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Distributed acoustic sensing in vertical seismic profile (DAS-VSP) acquisition

plays an important role in reservoir monitoring. But the field data can be noisy

and associated with missing traces which affects the seismic imaging and

geological interpretation. Therefore, the DAS-VSP seismic data

reconstruction with a high signal-to-noise ratio (SNR) is worth studying.

There are no exact relationships between signals and noise in the t-x

domain DAS-VSP seismic data, which means that reconstructing signals and

suppressing noise simultaneously by the deep neural network is difficult. We

develop a novel algorithm based on U-net in combination with the Hankel

matrix as input/output, rather than t-x domain seismic data. The frequency

domain Hankel matrix of the seismic data is proposed to facilitate the

reconstruction and denoising of DAS-VSP seismic data as a rank reduction

problem of the high-rank matrix. The Hankel matrices of incomplete data with

noise are high-rank ones while those of complete data without noise are low-

rank ones, which is beneficial to the network learning. In our proposed rank

reduction U-net (RRU-net), two-channel input/output layers are designed for

the real and the imaginary parts of the Hankel matrix in the frequency domain.

Thus, reconstructed data with high precision and high SNR could be obtained

using a trained RRU-net. Meanwhile, we tested our RRU-net algorithm on two

synthetic data and one field data, and the results show the effectiveness and the

feasibility of the method. Our algorithm performs better than both the U-net-

based method that uses t − x domain data as input/output and the rank

reduction approach.
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Introduction

Recently, DAS has been used in vertical seismic profile (VSP) acquisition for

permanent reservoir monitoring due to its advantages of full vertical coverage, low

cost, repeatability, adaptability to high-temperature and high-pressure environment, and

long-term deployment (Miller et al., 2012). However, the quality of DAS seismic data is

poor for the following three reasons: first, the low sensitivity of DAS results in the weakly

received upward-reflected signal, worsened by a large amount of environmental noise,

OPEN ACCESS

EDITED BY

Baoshan Wang,
University of Science and Technology of
China, China

REVIEWED BY

Yichuan Wang,
University of Calgary, Canada
Yaxing Li,
University of Science and Technology of
China, Hefei, China

*CORRESPONDENCE

Weijian Mao,
wjmao@whigg.ac.cn

SPECIALTY SECTION

This article was submitted to Solid Earth
Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 13 July 2022
ACCEPTED 16 September 2022
PUBLISHED 09 January 2023

CITATION

Tang H, Cheng S, Li W and Mao W
(2023), Simultaneous reconstruction
and denoising for DAS-VSP seismic data
by RRU-net.
Front. Earth Sci. 10:993465.
doi: 10.3389/feart.2022.993465

COPYRIGHT

© 2023 Tang, Cheng, Li and Mao. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Brief Research Report
PUBLISHED 09 January 2023
DOI 10.3389/feart.2022.993465

https://www.frontiersin.org/articles/10.3389/feart.2022.993465/full
https://www.frontiersin.org/articles/10.3389/feart.2022.993465/full
https://www.frontiersin.org/articles/10.3389/feart.2022.993465/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.993465&domain=pdf&date_stamp=2023-01-09
mailto:wjmao@whigg.ac.cn
https://doi.org/10.3389/feart.2022.993465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.993465


optical noise, and “ringing” noise. Second, the obstacles in the

acquisition area and the pressure of economic costs for long-term

monitoring result in low-density shot arrangement and sparsely

acquired data. Third, the perforation operation can easily destroy

the fiber in the well, making the signals hardly recordable at this

point. Additionally, the storage cost for time-lapse DAS-VSP

seismic data is usually measured in TB, which is a challenge for

data processing. Briefly, the DAS-VSP seismic data have the

characteristics of low SNR, sparseness, and big data. Therefore, it

is necessary to research the reconstruction and denoising of the

DAS-VSP seismic data in high precision and real time.

