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Air pollution is an issue across the world. It not only directly affects the

environment and human health, but also influences the regional and even

global climate by changing the atmospheric radiation budget, resulting in

extensive and serious adverse effects. It is of great significance to accurately

predict the concentration of pollutant. In this study, the domain knowledge of

Atmospheric Sciences, advanced deep learning methods and big data are

skillfully combined to establish a novel integrated model TSTM, derived from

its fundamental features of Time, Space, Type and Meteorology, to achieve

regional and multistep air quality forecast. Firstly, Expectation Maximization and

Min-Max algorithms are used for the interpolation and normalization of data.

Secondly, feature selection and construction are accomplished based on

domain knowledge and correlation coefficient, and then Sliding Time

Window algorithm is employed to build the supervised learning task. Thirdly,

the features of pollution source and meteorological condition are learned and

predicted by CNN-BiLSTM-Attention model, the integrated model of

convolutional neural network and Bidirectional long short-term memory

network based on Sequence to Sequence framework with Attention

mechanism, and then Convolutional Long Short-Term Memory Neural

Network (ConvLSTM) integrates the two determinant features to obtain

predicted pollutant concentration. The multiple-output strategy is also

employed for the multistep prediction. Lastly, the forecast performance of

TSTM for pollutant concentration, air quality and heavy pollution weather is

tested systematically. Experiments are conducted in Beijing-Tianjin-Hebei Air

Pollution Transmission Channel (“2+26” cities) of China for multistep prediction

of hourly concentration of six conventional air pollutants. The results show that

the performance of TSTM is better than other benchmark models especially for

heavy pollution weather and it has good robustness and generalization ability.
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1 Introduction

With the rapid development of industrialization and

urbanization, more and more fossil fuels are burned, resulting

in the deterioration of air quality and frequent haze weather

(Jerrett, 2015; Mo et al., 2021; Mu et al., 2021). As a serious

environmental problem air pollution has attracted worldwide

attention. Air pollution is the single greatest environmental risk

to human health and one of the main avoidable causes of death

and disease globally, with some estimated 6.5 million premature

deaths (2016) across the world attributed to indoor and outdoor

air pollution (United Nations Environment Programme, 2022).

Predicting air pollution in advance is of great significance to the

health guide of the public and the pollution control of

government (Li et al., 2019).

Numerical forecast and statistical forecast are mainstream

methods for air quality forecast. The numerical forecast model

predicts the concentration of air pollutants by simulating the

transmission and diffusion of pollutants in the atmosphere.

Numerical forecast has more advantages in regional pollution

forecast and analysis, but it has higher demands on input data

and computation power. Commonly used models are based on

theWeather Research and ForecastingModel (WRF). Spiridonov

et al. (Spiridonov et al., 2019) configured and designed an air

quality system based on theWRF coupled with chemistry (WRF-

Chem) for Macedonia. A generalized additive model was also

developed to predict the concentration of PM2.5 by using the

WRF to obtain the input of the prediction model (Sahu et al.,

2020). And Cheng et al. (Cheng et al., 2021) proposed an air

quality forecasting system composed of WRF and Community

Multiscale Air Quality Modeling System (CMAQ) and a bias-

correction method to improve the accuracy of forecast. The

statistical forecast model obtains predicted pollutant

concentration in the basis of statistical analysis on historical

data of pollutant and meteorology. Statistical forecast is relatively

more efficient and practical, while it has limitations for the

prediction of hourly concentration and heavy pollution.

Common statistical models are multiple linear regression

model (MLR) and autoregressive integrated moving average

model (ARIMA). Ng et al. established a MLR based on

meteorological factors and air pollutants to predict the daily

average concentration of PM10, and obtained good prediction

performance (Ng and Awang, 2018). Pohoata et al. used the

ARIMA to predict pollutants, and the results showed that the

prediction performance of PM and CO was poor, but the

prediction of NOX and O3 achieved relatively good results

(Pohoata and Lungu, 2017).

In recent years artificial intelligence (AI) has acquired the

rapid development, especially machine learning has been applied

in various fields and great success was achieved. Machine

learning technologies effectively serve air pollution forecast

too, and there are relatively more applications of traditional

machine learning algorithms. Perisic et al. (Perišić et al., 2017)

used the boosted decision tree model to predict the hourly

concentration of PM10 at different stations, and found that

the prediction performance of the model at different stations

was affected by emission sources, topography and local climate.

Chen (Chen, 2018) applied Back Propagation Neural Network

combined with PM2.5 concentration, temperature, humidity,

wind force and satellite remote sensing data of aerosol optical

thickness, and realized the high-precision prediction of PM2.5 in

the next 3 hours. Cheng et al. (Cheng et al., 2019) combined

Empirical Mode Decomposition (EMD) with Support Vector

Regression (SVR) to forecast daily air quality index (AQI) of

Xingtai in China. Li et al. (Li et al., 2020) designed a

geographically and temporally weighted generalized regression

neural network (GTW-GRNN) to estimate ground NO2

concentrations by integrating ground NO2 station

measurements. Mo et al. (Mo et al., 2019) combined

Improved Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise (ICEEMDAN), Whale

Optimization Algorithm (WOA) and Extreme Learning

Machine (ELM) to design prediction model and acquired

superior effect in daily concentration prediction of

conventional air pollutants. The applications of deep learning

to air quality forecast attract increasingly more attention.

