRed AE with MSE loss and no-
preprocessing, (E) ResNet AE with Multi-task loss and no-preprocessing, and (F) ResNet AE with Multi-task loss and masking of input samples.
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the trained decoder as preconditioners in the solution of different

seismic data processing tasks.

Finally, for the network in Figure 5F the latent

representations of the entire validation dataset are further

compressed to a bi-dimensional space using the t-SNE

algorithm (Roweis and Hinton, 2002). This allows us to

display them in a scatter plot as shown in Figure 7 and

analyse how patches of the training seismic data with different

features distribute in the latent space. Five points are selected in

different areas and their associated patches are displayed inside

blue squares. Similarly, patches in the validation data associated

with the closest point in the bi-dimensional space are also

displayed inside red squares. We can clearly observe how

patches with similar features (e.g., high-amplitude hyperbolic

events) cluster together. Finally a small random perturbation is

added to the latent representations associated with the five

selected patches and the resulting z vectors are fed into the

trained decoder. The predicted patches are displayed inside the

green squares. We can clearly observe that even areas of the latent

space that have not been explored during training lead to

representative seismic-looking patches. This is an important

result as the subsequent inversion process will operate directly

in the latent space and no constraint will be added to enforce the

final latent vectors to be in any of the previously sampled

positions of such a manifold.

3.4 Deghosting and interpolation of
synthetic dataset

Joint receiver-side deghosting and data reconstruction is

applied here to the first synthetic seismic dataset. The

deghosting process can be described as an inverse problem by

defining the following modelling operator [e.g., Grion, (2017)]:

p−d � I +Φ( )p−, (12)

where the model vector p− contains by the up-going component

of the recorded seismic data, whilst the data vector p−d is

represented the total pressure wavefield deprived of its direct

wave. As far as the physical modelling operator is concerned, Φ

FIGURE 6
AutoEncoder reconstruction error of 4 samples from the validation dataset and MSE computed over the entire validation dataset. Panels are
organized as Figure 5.
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represents a frequency-wavenumber phase shift operator and I is

the identity operator. Combining this modelling operator with

the definition of deep preconditioned inversion in Eq. 6, we

obtain:

ẑ � argmin
z

‖p−d − R I +Φ( )WSDθ z( )‖22 + ϵP‖z‖22. (13)

Since training is performed on patches of size 64 × 64, z is

composed of a stack of multiple latent space vectors that are

decoded by the decoder Dθ, re-scaled from the dynamical range

of (−1, 1) used in the network to the actual range of the seismic

data via the operator S, and finally assembled together by means

of a patching operatorW (Figure 1B). The scaling factors applied

to each patch by the operator S are computed upfront from the

corresponding patches in the data p−d: whilst these values may

not correspond exactly to those of the sought solution, this choice

revealed to be robust in all of the scenarios presented in this

paper. Finally, the starting guess for the L-BFGS solver is here

chosen as follows: z0 = Eϕ(S
−1WHRHp−d). In other words, the

recorded data is divided into patches, each patch is scaled to the

dynamic range expected by the network by S−1, and then fed into

the encoder.

Deghosting is initially applied to the fully sampled data

(Figure 8A) for a source in the middle of the array (Figures 8C,

9B). The ill-posed nature of the problem, due to presence of

notches in the F-K spectrum of the data (the first receiver ghost

notch at fn1 = vwater/(2zr) = 15Hz is indicated by the white arrow in

bottom panel of Figure 8A), is mitigated by using a preconditioned

inversion with a Curvelet sparsifying transform. The FISTA solver

(Beck and Teboulle, 2009) is used to optimize the associated

functional for a total number of 200 iterations. This ensures

that we accurately deghost the data also in areas with small

amplitude events such that we can use this estimate as our

benchmark solution. The subsampled data in Figures 8B, 9A

are then inverted with fixed-basis sparsifying transforms,

namely the F-K transform in overlapping time-space patches

(Figures 8D, 9C) and the Curvelet transform (Figures 8E, 9D).

Once again we use the FISTA solver for 80 iterations. Finally the

trained decoder is used as preconditioner in Eq. 6, which is

minimized with 80 iterations of L-BFGS (Figures 8F, 9E).

