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Distributed acoustic sensing (DAS) is an emerging technology that transforms a

typical glass telecommunications cable into a network of seismic sensors. DAS

may, therefore, concurrently record the vibrations of passing vehicles over tens

of kilometers and shows potential to monitor traffic at a low cost with minimal

maintenance. With big-data DAS recording, automatically recognizing and

tracking vehicles on the road in real time still presents numerous obstacles.

Therefore, we present a deep learning technique based on the unified real-time

object detection algorithm to estimate traffic flow and vehicle speed in DAS

data and evaluate them along a 500-m fiber length in Beijing’s suburbs. We

reconstructed the DAS recordings into 1-min temporal–spatial images over the

fiber section and manually labeled about 10,000 images as vehicle passing or

background noise. The precision to identify the passing cars can reach 95.9%

after training. Based on the same DAS data, we compared the performance of

our method to that of a beamforming technique, and the findings indicate that

our method is significantly faster than the beamforming technique with equal

performance. In addition, we examined the temporal traffic trend of the road

segment and the classification of vehicles by weight.
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Introduction

Traffic monitoring and management are essential links in the construction of smart

cities. Comprehensively monitoring the densely distributed urban road network is still a

challenging task. Surveillance cameras are the most intuitive monitoring method, but the

construction and maintenance costs are high. At the same time, video processing is

enormous, and monitoring coverage has dead spots and is also greatly affected by lighting

and meteorological factors. Using the cell phone signals of people on the road network is
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an innovation to track road congestion in real time. However,

both of the aforementioned methods have personal privacy

concerns, so developing new monitoring methods

complements the deficiencies of the existing observation systems.

The emergence of distributed acoustic sensing (DAS)

applications in the city can revolutionize the smart city’s

sensing abilities as lots of dark fibers existing in the city can

be transformed into vibration sensors. Because infrastructure

optical cables for communication or traffic surveillance would

cover almost every major road, building a DAS transport

management system over the whole city will be possible with

the benefits of fast construction and low maintenance cost.

Hence, DAS could be another new way to continuously

monitor the roads (Chambers, 2020).

Numerous examples have proved the effectiveness of the

roadside DAS for traffic surveillance. Using a wavelet threshold

method, Liu et al. (2019) identified the features of passing cars

from DAS recordings and then estimated the number and speed

ranges of the vehicles. In addition, automobiles were categorized

using a support vector machine classifier. Lindsey et al. (2020)

employed an automatic template-matching method to detect the

changes in Palo Alto, California, automobile traffic patterns

during the COVID-19 quarantine. They also effectively

observed traffic over a 2-month period, including significant

declines associated with the COVID-19 reaction. Chambers

(2020) provided an automated approach for predicting vehicle

counts and speeds at Brady Hot Springs, Nevada, United States,

utilizing DAS array velocity stacking. Wang et al. (2021)

monitored the number of cars and their average speed

between December 2019 and August 2020 in Pasadena,

California, using the slant stack method and analyzed the

changes in traffic patterns caused by the COVID-19

lockdown. Wang et al. (2020) identified the “heaviest” float

and the “loudest” band at the 2020 Rose Parade in Pasadena,

California, based on the amplitudes recorded by the Pasadena

DAS array. Weight estimation is a unique feature of DAS that

differentiates it from video traffic surveillance. Clearly, dense

DAS acquisition facilitates the processing of seismic arrays and

improves the precision of vehicle identification and dynamic

parameter estimations.

Although DAS has unparalleled advantages in continuous

roadside traffic monitoring, the massive data produced by DAS

are a barrier to mining. Traditional seismic array processing is

used to analyze the traffic parameters, which frequently needs

abundant computation and makes long-distance real-time

monitoring inappropriate. Applying various machine learning

algorithms on DAS waveforms or wavefield images is one of the

popular approaches to reduce the processing time. Narisetty et al.

(2021) introduced the SpeedNet model and used real-world and

simulated data to determine the average vehicle speed each

minute. In comparison to existing loop detector-based

sensors, their model obtained an accuracy of over 90%.