Thanks to the rapid development of deep learning technology in

the field of image processing in recent years (Krizhevsky et al., 2012;

Ronneberger et al., 2015; Liu et al., 2018), intelligent processing has

been widely used in the field of massive seismic data reconstruction

(Jia and Ma, 2017; Jia et al., 2018; Mandelli et al., 2018). Among

thosemethods, the convolutional neural network (CNN) is themost

widely used method. The local perception capability of the CNN

could extract more detailed intrinsic features of data. At the same

time, the number of CNN parameters could be reduced by weight-

sharing, which improves the training speed of the network. This

kind of method (deep learning methods, including the

aforementioned CNN) extracts the inherent high-dimensional

features of the data adaptively through massive datasets and does

not rely on prior conditions and artificial experience. Moreover, the

trained net takes less than a few milliseconds to predict 1024 × 112

data (Chai et al., 2020). Therefore, deep learning could be a potential

method to solve the problem of massive DAS-VSP seismic data

reconstruction. Currently, many researchers have applied deep

learning methods to seismic data reconstruction and denoising.

In these studies, seismic data reconstruction and denoising are

always discussed separately. For example, Liu et al. (2018)

proposed the use of partial convolution methods to improve the

blur problem of reconstructed images. Siahkoohi et al. (2019)

accomplished the accurate reconstruction of the common shot

records by the CNN, which is trained by the common receiver

records in the FK domain based on the reciprocity theorem. Chen

and Wang, (2021) proposed a method to enrich the training set by

sampling at different scales and image flipping to improve the

generalization ability of CNN in seismic data reconstruction.

Furthermore, different nets based on CNN, such as residual net

(ResNet) (Wang et al., 2019), generative adversarial neural network

(GAN) (Oliveira et al., 2018), andU-net (Chai et al., 2020; Fang et al.,

2021), were applied to data reconstruction. In the seismic data noise

suppression problem, learning data augmentation strategies are also

adopted to train the CNN (Wang et al., 2019). Dong et al. (2020)

combined the denoising convolutional neural network (DnCNN)

with robust principal component analysis to learn the noise

characteristics in the noisy desert seismic data and realized the

effective suppression of irregular random noise and regular surface

waves. Then, based on the CNN, an energy ratio factor is used to

adjust the energy ratio of the effective signal patch and noise patch in

the training process to improve the generalization ability of the CNN

denoising model to different SNRs (Dong et al., 2021). Feng and Li,

(2022) designed a denoising neural network based on spectral

decomposition analysis (SVDDCNN), and the net extracted

DAS-VSP data features from a singular spectrum instead of the

time-domain data, which can represent geophysical features more

accurately. In addition, cycle generative adversarial networks (Cycle-

GANs) and residual encoding–decoding neural networks (RED-

Nets) are also used in random noise suppression (Li and Wang,

2021; Zhong et al., 2021). The aforementioned methods achieved

high-precision reconstructed data and effective noise suppression

data, respectively. However, noise and missing data coexist in the

field records, and only a few studies have applied a simultaneous

reconstruction and denoising of seismic data by the deep learning

method (Wang, 2020; Jiang et al., 2021). In Wang’s research (2020),

the CNN-based 3D data reconstruction and denoising method first

trained the network for denoising and then trained the network for

reconstruction, separately. Jiang et al. (2021) proposed an improved

convolutional auto-encoder (CAE) method to achieve simultaneous

reconstruction and denoising of seismic data; however, the noise was

residual in the field data testing. For noisy incomplete DAS-VSP

seismic data, when the neural network is trained to implement one

of the tasks (reconstruction/denoising), the other factor (noise/

missing data) will adversely affect the neural network. Therefore,

it is a difficult problem to realize the simultaneous reconstruction

and denoising of DAS-VSP seismic data based on deep learning.