Chakma et al. (Chakma et al., 2017) collected street view

photos containing sky, buildings and pollution category labels

in Beijing from 2013 to 2017 to train convolutional neural

network (CNN), and the accuracy of the model in predicting

air pollution category through photos can reach 68.74%. Kim

et al. (Kim et al., 2018) compared the performance of traditional

machine learning model multilayer perceptron, deep learning

model Elman neural network and long-short term memory

network (LSTM) in predicting ozone concentration, and the

experiment shows that the performance of LSTM is better and

the error growth rate of LSTM is smaller with the increase of

prediction time. Pak et al. (Pak et al., 2020) combined CNN,

LSTM and the historical data of air quality and meteorological

elements related to the target based on mutual information (MI),

and realized the one-step prediction of the daily average

concentration of PM2.5 in Beijing. Convolutional Long Short-

Term Memory Neural Network (ConvLSTM) was used by Wen

et al. (Wen et al., 2019) to predict hourly PM2.5 concentration of

all monitoring stations in China. Wang et al. (Wang et al., 2020)

predicted hourly ozone concentration of 35 monitoring stations

in Beijing by Sequence to Sequence model (Seq2Seq). In addition,

other forecast methods based on AI have also been proposed in

recent years (Zhao et al., 2019;Mo et al., 2020; Ulpiani et al., 2022;

Yu et al., 2022).

However, there are still shortages in previous studies, and air

quality forecast based on AI needs to be further improved.

Previous studies always focus on single pollutant, but actually

six conventional air pollutants PM2.5, PM10, CO, NO2, SO2, O3

are essential for air quality prediction and early warning. For

example, AQI must rely on predicted concentrations of the six
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pollutants to report future air quality level and chief pollutant.

This deficiency also leads to an incomplete evaluation of model

performance. Missing data is a common problem and can cause

serious impacts to data-driven model, but it is usually neglected.

Besides data, algorithm and computing power, domain

knowledge plays a critical role in the application of AI

algorithm, but the modeling of air quality forecast always

ignores this point. Furthermore, the application of deep

learning to air quality forecast is an important research

direction, and it is urgent to conduct numerous studies to

comprehensively explore the applicability of deep learning

algorithms to air pollution prediction and develop appropriate

models1.

To overcome shortcomings of previous studies, we introduce

the domain knowledge of Atmospheric Sciences to design a novel

integrated model based on deep learning to perform regional and

multistep forecast of six air pollutants in this study. Our model is

called TSTM because of its four key features including Time,

Space, Type and Meteorology. It is worth mentioning that TSTM

is the result of combining the theories of Atmospheric Sciences

and deep learning technologies. First of all, the theories of

Atmospheric Sciences help grasp the evolution mechanism of

air pollution and determinants of pollutant concentration, and

then the forecast framework are also designed based on related

domain knowledge. Secondly, it is needed to find solutions from

deep learning models to dispose important factors for prediction.

It can be seen from previous studies that CNN and LSTM are

preferred in air pollution prediction because of their superiority

in feature extraction and learning long and short-term

correlations in big data (Ian et al., 2017). Therefore, CNN and

advanced versions of LSTM, namely Bidirectional long short-

term memory network (BiLSTM) and ConvLSTM, are applied.

Moreover, Seq2Seq framework is used to establish integrated

model, and Attention mechanism is helpful to multiple-feature

task. At last, a comprehensive evaluation plan is proposed from

the perspective of Atmospheric Sciences too. Besides common

statistical indicators, more practical evaluation is conducted

involving air quality level, chief pollutant, heavy pollution

weather and so on, which is the focus of the public and

government.

The workflow of TSTM can be summarized as follows.

Firstly, Expectation Maximization algorithm (EM) efficiently

deals with missing data and Min-Max normalization can

improve the convergence speed and accuracy of model.

Secondly, domain knowledge of Atmospheric Sciences helps

us decide preliminary features and effective features are

further selected by correlation coefficient, and then feature

decomposition and combination as well as the sliding time

window algorithm is applied to transform the original time

series into the supervised learning task. Thirdly, CNN-

BiLSTM-Attention, an integrated model of CNN and BiLSTM

by Seq2Seq with Attention mechanism, is used to learn and

forecast pollution source and meteorological condition features

separately, and then ConvLSTM couples them to obtain

predicted pollutant concentration. Furthermore, multiple-

output strategy is employed for multi-step prediction, which

achieves high efficiency and low cost. Finally, a comprehensive

performance evaluation scheme is designed referencing

“Technical guideline for numerical forecasting of ambient air

quality (HJ 1130-2020)” issued by China’s Ministry of Ecology

and Environment (The Ministry of Ecology and Environment of

China, 2022a). Evaluation involves three aspects, namely,

pollutant concentration forecast, air quality forecast and heavy

pollution weather forecast. TSTM is tested on two independent

test sets for the multi-step prediction of the hourly concentration

of six conventional air pollutants in Beijing-Tianjin-Hebei Air

Pollution Transmission Channel (“2+26” cities) of China.

2 Data and methods

2.1 Study area

Recently regional and compound air pollution is increasingly

notable. Beijing-Tianjin-Hebei and surrounding regions belong

to the core economic zone of China but the most polluted region

with prominent cross-region air pollution, which has caused

serious concern from the public and government. The Ministry

of Ecology and Environment of China determined Beijing-

Tianjin-Hebei Air Pollution Transmission Channel (“2+26”

cities) involving 6 provinces in 2017 and established its special

emission limits of air pollutants in 2018. Therefore, Beijing-

Tianjin-Hebei Air Pollution Transmission Channel (“2+26”

cities) as Figure 1 shows is chosen as study area for its

important strategic position and space correlation of air

pollution.