FIGURE 7
t-SNE visualization of the validation dataset in Figure 5F in a two-dimensional space. Seismic patches in blue, red, and green squares correspond
to a number of selected validation samples, their closest neighbour and a perturbed version of it in the AE latent space, respectively.
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Assuming that the cost of the linear transforms is similar to that of

the decoder, setting the number of iterations to 80 for all inversions

allows us to also compare the converge properties of the different

algorithms. Both visually and by means of the SNR metric, we

conclude that the AE-based inversion converges faster to produce

results of higher quality compared to those from commonly used

fixed-basis transforms. Visible artefacts in the solutions of the

inversion methods that use linear preconditioners highlight the

fact that such representations cannot capture the full complexity of

the sought after seismic wavefield. Moreover, Figure 10 displays

the SNRs of the reconstructed upgoing wavefields for the different

training strategies discussed in the previous section. We observe

how in both cases (irregular and regular), the vanilla CNN AE

produces reconstructions on par with those from the sparse

inversion with Curvelet transform. However, when the different

improvements in the AE training process are introduced the

overall SNRs improve by 2–3 dB compared to the initial

scenario. Moreover, to verify that the initialization of the

weights and biases of the network does not have a major

impact in the overall quality of reconstruction of the

downstream processing task, 5 networks are trained with

different initialization and their different decoders are used

to perform deghosting and interpolation. The standard

deviation of the corresponding SNRs is displayed as a

vertical black bar in Figure 10. Finally, to validate the

importance of choosing a representative starting guess z0,

the same deghosting and interpolation process is performed

using randomly initialized vectors z0 (within the expected

dynamic range of the latent code). The corresponding

average and standard deviation SNRs are displayed as red

bars in Figure 10, showing a clear decrease in performance

likely due to the nonlinear nature of the inverse process and the

fact that the starting guess is further away from the optimal

solution compared to that using the proposed initialization

strategy.

We move now onto the second synthetic dataset. The

training process is performed by creating patches of size 64 ×

64 in the common receiver domain using the strategy that led

to the best results in the previous example. Despite the

complexity of the recorded wavefield, the AE network

trained with a latent code of size z = 300 is able to capture

a strong representation of the seismic data, producing a

FIGURE 8
Joint deghosting and reconstruction for irregularly sampled data. (A) Full data, (B) Subsampled data, (C) Benchmark deghosted data, (E–G)
Deghosted and reconstructed data using F-K, Curvelet, and AE preconditioners, respectively. All data are shown in time-space domain in the top row
and frequency-wavenumber domain in the bottom row.
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FIGURE 9
Joint deghosting and reconstruction from regularly sampled data. (A) Subsampled data, (B) Benchmark deghosted data, (C–E) Deghosted and
reconstructed data using F-K, Curvelet, and AE preconditioners, respectively.

FIGURE 10
Signal-to-noise ratio as function of different inversion algorithms for the irregular (A) and regular (B) subsampling scenarios. Vertical black lines
refer to the standard deviation of 5 inversion using networks with different weight initialization. Vertical red lines refer to the standard deviation of
5 inversion using the same networks and randomly initialized latent codes.
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decoder with strong interpolation capabilities. Figures 11, 12

display the deghosted and reconstructed upgoing wavefields

by means of our AE preconditioner (Figures 11E, 12D)

alongside with the subsampled data (Figures 11B, 12A), the

benchmark deghosting with fully sampled data (Figures 11C,

12B), and the reconstruction by means of sparsity-promoting

inversion with Curvelet transform (Figures 11D, 12C). For

comparison, Figure 11A displays the fully sampled data (the

first receiver ghost notch at fn1 = 15Hz ghost notch is indicated

by the white arrow in the bottom panel of Figure 11A). Once

again, our learned transform outperforms the best-in-class

fixed-basis transform. In this example we have dropped the

patched Fourier transform, since it proved to be subpar

compared to the other two cases.

3.5 Wavefield separation and interpolation
of synthetic dataset

We extend the methodology presented in the previous

section to the problem of joint reconstruction and wavefield

separation; this differs from the former application in that we

seek to find both the up- and down-going pressure wavefields

that explain the recorded multi-component seismic data.