Among the traditional simultaneous reconstruction and

denoising methods of seismic data, the rank reduction based on

the Hankel matrix is one of the effective methods (Gao et al., 2011;

Oropeza and Sacchi, 2011; Chen et al., 2016). The principle is that

the seismic data will repeatedly record the information of the same

or adjacent underground locations, so that the seismic data have a

low-rank structure. The absence of data or the noise will increase the

rank; therefore, seismic data reconstruction and noise suppression

can be regarded as the rank reduction problem of the high-rank

matrix. However, the data in some columns are all zero in the

incomplete seismic data gather, which will lead to instability in the

rank reduction process. Generally, the incomplete seismic data need

to be transformed into a Hankel matrix and then the rank of which

will be reduced by singular value decomposition (SVD) (Cadzow,

1988; Trickett, 2008; Gao et al., 2011; Popa et al., 2021). The

disadvantage of the rank reduction method is that the SVD of

large Hankel matrices requires a huge amount of computational

cost, which makes it unsuitable for massive DAS-VSP monitoring

data. In addition, it is difficult to determine the number of retained

eigenvalues in the SVD process, which will lead to insufficient noise

suppression or signal leakage.

In this article, we propose a simultaneous reconstruction and

denoising method for DAS-VSP seismic data under the framework

of deep learning based on rank reduction. When using a U-net

instead of the SVDprocess of theHankelmatrix, theU-net is trained

to learn the mapping relationship between the high-rank Hankel

matrix (noisy missing data) and the low-rank Hankel matrix (noise-

free complete data) adaptively, which neatly avoids the
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shortcomings of the rank reductionmethod. First, the t − x-domain

training data are transformed into the Hankel matrices in the

frequency domain. So, the two different tasks of data

reconstruction and noise suppression are unified into a reduced-

rank learning task, which could improve the reconstruction accuracy

and efficiency. Second, two-channel input/output layers are

designed for the real and imaginary parts of the frequency-

domain Hankel matrix. Meanwhile, different types of noise and

signal data with different missing percentages are added to the

training set to improve the generalization ability of the network. In

this article, synthetic examples and field data are provided to prove

the effectiveness of the proposedmethod. Furthermore, the results of

the rank reduction method, the U-net trained in the t − x domain,

and the RRU-net are compared to show the superiority of the RRU-

net in simultaneous reconstruction and denoising of DAS-VSP

seismic data.

Methodology

Rank reduction method

Fully sampled seismic data can be represented by a low-rank

matrix. Missing trace or noise will increase the rank of the data.

Therefore, the reconstruction and denoising of DAS-VSP seismic

data can be regarded as a rank reduction problem of a high-rank

matrix (Sacchi, 2009; Oropeza and Sacchi, 2011). When

approximated, seismic data are linear within the t − x

window, and then the seismic data d with one event can be

expressed as

d(t, xn) � w(t0 + pxn), (1)

where t is the time, t0 is the time intercept of the first trace in the

time–space window, xn is the offset of the nth trace, w is the

wavelet, and p is the dip of the event. In the frequency domain,

Eq. 1 becomes

D(ω, xn) � W(ω)eiωpxn . (2)

For regularly sampled seismic data, xn � (n − 1)Δx, where
n � 1, 2, ...,N, N is the number of geophones on a receiver line,

and Δx is the spacing of geophones within lines. The seismic data of

adjacent traces have the following recurrence relation in the

frequency domain:

D(ω, xn+1) � W(ω)eiωpxn+1 ,
� W(ω)eiωpnΔx,
� D(ω, xn)eiωpΔx,

(3)

where eiωpΔx is constant for seismic data with certain frequency ω

and dip p. By denoting eiωpΔx as λω and D(ω, xn) as Dn, Eq. 3 is

simplified to

Dn+1 � λωDn. (4)

The equation for constructing the Hankel matrix with

seismic data in the frequency domain is

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1 D2 / Dk

D2 D3 / Dk+1
..
. ..

.
1 ..

.

Dl Dl+1 . . . DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where k + l − 1 � N. Based on Eq. 4, the Hankel matrix in Eq. 5

can be further expressed as

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1 λD1 / λ(k−1)D1

D2 λD2 / λ(k−1)D2

..