2.2 Data

Six conventional air pollutants (PM2.5, PM10, CO, NO2, SO2,

O3) are necessary items for air quality forecast and evaluation,

especially AQImust rely all of them. As to meteorological elements,

we collect data of wind speed, temperature, relative humidity and

precipitation based on the domain knowledge of Atmospheric

Science. Hourly monitoring data of 6 air pollutants and

4 meteorological elements during 2017.12–2019.2 of 28 cities are

collected fromTheMinistry of Ecology and Environment of China2

1 https://www.nsfc.gov.cn/publish/portal0/tab934/info79588.htm. 2 https://www.mee.gov.cn/
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and China Meteorological Administration3. Same architecture of

forecast model is shared, while the model for each pollutant in each

city needs to be trained and evaluated separately. The total number

of data participating in modeling is approximately 100 million,

which means actually big data. Data from 2017.12 to 2018.12 are

used as training set, and the data of 2019.1 are used as validation set

while the data of 2019.2 are selected as test set. The

hyperparameters are tuned manually and determined based on

the performance of model on validation set. In addition, in order to

test the generalization ability of the model, the data of 2019.6 are

supplemented as an additional test set.

2.3 Methods

2.3.1 Convolutional neural network
Convolutional neural network (CNN) is a feedforward neural

network with convolution operation and depth structure (Lecun,

1989). It is a classical deep learning algorithm. The research on

CNN began in the 1980s. After the 21st century, with the

proposal of deep learning theory and the improvement of

numerical computing ability, it has developed rapidly. Based

on the visual perception of biology, it has been successfully used

in computer vision, natural language processing and so on

because of its sparse connection and weight sharing. CNN is

usually composed of input layer, convolutional layer, pooling

layer, fully-connected layer and output layer (Figure 2).

2.3.2 Long short-term memory network
Long Short-Term Memory Network (LSTM) (Hochreiter and

Schmidhuber, 1997) is an improved model of Recurrent Neural

Network (RNN). It replaces hidden node with memory block to

solve the problem of gradient disappearance or explosion after many

time steps. Memory block is made up of memory cell, forget gate,

input gate and output gate. Figure 3 presents the architecture of

LSTM. LSTM is skilled in learning from experience and processing

time series with unknown time delay between important events. It

has been successfully applied to handwritten character recognition,

machine translation and so forth.

2.3.3 Bidirectional long short-term memory
network

The traditional recurrent neural network can only predict

the output of the current time according to the historical

information. However, in some cases, the output of the

current moment is closely related to the history and future

state, so considering the context information at the same time

is conducive to comprehensive judgment. Bidirectional long

short-term memory network (BiLSTM) solves this problem. It

consists of two unidirectional LSTM (Schuster and Paliwal,

1997) (Figure 4). The input at each time will be provided to the

forward and backward LSTM at the same time. The two

hidden layers calculate the state and output independently.

The final output of the BiLSTM is jointly determined by the

outputs of the two LSTM.

FIGURE 1
The Beijing-Tianjin-Hebei Air Pollution Transmission Channel (“2+26” cities).

3 http://www.cma.gov.cn/
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2.3.4 Convolutional long short-term memory
network

Convolutional long short-term memory network

(ConvLSTM) is a variant of LSTM (Shi et al., 2015). The

conventional LSTM belongs to the fully connected LSTM

(FC-LSTM), that is, the input to state and state to state

connections are calculated by feedforward neural network.

ConvLSTM replaces this connection with convolution, which

not only has the time series processing advantage of LSTM, but

also obtains the feature extraction ability of CNN.

2.3.5 Sequence to sequence
Sequence to Sequence (Seq2Seq) is a variant of RNN, and

Encoder and Decoder are its main parts. This framework is

proposed for the case that the length of input sequence and

output sequence is unequal. Two neural networks are treated as

Encoder and Decoder respectively, and Encoder reads and

compresses input sequence to a vector C with fixed length

which is then read and processed by Decoder according to

target sequence (Cho et al., 2014).

However, experiments show that the performance of this

method will deteriorate sharply with the increase of input length,

which is mainly because it is very difficult to summarize all

features of long input sequence by vector C with fixed length.

Therefore, Attention Mechanism is proposed for this problem

(Bahdanau et al., 2014) (Figure 5). In each step of decoding, the

hidden state of the encoder will be queried. Calculate the

correlation between each part of the input sequence and the

FIGURE 2
The architecture of CNN.

FIGURE 3
The architecture of LSTM.

FIGURE 4
The architecture of BiLSTM.
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current output (weight). Then the hidden state of each part of

input is weighted and averaged to get the vector C which contains

most relevant information of input to the current output.

3 The design of TSTM

3.1 Domain knowledge

The introduction of domain knowledge is helpful to the

application of deep learning algorithms to modeling. For

pollutant concentration prediction, it is necessary to know

which factors actually affect concentration, and then proper

methods are applied to learn their correlations.

3.1.1 Pollution source
Type and property of air pollutant are decided by pollution

source, so comprehensive information of pollution source is

crucial in pollutant concentration forecast. Air pollution

sources of a city can be divided into two categories from the

perspective of source apportionment, namely internal source and

external source, which refer to local emission and regional

transmission respectively.