Formally, wavefield separation can be cast as an inverse

problem as follows (Wapenaar, 1998; van der Neut and

Herrmann, 2012):

p
vz

[ ] � I I
W+ W−[ ] p+

p−[ ] → d � Gp±, (14)

FIGURE 11
Joint deghosting and reconstruction for irregularly sampled data from the Marmousi model. (A) Full data, (B) Subsampled data, (C) Benchmark
deghosted data, (D,E) Deghosted and reconstructed data using Curvelet and and AE preconditioners, respectively. All data are shown in time-space
domain in the top row and frequency-wavenumber domain in the bottom row.
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where p and vz are the recorded pressure and vertical particle

velocity data, p− and p+ are the up- and down-going separated

data, I is the identity operator, andW± � FHdiag ± kz/ρω{ }F are

operators that perform two - dimensional Fourier transforms

(F) followed by scaling with the obliquity factor in the

frequency-wavenumber domain and inverse Fourier

transform (FH). A deep preconditioned solution to the above

equations can be written as:

ẑ+, ẑ− � argmin
z+ ,z−

d − G
Dθ z+( )
Dθ z−( )[ ]��������

��������
2

2

+ ϵZ ‖z+‖22 + ‖z−‖22( ), (15)

where the latent vectors of the up- (z−) and down-going (z+)

wavefields are simultaneously estimated.

The proposed approach is tested on the first synthetic dataset

using multi-component receivers along the seafloor and the same

two subsampling strategies (the irregularly sampled data is

displayed in Figure 13A). In the training phase, the pressure

recordings are sorted in the common receiver gather (CRG) and

patches of size 64 × 64 are fed to the AE network with ResNet

blocks and multiple losses using the same training strategies as in

the deghosting example. The trained decoder is finally combined

with the physical modelling operator to reconstruct the missing

receivers and separate the up- and down-going components of

the data: the estimated wavefields for irregular and regular

subsampling are shown in Figures 13C,D, respectively. In both

cases, the reconstructed wavefields closely resemble those

FIGURE 12
Joint deghosting and reconstruction for regularly sampled data from the Marmousi model. (A) Subsampled data, (B) Benchmark deghosted
data, (C,D) Deghosted and reconstructed data using Curvelet and and AE preconditioners, respectively.

Frontiers in Earth Science frontiersin.org16

Ravasi 10.3389/feart.2022.997788

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.997788


obtained by performing a standard wavefield separation on the

original, finely sampled data (Figure 13B). Once again, we

observe that selecting the vectors z+ and z− by feeding a crude

estimate of p+ and p− obtained via simple summation (or

subtraction) of the multi-component data to the encoder leads

to much better reconstruction compared to using a random or

zero starting guess.

3.6 Deghosting and interpolation of field
dataset

Finally, we consider the Mobil AVO field dataset. The dataset

is resorted in the common receiver domain (by extracting all

pairs of traces for all sources corresponding to receivers at fixed

geographical locations) and divided into approximately 52 k

patches of size 64 × 64. Note that due to some irregularities

in the source array, some of the patches present a small number

of missing traces: no attempt is made to fill in such traces prior to

training. Receivers are subsampled irregularly by retaining 60%

of the original array and the training process is carried out using

the network, loss, and pre-processing strategy that performed

best for the synthetic examples.

After the training process is finalized, joint deghosting and

interpolation is performed on a randomly selected shot gather.