. ..
.

1 ..
.

Dl λDl . . . λ(k−1)Dl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

From Eq. 6, there is a linear relationship among the columns

of the Hankel matrix, that is, the rank of the matrix is 1. Similarly,

it can be proved that when the seismic data contain multiple dip

events, the rank of the Hankel matrix is equal to the number of

dips. Therefore, the Hankel matrix constructed with the seismic

data in the frequency domain is a low-rank Hankel matrix. When

there are missing traces or noise, Eq. 6 becomes non-linear; thus,

the rank of H will increase. The signal reconstruction and the

noise suppression can be effectively achieved by performing SVD

on the Hankel matrix H and reducing its rank. The SVD of the

Hankel matrix is

H � UΣVT. (7)

In Eq. 7,U and V are the unitary matrices with sizes l × l and

k × k, respectively, and they are the eigenvector matrices ofH. Σ

is a diagonal matrix, and its diagonal elements are the singular

values of H. Σ can be presented as

Σ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ1,1 / 0

..

.
1 ..

.

0 / σ l×k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where σ1 ≥ σ2 ≥/σ i ≥ 0. We reduce the rank of the Hankel

matrix by keeping the first r eigenvalues:

Σ � [Σr 0
0 0

], (9)

where Σr � diag(σ1,/, σr). Then, the rank-reduced Hankel

matrix ~H is calculated as

~H � UrΣrV
T
r . (10)

Next, the elements along the anti-diagonal of the matrix ~H

are averaged to obtain ~Dn, and ~Dn is the reconstructed and

denoised seismic data in the frequency domain. There are two

shortcomings in the aforementioned process of simultaneous

reconstruction and denoising of seismic data based on rank

reduction. One, for field seismic data, the rank of seismic data

in different time–space windows is different, and it is difficult to

determine how many ranks are needed to be retained. The other
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problem is that both the SVD of the matrix H and the rank-

reduced matrices ~H require huge computations. Therefore, we

propose to use a U-net to adaptively learn the mapping

relationship between the high-rank Hankel matrix (noisy

missing data) and the low-rank Hankel matrix (noise-free

complete data), instead of relying on artificial experience to

determine the number of the retained rank. Moreover, once

the training of one net has been carried out, the prediction will be

highly efficient.

The architecture of the rank reduction
U-net

The architecture of the RRU-net proposed in this article is

shown in Figure 1. The main part of this network is a U-net with

27 layers, which is a symmetric structure based on CNNs (Falk

et al., 2019). The input of the RRU-net is the Hankel matrix of

seismic data in the frequency domain. Since the elements in the

Hankel matrix are complex, the real convolution neural network

cannot process the data directly. We design the U-net with two-

channel input/output layers, which correspond to the real and

imaginary parts of the Hankel matrix, respectively. In this way,

the RRU-net can extract signal features from both the real and

imaginary parts of the input data. The U-net has three important

components. One is the encoder (left side) composed of the

repeated operators of two 3 × 3 convolutions (purple arrow) that

are followed by batch normalization (BN), a rectified linear unit

(ReLU), and a 2 × 2 max-pooling (red arrow) for down-

FIGURE 1
Architecture of the RRU-net.

TABLE 1 Parameters setting of the RRU-net.

Parameter Value

Patch size 26 × 26

Convolution kernel size 3 × 3

Batch size 25

Learning rate 3 × 10−4

Optimizer Adam

Loss function MSE

Epochs 50
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sampling. After the down-sampling step, the effective receptive

field of the network increases as the size of the feature maps

decreases. Meanwhile, the amounts of feature channels are

generally doubled. For the simultaneous seismic data

reconstruction and denoising task, the encoding process is

responsible for extracting features in different scales of the

FIGURE 2
Two-dimensional profile of the SEAM model and the acquisition geometry.