For local generation, it is necessary to consider the primary

emission and secondary generation of pollutants. The pollutant

directly discharged into the air by the pollution source and whose

physical and chemical properties has not changed is primary

pollutant (Xue et al., 2020). The primary pollutant is usually

affected by the emission source with obvious periodicity, and the

high-time resolution monitoring data of pollutant contain the

change law of the emission of pollution source. For example, the

bimodal mode of NO2 hourly concentration in city corresponds

to the morning and evening peak of traffic. Primary pollutant can

change under the influence of physical and chemical factors or

react with other substances in the air to produce secondary

pollutant with different properties (Drozd et al., 2018). The

formation and transformation mechanism of secondary

pollutant involves complex physical and chemical reactions

between different pollutants, and its harm to the environment

and biology is also greater than that of primary pollutant (Kong

et al., 2019; Menares et al., 2020). For example, SO2 and NO2, as

precursors, can undergo photochemical oxidation reaction and

gas-solid conversion to form sulfate and nitrate, becoming

secondary particles. NOx, VOCs and CO can participate in

atmospheric photochemical reaction to produce O3. In

addition, particles and O3 also have complex interactions

(Chen et al., 2019). Particles reduce the solar shortwave

radiation reaching the ground through absorption and

scattering, thereby reducing the photochemical reaction rate of

O3. O3 will lead to the enhancement of atmospheric oxidation,

which is conducive to the formation of secondary particles.

Therefore, when predicting the concentration of pollutant, we

should not only pay attention to the change law of pollutant with

time, but also consider the complex interaction between different

pollutants.

Air pollutants can be transported over long distances across

regions, making air pollution affect each other among cities. This

problem is particularly prominent in area with dense cities and

heavy pollution, and sometimes the contribution of regional

transmission even exceeds that of local generation (Sun et al.,

2017). For air pollution prevention and control, the actions of a

single city cannot fundamentally solve the problem, and regional

joint prevention and control is an effective way.

When carrying out urban air pollutant concentration

prediction, the introduction of pollution sources should

consider the primary emission, secondary generation and

regional transmission of pollutants. Based on the above

analysis, the predicted pollutant, the related pollutants in the

same city, and the same pollutants in related cities can be used as

prediction factors. The time series of the above variables are

mined by deep learning algorithm to learn their complex

interactions and spatial-temporal variations.

3.1.2 Meteorological condition
In addition to the root cause of pollution source,

meteorological conditions are also main factors affecting the

change of pollutant concentration, which is mainly reflected in

the migration and transformation process of pollutant (Dong

et al., 2020). Diffusion condition represents the ability of the

atmosphere to dilute, diffuse, accumulate and remove air

pollutants. Under different diffusion conditions, even the

same pollution source will cause significant differences in

pollutant concentration (Liu et al., 2019). Wind speed,

temperature, humidity and weather phenomenon are the main

meteorological factors that determine the diffusion condition

(Wang et al., 2019; Jury, 2020; Pérez et al., 2020; The

Standardization administration of China, 2022). The wind can

transport pollutant along the horizontal direction, and the wind

speed determines the speed and distance of pollutant migration.

FIGURE 5
The architecture of Encoder-Decoder-Attention.
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The irregular change of wind will form turbulence, which will

fully mix the pollutant with the surrounding clean air and

promote the dilution and diffusion of pollutant. However,

excessive wind speed will also blow the dust on the ground

into the air, causing particle pollution. The temperature and

humidity of the atmosphere are closely related to the stability of

the atmosphere and affect the vertical diffusion of pollutant. At

the same time, high temperature and humidity are conducive to

the photochemical reaction of ozone and the hygroscopic growth

of particles, respectively. Precipitation is an important way to

remove air pollutants. During the falling process, raindrops

absorb solid particles through collision, and gaseous pollutants

can also be dissolved in water or chemically reacted with water

and brought to the ground.

Referring to the instruction of the “Air pollution diffusion

condition index” from the China Meteorological

Administration4 and above research, the change of air

pollutant concentration is closely related to wind speed,

temperature, relative humidity and precipitation. Therefore, in

the prediction of urban air pollutant concentration, the above

four meteorological elements in the same city are introduced as

prediction factors.

3.2 Data preprocessing

The problem of missing data is common but always

overlooked. For the data-driven deep learning model, its

performance is directly related to the integrity and accuracy of

data. Deletion or simple interpolation method is incompetent for

the data of air pollutant and meteorological element which are

highly nonlinear and nonstationary. Thus, the dataset is

processed by advanced Expectation Maximization (EM)

algorithm. EM (Neal and Hinton, 1998) algorithm is an

iterative algorithm to calculate maximum likelihood

estimation of posterior distribution in the case of incomplete

data. Two steps are performed alternately in each iteration cycle:

E step (Expectation), calculate the conditional expectation of log

likelihood function by the estimated parameters from previous

iteration; M step (Maximization), maximize the log likelihood

function to determine the parameters which are used in next

iteration. The algorithm iterates between E step and M step until

convergence. It has good convergence and is suitable for large

sample.

The normalization of data is an important procedure of deep

learning, which can eliminate the influence of magnitude among

different features and further improve convergence speed and

accuracy of model. SoMin-Max normalization is applied to input

data and then output data are processed by reverse normalization

for the evaluation of model’s performance (Jin et al., 2015).