Figure 14 displays the original fully sampled data (panel a), the

subsampled data (panel b), the benchmark deghosted wavefield

(panel c), the reconstructed deghosted wavefields for the sparsity-

promoting inversion with patched Fourier (panel d) and Curvelet

(panel e) transforms as well as the reconstruction using the

trained deep preconditioner (panel f). When compared to the

benchmark solution, we can clearly observe that the inverted

wavefield aided by deep preconditioners has more naturally

looking seismic events and fewer artefacts than those from the

fixed-basis counterparts. Moreover, the deep preconditioned

inversion provides an improved reconstruction of the direct

arrival (see also close-up in Figure 15): this result remarks

once again the importance of learned transforms that can

FIGURE 13
Joint wavefield separation and reconstruction for the synthetic data in ocean-bottom cable configuration. (A) Irregularly subsampled data, (B)
Benchmark wavefield separated data, (C,D)Wavefield separated and reconstructed using the AE preconditioner for irregularly and regularly sampled
data, respectively. All data are shown in time-space domain in the top row and frequency-wavenumber domain in the bottom row. Pressure and
vertical particle velocity components are juxtaposed in panel a, whilst up- and down-going separated components are juxtaposed in all other
panels.
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FIGURE 14
Joint deghosting and reconstruction for the field dataset with irregularly subsampled data. (A) Full data, (B) Subsampled data, (C) Benchmark
deghosted data, (D–F) Deghosted and reconstructed using F-K, Curvelet, and AE preconditioners, respectively. All data are shown in time-space
domain in the top row and frequency-wavenumber domain in the bottom row.

FIGURE 15
Close-ups of Figure 14 in an area around the direct arrival in the presence of a large gap. (A) Benchmark deghosted data, (B–D)Deghosted and
reconstructed using F-K, Curvelet, and AE preconditioners, respectively.
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capture important features from the dataset at hand. Finally, note

that due to the fact that receivers are towed very close to the free-

surface (i.e., 10 m depth), the first receiver ghost notch is at fn1 =

75Hz. As this frequency is beyond the bandwidth of the signal, we

cannot directly observe the filling of the ghost notch like in this

example. However, a change in the overall amplitude balance of

the spectrum of the deghosted data and the presence of sharper

events in Figure 14C compared to Figure 14A are signs of a

successful deghosting process.

4 Discussion

Deep Preconditioners represent an effective tool to regularize

severely ill-posed inverse problems like those usually

encountered in geophysical data processing. As shown in the

Numerical examples section, by learning the characteristic

features of seismic data, an AE network provides a nonlinear

transformation (i.e., its decoder) that is suitable to aid the

solution of seismic processing tasks such as interpolation or

wavefield separation. This is further shown to outperform

sparsity-promoting inversion with state-of-the-art fixed, linear

bases, such as those obtained from the F-K or Curvelet

transforms.

The success of the proposed approach does however rely on

the availability of suitable training data and the definition of an

appropriate training pipeline. Different strategies could be

adopted to define the training dataset. In this work, we have

shown how the dataset that we wish to process could be sorted

into a domain whose seismic features are similar to those

expected in the outcome of the processing step of interest. For

example, when seismic data are acquired using ocean-bottom-

cable acquisition systems, sources are usually well sampled in

space whilst receivers are usually deployed further apart (at least

in the crossline direction). By leveraging reciprocity, data sorted

along receivers (i.e., common receiver domain) can be used to

learn a strong representation of seismic data that are finely

sampled in the spatial direction; the learned decoder can be

subsequently deployed to reconstruct the missing receivers into a

regular and finely sampled grid equal to that of the available

sources. Note that in our synthetic example of joint interpolation

and wavefield separation, despite the fact the input data used to

train the AE network has not been previously decomposed into

its up- and down-going constituents, the features learned from

such data are shown to be representative of the output data

(i.e., separated wavefields) and therefore the decoder of the

network can be successfully used as preconditioner to the

interpolation and decomposition process. Alternatively, a

dataset acquired in a nearby field or during a previous

acquisition campaign may be used as input to the AE

network. In this case, the chosen dataset must have a more

favourable acquisition design, i.e. sources and/or receivers are

acquired over a finer spatial grid. In the field data example, to

mimic such a scenario we have divided the recorded dataset into

two subsets and used the first to train the AE network with the

aim of recovering missing receivers in the latter subset. When

dealing with streamer data, this is the only viable strategy when

we wish to regularize the data along the receiver coordinate: in

fact, when receivers are randomly missing or sampled along a

coarse regular grid, data sorted in the common receiver domain

will also be missing some traces associated with source-receiver

pairs that are not sampled, due the fact that receivers move

alongside with sources. On the other hand, we note that if our

interest is that of recovering missing sources (whilst having

access to a finely sampled receiver grid), the first strategy can

be employed both for the streamer and ocean-bottom-cable

scenarios. In this case, resorting the data in the common

source domain provides us with regularly sampled data that

can be used to train an AE network to learn useful latent

representations. The trained decoder can be ultimately

employed to deghost and interpolate the seismic data on the

source side.