FIGURE 3
(A) Synthetic noise-free complete signal data and the shot is located at x � 0 m. (B) Noise data from the field DAS-VSP records.
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input noisy missing data. The second component is the decoder

(right side) with an expansive path, in which the feature maps are

first up-sampled by bilinear interpolation (green arrow) to halve

the number of feature channels at each step. In the decoding

process, the size of the feature maps increases after each up-

sampling step, which leads to the reduction of the effective

receptive field of the network. The decoding process is used to

decode the low-dimensional features to the original size,

obtaining the location information. The last layer uses a 1 × 1

convolution to map the multi-channel features to the desired

number of classes. The third component is a skip connection

(black dotted arrows) combining the deep feature maps from the

decoder network with the shallow feature maps from the encoder

network, which is useful to learn the rank reduction theory of the

Hankel matrix with noisy missing data and then implement two

3 × 3 convolutions, each followed by BN and ReLU.

In Eq. 11, L is the loss function of the RRU-net, and it is

defined as

L(θ) � 1
M

∑M
j�1
(f(θ, Hsample

j) −Hlabel
j)2, (11)

where M is the batch size in the training process, f is the U-net

described in Figure 1, θ represents the parameters of the

convolution kernel, Hsample
j is the Hankel matrix with noisy

missing data in the training set, andHlabel
j is the label (noise-free

complete data) in the training set. The RRU-net is trained to

minimize the loss function L to obtain the best value of θ under

FIGURE 4
(A) Synthetic noisy incomplete data based on Figure 3 and themissing trace percentage is 56.4%. (B)Hankel matrices in different frequencies of
the noise incomplete data in the red rectangle of Figure 4A; each Hankel matrix contains a real part (left side) and an imaginary part (right side). (C)
Hankelmatrices in different frequencies of the noise-free complete data in the red rectangle of Figure 3A; each Hankelmatrix contains a real part (left
side) and an imaginary part (right side).

FIGURE 5
Training loss and validation loss of the RRU-net.
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the framework of 1.7 PyTorch version. The other parameters of

the RRU-net such as convolution, max-pooling, and bilinear

interpolation are shown in Table 1. In addition, the patch size of

the training data, the layers of the net, and the convolution kernel

size all have an impact on the result of deep learning as

established in other research studies (Wang et al., 2019; Chai

et al., 2020; Feng and Li, 2022). Therefore, this article does not

repeat the analysis, but we refer to the relevant research in the

selection of these parameters.

Training datasets

We prepare the training data with the synthetic signals by

forwardmodeling and the noises from the field DAS-VSP seismic

data. The synthetic signals are simulated by forward modeling

using the finite difference method for a 2D profile of the SEAM

model (Figure 2). The model has 70 km width and 5 km depth,

and the velocity range is distributed from 1,490 m/s to 4,800 m/s.

The well is located at 3 km (the white stripe in Figure 2) and

FIGURE 6
Simultaneous reconstruction and denoising results of the threemethods on synthetic data generatedwith the SEAMmodel. (A) Synthetic noise-
free complete signal data and the shot is located at x � 6400 m. (B)Original gather with noise and the missing trace percentage is 63%. (C) Result by
rank reduction. (D) Result by U-net. (E) Result by RRU-net. (F–H) One-dimensional waveform comparison.
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equipped with 401 receivers (the blue triangle in Figure 2) spaced

at 10-m intervals and has a depth range from 0 to 4,000 m. There

are 176 sources spaced at 40-m intervals (the red circle in

Figure 2) at the surface. A 30-Hz Ricker wavelet is used in the

simulation. The size of the synthetic data is 1905 × 401 × 176,

that is, the size of the time axis (0.004 s interval), receiver axis,

and shot axis, respectively. In the 176 common shot gathers,

150 shot gathers are randomly selected for training and the rest

for testing. One of the common shot gathers is shown in

Figure 3A. The noise records including the background noise

(arrow 1), ringing noise (arrow 2), and horizontal noise (arrow 3)

are obtained from the real DAS-VSP data as shown in Figure 3B.