3.3 Feature selection

For the prediction of air pollutant concentration, based on

the domain knowledge of Atmospheric Sciences, the preliminary

features are conventional air pollutants (PM2.5, PM10, CO, NO2,

SO2, O3) and meteorological elements (wind speed, temperature,

relative humidity, precipitation) of all cities in the region. In

order to eliminate irrelevant features and improve computational

efficiency, effective features are further selected through

statistical methods. For pollution source, besides predicted

pollutant itself, Spearman rank correlation coefficient and

Pearson correlation coefficient are used to screen the related

pollutants in the same city and the related cities on the same

pollutant, and the threshold value is 0.6 (strong correlation). For

meteorological condition, four meteorological elements of the

same city are selected as effective features to predict pollutant

concentration.

Feature decomposition and combination are used in this

study. From the perspective of deep learning, the predicted

pollutant, the related cities on the same pollutant, the related

pollutants in the same city and the meteorological elements in the

same city can be classified into four types of features: time, space,

type and meteorology. Pollution source and meteorological

condition are the two main factors that determine the change

of pollutant concentration. Pollution source can be learned based

on the first three types of features. With reference to the “Grades

of air pollution diffusion meteorological conditions (QX/T 413-

2018)” issued by the China Meteorological Administration, the

meteorological condition in the future can be estimated based on

the historical data of air pollutant concentration and

meteorological elements without considering the pollution

source (China Meteorological Administration, 2022).

Therefore, meteorological condition can be learned based on

time and meteorology features. In this study, the features of

pollution source and meteorological condition are studied and

predicted respectively, and then the final prediction result are

obtained by integrating the two features. In addition, the hourly

concentration of air pollutant has significant diurnal variation

(24 h), so the time lag is 24, which is also consistent with previous

studies (Wang et al., 2020). Finally, the sliding time window

algorithm is applied to divide the data, and the original time

series is transformed into supervised learning tasks.

3.4 Forecast strategy

On the basis of domain knowledge of atmospheric science,

deep learning algorithms are employed to learn pollution source

and meteorological condition, which contain time, space, type
4 http://www.cma.gov.cn/2011qxfw/2011qqxkp/2011qqxzs/201110/

t20111027_126331.html.
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and meteorology features, namely four important correlations.

Time correlation: air pollutant concentration has prominent

periodicity and hourly monitoring data can reflect this

variation over time. Space correlation: air pollution of

different cities affects each other because of regional

transmission, and Pearson correlation coefficient is used to

select highly related cities for target city on the same

pollutant. Type correlation: in view of the transformation

mechanism of secondary pollutant, it is necessary to learn

complex interactions among air pollutants, and Spearman’s

rank correlation coefficient is used to find highly related

pollutants for target pollutant. Meteorology correlation needs

to be considered in forecast too. Attention mechanism can give

each variable distinct weight, so integrated model CNN-

BiLSTM-Attention with advantages of different deep learning

algorithms is applied to learn and forecast pollution source (time,

space, type) and meteorological condition (time, meteorology)

features respectively. And then the advanced ConvLSTM is

adopted to integrate the two features to forecast air pollutant

concentration. Moreover, in this study multiple-output strategy

is employed to obtain multistep prediction results

simultaneously, which has greater efficiency and lower cost

when compared with recursive strategy or multi-independent

models.

3.5 Performance evaluation

Besides pollutant concentration, the forecast performance of

model for air quality and heavy pollution weather are also

evaluated to form a comprehensive evaluation plan.

3.5.1 Pollutant concentration forecast
TSTM’s performance is evaluated by three representative

indicators including normalized mean bias (NMB), root mean

square error (RMSE), and correlation coefficient (r). The

prediction performance of the model is evaluated from the

deviation, error and correlation between the predicted value

and the observed value. Their equations are as follows:

NMB � ∑n
i�1(Xi − Yi)∑n

i�1Yi
(1)

RMSE �
������������
1
n
∑n
i�1
(Xi − Yi)2

√
(2)

r � ∑n
i�1(Xi − �X)(Yi − �Y)������������∑n

i�1(Xi − �X)2√ �����������∑n
i�1(Yi − �Y)2√ (3)

whereXi and Yi are the predicted value and observed value of air

pollutant concentration; n is the number of test samples; �X and �Y

are the average value of the predicted value and the observed

value respectively.

3.5.2 Air quality forecast
1) Air quality index range

Based on the predicted concentrations of six conventional air

pollutants, the predicted value of AQI is calculated, and that it

plus/minus 25% is taken as the prediction range. If the actual

value of AQI is within the prediction range, the prediction is

accurate. The calculation equation of prediction accuracy of AQI

range is as follow:

AAQI � nAQI
N

(4)

Where AAQI is the prediction accuracy of AQI range; nAQI is the

number of samples with accurate AQI range prediction;N is the

total number of samples.

2) Air quality level

The range of predicted air quality level can be obtained

through AQI prediction range. If the actual value of the level

is within the prediction range, the prediction is accurate. The

calculation equation of the prediction accuracy of the air quality

level is as follow:

AAQL � nAQL
N

(5)

WhereAAQL is the prediction accuracy of air quality level; nAQL is

the number of samples with accurate air quality level prediction;

N is the total number of samples.

3) Chief pollutant

When the actual air quality level is greater than or equal to

level II, if the prediction is the same as the actual chief

pollutant, the prediction is accurate. The calculation

equation of the prediction accuracy of the chief pollutant is

as follow:

ACP � nCP
N

(6)

Where ACPis the prediction accuracy of chief pollutants; nCP is

the number of samples with accurate chief pollutant prediction in

the evaluation period; N is the number of samples whose actual

air quality level is greater than or equal to level II.