Recently, a different application of our Deep Preconditoners

has been proposed by Xu et al. (2022) in the context of seismic

data deblending. By leveraging the fact that blended data in the

common source domain present similar features to the

deblended data (i.e., coherent seismic events), the authors

trained an AE network to learn a robust latent representation

from such a data. The decoder is then used in the deblending

process to denoise the blended data in the common receiver

domain, where the blending noise appears as burst-like, trace

coherent noise. Since the AE has never seen such with such kind

of signal during training, the decoder is naturally encouraged to

reproduce only the coherent part of the data during the

deblending process. This result highlights the versatility of our

approach provided that a suitable training domain can be

identified from the available data. Similarly, whilst a single

processing task has been carried out in all of the presented

examples, another appealing property of the proposed

approach lies in the fact that a single learned representation

could be used for multiple subsequent tasks. For example, the

same representation learned from blended common source

gathers could be used to deblend and subsequently interpolate

data along the source axis. If successful, this idea may provide a

data-centric as opposed to task-centric approach to seismic

processing with deep learning where the reliance on training

is reduced to a limited number of stages in the processing chain.

Other approaches have recently emerged in the machine

learning literature in the context of representation learning.

Similar to the AE approach used here, all methods share the

common factor of being self-supervised, i.e., do not require labels.

Contrastive learning (Liu et al., 2021) is one such self-supervised

learning technique that has been shown to be able to discover

general features of a dataset by simply teaching a model to

discriminate between similar and dissimilar training samples.

In the spirit of avoiding any manual annotation, data
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augmentation techniques such as cropping or rotation are used to

transform a single input into a number of similar inputs. The

model is then fed with both similar and dissimilar pairs and

trained to learn to produce latent representations that are close to

each other for the first kind of pairs and far away for the other set

of pairs. Future work will investigate the suitability of contrastive

learning in the context of Deep Preconditioners.

Finally, whilst the proposed methodology is deterministic in

that a single, best-fitting solution is obtained when solving an

inverse problemwith the aid of a Deep Precondioner, uncertainty

quantification of neural network solutions is another active area

of research in the deep learning community. Variational

AutoEncoders (Kingma and Welling, 2014), a form of

probabilistic autoencoding networks, represent a natural

candidate to extend the proposed methodology towards multi-

realization and uncertainty quantification in inverse problems.

Alternatively, generative models such as Generative Adversarial

Networks (GANs)—Goodfellow et al. (2014) and Normalizing

Flows (Rezende and Mohamed, 2015) have also recently been

used in various geophysical applications (Zhao et al., 2019;

Mosser et al., 2020; Siahkoohi et al., 2022).

5 Conclusion

In this work, we have proposed a general framework to aid

the solution of geophysical inverse problems by means of

nonlinear, learned preconditioners. Operating in a two-steps

fashion, a strong latent representation is first learned from the

input seismic data in an unsupervised manner using an

AutoEncoder network; the learned decoder is subsequently

used to drive the solution of the physics-driven inverse

problem at hand. The strength of our approach lies in the fact

that no training data is required beyond the input data itself: for

example, seismic data containing ghost arrivals are shown to

contain useful information that can be later applied to obtained

their deghosted counterpart. Different choices of network

architectures, loss functions, and pre-processing have been

investigated and shown to greatly impact the effectiveness of

the representation learning process, and ultimately that of the

downstream processing task. More specifically in our numerical

examples, the combination of ResNet blocks, multiple losses with

learned weights, and masked inputs resulted in deghosting (or

wavefield separation) and interpolation capabilities that

outperform state-of-the-art sparsity based methods with fixed,

linear transformations. We also observe that the data

normalization choice is crucial in ensuring a stable training

process and the choice of the initialization is fundamental to

achieve a stable inversion process. Moreover, our numerical

examples suggest that the proposed method can be equally

used in the presence of irregularly or regularly subsampled

data. This greatly differs from the case when conventional

linear transformations are used to precondition the inverse

problem; in this scenario, different strategies must be adopted

based on the subsampling pattern. Finally, the proposed

framework may have far wider applicability than the

examples of joint reconstruction and wavefield

decomposition discussed in this work; other seismic

processing steps such as elastic wavefield separation, up/

down deconvolution, and target-oriented redatuming will be

subject of future studies.
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