Approximately, 40%–70% of the traces are randomly deleted in

different gathers. The noise records from the real data are added

to the incomplete signal records to obtain the noisy incomplete

data as shown in Figure 4A. So, the noisy incomplete data and the

noise-free complete data are transformed into the Hankel matrix

separately, before all the needed data are normalized to [−1, 1]
and windowed to patches with size 51 × 51. There are

266400 pairs of samples in the training dataset, each sample

with size 26 × 26, and parts of them are shown in Figures 4B,C.

The training environment is in the PyTorch framework with

GPU (8 cores) in the Linux system. The total training cost is

about 25 h, and the loss error in epochs is shown in Figure 5.

Numerical examples

The reconstruction and denoising effectiveness of the trained

RRU-net is validated by two synthetic datasets and one field dataset.

One of the synthetic datasets is modeled by the same velocity model

as the training dataset (Figure 4) with different source positions. The

other is from theMarmousi2 model. The field DAS-VSP records are

employed to test the generalization capacity of the RRU-net.

Moreover, to prove the superiority of the RRU-net in handling

simultaneous reconstruction and denoising of theDAS-VSP data, we

compare the results of the RRU-net with those of the rank reduction

method and U-net trained with t-x-domain data.

Synthetic records

There are 26 shot gathers in the first synthetic records to be

tested. One of the processed gathers by the rank reduction

method, U-net, and RRU-net is presented in Figures 6C,D,E,

respectively. The original data are shown in Figures 6A,B. These

figures show data with 65% missing traces. Figures 6C,D show

that the rank reduction method and U-net cannot suppress the

strong ringing noise as marked by the red arrows, while the RRU-

net is able to suppress it more entirely as seen in Figure 6E.

Meanwhile, the signals divided in the window with the strong

ringing noise also are suppressed by the rank reduction method

(Figure 6C) because in the SVD process for the near traces,

ringing noise dominates the eigenvalues. As we can see in Figures

6D,E, the RRU-net suppressed the horizontal noise (red

rectangle) more efficiently than the other two methods. In

addition, the RRU-net performs the best in suppressing the

background noise. For the missing signal reconstruction, the

near traces are barely reconstructed by the rank reduction

method as shown in Figure 6C, while the U-net method has

poor effectiveness for the big gap as marked by the yellow arrow

in Figure 6D. Contrary to the rank reduction method and U-net,

the reconstructed signal by the RRU-net is complete, and the

event continuity is the best as shown in Figure 6E.

To prove the accuracy of the reconstructed signals and to

confirm whether the studied method harms the signal in the

denoised results, we carry out a detailed 1D waveform

comparison. Three traces are shown in Figures 6F–H,

respectively. Figure 6F is the denoised results of the 18th trace

in Figure 6B. Figures 6G,H are the reconstructed signals of the

140th and 199th trace, respectively, which are in different gaps.

The 1D waveform comparison shows that the RRU-net method

best fits the single trace and yields fewer reconstruction errors.

Additionally, the SNR of the 26 shot gathers processed by the

three methods is presented in Figure 7. It is obvious that the SNR

of the proposed network is much higher than that of the other

two methods. To complete the processing of the 26 shot gathers,

the rank reduction method takes 44 s, and the U-net and RRU-

net take less than 5s, which demonstrates the efficiency of the

deep learning method. All these analyses affirm that the proposed

RRU-net can suppress the noise and reconstruct the missing

signal effectively. However, for weak signals below 4s, none of

these three methods can obtain satisfactory reconstruction

results as the weak signal is completely buried in the strong

background noise as shown in Figure 6B. In addition, the cross

term between the real part and imaginary part of the Hankel

FIGURE 7
SNRs of the 26 shot gathers processed by three methods.
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matrix in the frequency domain is ignored as we apply the real

neural network, which may affect the effectiveness of the

proposed method.