3.5.3 Heavy pollution weather forecast
1) Prediction accuracy

The prediction accuracy of air quality level when the actual

AQI is greater than 200 is calculated as follow:

HAAQL � nAQL
NOH

(7)

Where HAAQL is the prediction accuracy of heavy pollution

weather; nAQL is the number of samples with accurate prediction

in the evaluation period; NOH is the actual number of heavy

pollution weather samples.
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2) Prediction test score

The prediction accuracy of air quality level when the

predicted or actual AQI is greater than 200 is calculated as follow:

HSAQL � nAQL
NFOH

(8)

Where HSAQL is the prediction test score of heavy pollution

weather; nAQL is the number of samples with accurate prediction

in the evaluation period; NFOH is the number of predicted or

actual heavy pollution weather samples.

Based on above all, we proposed a novel integrated model

TSTM based on the theory andmethods of Atmospheric Sciences

and deep learning for regional and multistep air quality forecast.

The architecture and workflow of TSTM can be seen in Figure 6

and Figure 7, respectively.

4 Results and discussion

4.1 Pollutant concentration forecast

The performance of TSTM for regional (e.g. BJ and TJ) and

multistep (e.g. CO_1, CO_2 and CO_3) air quality prediction is

tested on the hourly concentrations of six conventional air

pollutants in study area, and independent test sets (e.g. BJ

1 and BJ 2) are used. In view of a large number of

experimental results, the heat map is used to present the

performance of TSTM on all cities and pollutants. NMB in

Figure 8 reflects the deviation between prediction and

observation. A positive value indicates that the predicted

concentration is generally higher than actual concentration,

while a negative value indicates that the predicted result is

FIGURE 6
The architecture of TSTM.

FIGURE 7
The workflow of TSTM.
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lower. According to all results, the number of positive values is

equal to that of negative values. Generally, the NMB does not

show obvious correlation with city, pollutant, prediction step and

test set, and there is no systematical deviation shown by these

experiments.

Figure 9 shows the RMSE of TSTM under different

conditions. RMSE can not only reflect the average error of the

prediction, but also is very sensitive to outliers, which is the focus

of deep learning in the application for air quality prediction. The

experimental results show a certain regularity. The accuracy of

FIGURE 8
The NMB of pollutant concentration prediction of TSTM in “2+26” cities.

FIGURE 9
The RMSE of pollutant concentration prediction of TSTM in “2+26” cities (unit: mg/m3 for CO, μg/m3 for other pollutants).
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the model is mainly affected by the data themselves. Generally,

the higher the concentration value, the higher the RMSE value.

On test set 1, the six conventional air pollutants are arranged

according to the increasing order of the average concentration

value, namely CO, SO2, NO2, O3, PM2.5 and PM10, which is

consistent with the order of RMSE value. For 1-step prediction,

the results of PM10 on test set 1 show that the RMSE and

concentration of Shijiazhuang is 46.83 μg/m3 and 194 μg/m3,

while the 19.49 μg/m3 and 138 μg/m3 of Jining. In Anyang, the

concentration of PM2.5 on test set 1 and 2 are 162 μg/m3 and

36 μg/m3 respectively, while the RMSE are 28.62 μg/m3 and

5.07 μg/m3. For multistep prediction, based on the same

historical data, it is obviously more difficult to predict

multistep result at the same time than one-step result. The

experimental results show that the accuracy decreases slightly

with the increase of prediction steps. Take the O3 on test set 2 as

an example, in Taiyuan, the RMSE of 1 step, 2 steps and 3 steps

are 16.67 μg/m3, 17.42 μg/m3 and 19.35 μg/m3 respectively.

Figure 10 shows the correlation between the predicted value

and the actual value, that is, whether the model can accurately

capture the change trend of air pollution. The results show that

TSTM has a good performance in almost all experiments. The

predicted value is strongly correlated with the actual value (r >
0.6), and the correlation coefficient decreases slightly with the

increase of prediction steps. Very few experimental results show

weak correlation, the pollutants with low concentration value

such as CO and SO2 are further explored. There are random

deviations from deep learning model. Compared with pollutants

with high concentration value, the correlation of pollutants with

low concentration value are more affected, but the uncertainty

only exists in very few cases.

In view of a large number of experimental results and similar

forecast effects in all cities, it is necessary to select representative

city and further carry out detailed comparative analysis. Beijing is

the capital of China and has an important strategic position, but

it is under considerable strain in air pollution prevention and

control. Beijing is also the central city of this study area, and it is a

common target in previous studies. Therefore, Beijing is selected

as the representative, and the radar chart is used to analyze the

prediction effects of TSTM in all experiments.

Figure 11 shows the results of TSTM’s multistep prediction

for six conventional air pollutants in Beijing, involving three

evaluation indicators (NMB, RMSE, r) and two independent test

sets (winter and summer). TSTM adopts the multi-output

strategy for multistep prediction, and the prediction error

usually increases with the increase of prediction step. In

addition, the random deviation is shown by NMB.

In winter (Test 1), the air pollution is relatively heavier and

there are more negative values of NMB. The NMB of high

concentration value PM10 (72.19 μg/m3) and PM2.5 (51.76 μg/

m3) increases with the increase of prediction step. For medium

concentrations value of O3 (44.70 μg/m3) and NO2 (33.80 μg/

m3), the NMB for one-step and two-steps prediction are close,

while the NMB of three-steps decreases. The NMB of low

concentration value SO2 (6.33 μg/m3) and CO (0.79 mg/m3)

for one-step and two-steps prediction are close, while the

NMB of three-steps increases. In summer (Test 2), except for

the increased concentration of O3, the concentration of other

FIGURE 10
The r of pollutant concentration prediction of TSTM in “2+26” cities.
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pollutants decreases, and the number of positive and negative

values of NMB are approximate. The NMB of high concentration

value PM10 (52.82 μg/m3) increases with the increase of

prediction step; The NMB of high concentration value O3

(102.78 μg/m3), medium concentration value PM2.5 (36.35 μg/

m3) and low concentration value CO (0.66 mg/m3) first decrease

and then increase with the increase of prediction step. The NMB

of lower concentration values of NO2 (26.05 μg/m3) and SO2

(2.70 μg/m3) first increase and then decrease with the increase of

prediction step. Compared with NMB, the laws of RMSE and r of

model are more obvious. Considering the current air pollution in

China, CO and SO2 are not the main pollutants, while O3

(summer) and PM (winter) pollution are more serious, that is,

they have higher frequency of pollution process (maximum value

of concentration). The weak ability to predict the peak value of

data is a common problem for models based on machine

learning. And it can be seen from Figure 11 that the RMSE

value of PM10, PM2.5 and O3 is always greater than that of the

other three pollutants. In general, RMSE value increases with the

increase of pollutant concentration value and prediction step. r

FIGURE 11
The radar chart of pollutant concentration prediction of TSTM in Beijing.
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decreases with the increase of prediction step, and is affected by

random deviation. For the same pollutant, r is positively

correlated with the concentration.

Taylor diagram can compare the performance of multiple

models from different aspects in single map (Taylor, 2001). It is

recommended by Intergovernmental Panel on Climate Change

(IPCC) and is widely favored in the field of Geoscience. Taylor

diagram skillfully presents the cosine relationship of the three

evaluation indicators of the model, namely, the central root mean

square difference (RMSD), standard deviation and correlation

coefficient. In this study, this data visualization method is applied

for model comparison.

The traditional root mean square error E can be decomposed

into overall deviation �Eand central root mean square difference

E′. The smaller the E′, the better the prediction precision.

E � ⎡⎣ 1
N

∑N
n�1

(fn − rn)2⎤⎦1/2 (9)

�E � �f − �r (10)

E′ � ⎧⎨⎩ 1
N

∑N
n�1

[(fn − �f) − (rn − �r)]2⎫⎬⎭1/2

(11)

E2 � �E
2 + E′2 (12)

Where N is the number of samples; fn and rn are the predicted

and actual value of the nth sample; �f and �r are the average of the

predicted sequence and the actual sequence.

The standard deviation σ can be used to judge whether the

prediction sequence of the model reflects the dispersion of the

actual sequence.

σA � ⎡⎣ 1
N

∑N
n�1

(An − �A)2⎤⎦1/2 (13)

Where An and �A are the nth value and average value of the

sequence respectively.

The closer the correlation coefficient R is to 1, the better the

prediction performance of the model.

R �
1
N∑N

n�1(fn − �f)(rn − �r)
σfσr

(14)

Where fn and rn are the predicted and actual value of the nth

sample; �f and �r are the average of the forecast sequence and the

actual sequence; σfand σr are the standard deviation of the

forecast sequence and the actual sequence.

Three indicators can form a cosine relationship:

E′2 � σ2f + σ2r − 2σfσrR (15)
c2 � a2 + b2 − 2abcosϕ (16)

Referring to the “Technical guide for ambient air quality

prediction and early-warning methods” from the China National

Environmental Monitoring Centre (China National

Environmental Monitoring Centre, 2017), three classical

benchmark models, Radial basis function network (RBF) of

traditional machine learning, Deep Belief Network (DBN) and

Elman neural network (Elman) of deep learning, are selected to

compare with the proposed model TSTM.

Figure 12 and Figure 13 are Taylor diagrams of the prediction

performance of fourmodels on two test sets in Beijing. The results of

Test 1 show that they are TSTM, Elman, RBF and DBN in

descending order according to the prediction accuracy. Although

the deep learningmodel has more complex structure and algorithm,

it does not mean that it must obtain better effect than traditional

machine learning. It is necessary to explore the applicability of

different deep learning algorithms by practice, and establish an

effective model for air quality prediction. In this study, DBN cannot

capture the characteristics of high oscillation of air pollutant

concentration, and its three indicators of all pollutants are poor.

RBF has worse robustness, and the prediction accuracy is obviously

affected by outlier (PM10). Elman belongs to recurrent neural

network and has short-term memory ability. Its prediction effect

for most pollutants is second only to TSTM, but it has the same

problem as RBF. TSTM not only combines CNN, BiLSTM and

other advanced deep learning algorithms suitable for time series

prediction, but also considers varieties of related features based on

domain knowledge. As shown in experiments, TSTM obtains better

results especially in the face of outliers. In addition, the multistep

effects of recurrent neural network TSTM and Elman with memory

ability are generally more stable, and the prediction error increases

slightly with the increase of prediction step.

The experimental results of Test 2 are similar to that of Test 1.

TSTM still maintains the highest precision. Take PM2.5 in winter

and O3 in summer as examples, the RMSD (r) of the three-steps

prediction are 16.52 μg/m3 (0.93) and 19.31 μg/m3 (0.95)

respectively. The experimental results show that TSTM has

good robustness and generalization ability.