To test the effect of the trained network on other synthetic

data, we use the RRU-net to reconstruct and denoise the DAS-

VSP data generated using the Marmousi2 model. The data

include a total of 21 shots and 255 receivers per shot, and every

trace has 1,000 temporal sampling points. One of the

processed gathers by the three methods is presented in

Figure 8. As highlighted by the arrows and the boxes

(Figures 8B–E), the RRU-net yields the best denoising

results, and the 1D waveform comparison of different

traces (Figures 8F–H) shows the accuracy of the

reconstructed signals by our method. The average SNR

value of gathers with noise and 65% missing traces

is −17.09 dB, which is increased to 25.69 dB after

reconstruction by the RRU-net.

Field data application

To further prove the effectiveness of the proposed method,

two real DAS-VSP gathers are tested. The data contain

5001 samples along the time axis with a 1-ms time interval

and 204 receivers along the well with a 0.1-m space interval as

shown in Figures 9Ai,Ei. The signal in Figures 9Ai,Ei is

FIGURE 8
Simultaneous reconstruction and denoising results of the threemethods on synthetic data generated using theMarmousi2model. (A) Synthetic
noise-free complete signal data. (B) Original gather with noise and the trace missing percentage is 63%. (C) Result by rank reduction. (D) Result by
U-net. (E) Result by RRU-net. (F–H) One-dimensional waveform comparison.
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strongly contaminated by several types of noise, and nearly

50% of the traces are missing. The denoised and reconstructed

results by rank reduction, U-net, and RRU-net are presented

in Figures 9Bi–Di, Fi–Hi, respectively. The rank reduction

method in Figures 9Bi,Fi shows the ability to suppress the

background noise but fails to preserve the signal events. The

RRU-net could suppress the strong ringing noise (red arrows)

and the horizontal noise (red rectangles) in Figures 9Di,Hi,

while the other two methods could not (Figures 9Bi,Ci,Fi,Gi).

At the same time, the RRU-net method also performs very well

in recovering the missing signals. The FK spectrum in Figures

9Aii–Dii,Eii–Hii further illustrates the validity of this

algorithm.

Testing the trained RRU-net on both synthetic and field

data indicates its ability to reconstruct randomly missing data

with high accuracy on different datasets, which validates the

feasibility and generalization capacity of the proposed

method.

FIGURE 9
Simultaneous reconstruction and denoising results of the three methods in field DAS-VSP data. (Ai) Original field DAS-VSP data, shot1. (Bi)
Result of (Ai) by rank reduction. (Ci) Result of (Ai) by U-net. (Di) Result of (Ai) by RRU-net. (Aii–Dii) FK spectrum of (Ai–Di), respectively. (Ei)Original
field DAS-VSP data, shot1. (Fi) Result of (Ei) by rank reduction. (Gi) Result of (Ei) by U-net. (Hi) Result of (Ei) by RRU-net. (Eii–Hii) FK spectrum of
(Ei–Hi), respectively.
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Conclusion

We proposed the RRU-net to simultaneously pursue the

reconstruction and denoising of the massive DAS-VSP seismic

data. It is difficult for training the U-net directly with

t − x-domain data to extract the mapping relationship

between noisy incomplete data and noise-free complete data,

but the RRU-net proposed in this article can achieve this.

Compared with the traditional rank reduction method, the

RRU-net avoids the difficulties of selecting the rank

parameters and a large amount of computation for SVD.

These advantages enable the RRU-net to achieve better results

in simultaneous reconstruction and denoising of DAS-VSP

seismic data with higher efficiency. Both synthetic data and

real DAS-VSP seismic data demonstrate the effectiveness of

RRU-net in noise suppression (background noise, ringing

noise, and horizontal noise) and signal reconstruction.

There are still issues that require further investigation in the

simultaneous reconstruction and denoising of DAS-VSP seismic

data. Issues, such as preserving the weak signals, and the

application of the neural network with complex convolution

for seismic data in the frequency domain also need further

investigation.
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