4.2 Air quality forecast

The purpose of pollutant concentration prediction is to

release air pollution information in advance, providing the

guidance for the public in production and life as well as the

basis for government in pollution prevention and control.

Therefore, based on the predicted concentration of six

conventional air pollutants, the performance of four models

for air quality forecast is further compared and analyzed

according to the “Technical Regulation on Ambient Air

Quality Index (HJ 633-2012)” issued by the Ministry of

Ecology and Environment of China (The Ministry of Ecology

and Environment of China, 2022b). Table 1 reflects the accuracy

of the four models for different tasks of air quality prediction.

According to the “Technical guideline for numerical forecasting

of ambient air quality (HJ 1130-2020)”, the requirement for air

quality level is 60%, which can be used as a reference. The results

show that there is a large gap in the performance of the four
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FIGURE 12
The Taylor diagram of pollutant concentration prediction in Beijing (Test 1).
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FIGURE 13
The Taylor diagram of pollutant concentration prediction in Beijing (Test 2).
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models for air quality prediction. RBF and DBN have similar

prediction accuracy for AQI range and air quality level, but DBN

has poor prediction effect for chief pollutant. TSTM and Elman

with recurrent neural network structure always rank in the top

two. Their effects of multistep prediction are more stable, and the

accuracy decreases slightly with the increase of steps. The

accuracy of one-step prediction of the three benchmark

models are all lower than 0.6, but the performance of TSTM

is the best, reaching 0.88. The accuracy for air quality level of the

four models can all meet the national requirement. TSTM has the

best performance, its one-step and three-steps prediction can

reach 0.98 and 0.92, respectively.

4.3 Heavy pollution weather forecast

For air pollution prevention and control, heavily polluted

weather has always been the focus of attention. In order to

reduce pollution and protect human health, all cities issue the

emergency plan for heavy air pollution and take measures

according to the air quality forecast results. Therefore, it is crucial

to ensure the prediction accuracy in heavy pollution weather. At the

same time, the prediction ability for peak values has always been a

difficulty and challenge for machine learning model, and the heavy

pollution weather contains more concentration maximum values,

which is a “touchstone” to test the robustness of the model. Table 2

reveals great differences of the four models under extreme

conditions. Deep learning has a higher upper limit than

traditional machine learning, and the prediction accuracy of RBF

for heavy pollution weather is lower than that of three deep learning

models. Elman still maintains the second position. However, with

the increase of prediction steps, the performance decreases

significantly, and the accuracy for air quality level of three-steps

prediction is lower than 0.6. TSTMwidens the gapwith othermodels

in heavy pollution weather forecast. The accuracy and test score of

one-step prediction are close to the full score, although the

performance decreases slightly with the steps, the results of three-

steps prediction are also above 0.86.

5 Conclusion

Accurate prediction of pollutant concentration is significant

to air pollution prevention. To overcome the shortcomings of

present studies, a novel integrated model TSTM is proposed to

achieve regional and multistep air quality prediction. The

domain knowledge of Atmospheric Sciences is innovatively

introduced to design the model architecture, and advanced

deep learning algorithms including ConvLSTM, Seq2Seq, etc.

are applied to learn important correlations of time, space, type,

meteorology. “Beijing-Tianjin-Hebei air pollution transmission

TABLE 1 Accuracy of four models for air quality forecast in Beijing.

AQI range Air quality level Chief pollutant

TSTM 1 step 0.88 0.98 0.91

2 steps 0.79 0.95 0.88

3 steps 0.69 0.92 0.86

RBF 1 step 0.30 0.71 0.67

2 steps 0.32 0.70 0.66

3 steps 0.33 0.67 0.62

DBN 1 step 0.32 0.73 0.46

2 steps 0.29 0.76 0.38

3 steps 0.29 0.77 0.40

Elman 1 step 0.50 0.87 0.73

2 steps 0.46 0.83 0.70

3 steps 0.45 0.80 0.70

TABLE 2 Performance of four models for heavy pollution weather
forecast in Beijing.

Prediction accuracy Prediction test score

TSTM 1 step 1 0.97

2 steps 0.93 0.94

3 steps 0.87 0.86

RBF 1 step 0.07 0.07

2 steps 0 0

3 steps 0 0

DBN 1 step 0.32 0

2 steps 0.29 0

3 steps 0.29 0

Elman 1 step 0.80 0.82

2 steps 0.73 0.71

3 steps 0.50 0.49
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channel (2+26 cities)" is selected as the study area, and the

prediction of hourly concentrations for six conventional air

pollutants in all cities are carried out. And then the detailed

performance evaluation and analysis are conducted based on two

independent test sets (winter and summer) and three benchmark

models (RBF, DBN, Elman).

Pollutant concentration prediction results show that TSTM

has small NMB and RMSE as well as large r, which is similar in all

cities. As for air quality prediction, there are similar prediction

effects as pollutant concentration prediction. TSTM is obviously

better than other comparison models, and the prediction

accuracy only decreases slightly with the increase of prediction

step. The tests under heavy pollution weather show that TSTM

and Elman with recurrent neural network structure have better

results, but the accuracy of Elman with short-term memory

decreases significantly with the increase of prediction step. In

general, comprehensive experiments and detail evaluations prove

TSTM’s feasibility on regional and multistep air quality

prediction especially in heavy pollution weather. In future, we

will continue improving our model, which is hoped to provide

effective supports for the daily health guide of the public and the

air pollution control of government.
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