Wiesmeyr et al. (2021) utilized an image and signal

processing technique to compute the vehicle speed and

numbers for a highway DAS experiment and evaluate the

findings in comparison to reference data from roadside

sensors. Van den Ende et al. (2021) suggested a deconvolution

auto-encoder (DAE) model for deconvolving the typical

automobile impulse response from DAS data. The test on a

24-h traffic cycle using the DAEmodel demonstrates the viability

of potentially processing massive DAS volumes in near real time.

YOLO (You only look once: Unified, real-time object

detection, Redmon et al., 2016) is one of the fastest and most

accurate object identification AI frameworks (https://pjreddie.

com/yolo/). Stork et al. (2020) and Zhu and Shragge (2022)

demonstrated that YOLO can detect weaker microseismic event

signals with low signal-to-noise ratios and high average precision

over DAS data in near real time. Numerous YOLO-based systems

that rely on the road video network have been presented, and it

has been proven that the algorithm is effective and viable for

traffic monitoring in near real time (Cao et al., 2019; Ge et al.,

2020; Mandal et al., 2020; Al-qaness et al., 2021; Amitha and

Narayanan, 2021; Lin and Jhang, 2022; Zheng et al., 2022). To the

best of our knowledge, however, YOLO has not been

implemented for DAS traffic monitoring. Owing to the

processing performance advantages of YOLO, it is possible to

achieve a substantial advance in DAS traffic monitoring by

employing this algorithm.

In this research, we will, therefore, offer another recognition

model based on deep learning. This solution is mostly based on

the YOLOv5 framework for real-time object detection. We will

construct a collection of datasets, train them, then conduct a

system evaluation, and compare the outcomes to the

conventional method based on slant stacking (Wang et al.,

2021). We will also measure vehicle weights and attempt to

classify them in order to illustrate a second potential traffic

monitoring capability of DAS.

Data and methods

We conducted a 15-day DAS experiment near the Wenyu

River in the Changping area of Beijing in December 2021

(Figure 1). The fiber optical cable we utilized was 3.2 km in

length and was primarily installed along the river. A Silixa

iDAS interrogator was installed at the cable’s eastern end and

was let to continuously measure the strain rate changes along

the cable with a 2000-Hz time sampling rate and 4-m spatial

interval. Therefore, the experiment has about 800 channels in

total.

On the riverbank is a road that serves as the primary

transportation artery for the nearby residents. The passing

vehicles on the road would cause vibrations and generate

seismic waves that will propagate to nearby optical cables and

generate cable strain deformations. These deformations will

be densely recorded by the DAS array, and the movement of
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every vehicle appears as a trajectory in DAS temporal–spatial

recordings. According to the existence of the trajectory and

its pattern, we can judge the passing vehicle, its speed, and the

direction through traditional seismic array processing, image

recognition, or even direct visual inspection.

We utilized about 500 m of fiber in the east (channels

from 191 to 315, Figure 1) to monitor the traffic flow. This

section of the fiber is roughly parallel to the road but about

20 m apart (Figure 1). In addition, the eastern portion

contains a piece of cable (channel 91) that spans the road

and allows a direct measurement of the vehicle-caused road

vibration. The flows at the east and west may be different

since some vehicles may stop by a restaurant that is situated

between channels 91 and 191. The overall processing flow is

shown in Figure 2.

Distributed acoustic sensing data
preprocessing

We first downsampled the continuous DAS data on

channel 191–315 to 200 Hz and removed the linear trend,

the mean value, and the common-mode noise. As the spectrum

diagrams of two representative channels shown in

Supplementary Figure S1, the background ambient noises

are abundant at 1–20 Hz, while the vehicle signals above

20 Hz are easier to be separated from the background

noises. On the other hand, vehicle signals below 1 Hz are

only obvious for some heavy vehicles but not common for

all; therefore, we apply a 20–50 Hz bandpass filter to the DAS

data to improve the reliability of passing vehicle identification.

Passing vehicle detection and speed
estimation with YOLOv5

YOLOv5 is the most recent version of the YOLO series

(https://github.com/ultralytics/yolov5). One significant

improvement is the detection speedup by PyTorch (Paszke

et al., 2019), which can work with deeper networks for

applications on more extensive datasets and real-time cases.

The structure of YOLOv5 comprises four parts: the input,

backbone network, neck network, and prediction network.

The principle of object detection is to use an anchor to select

an image segment from the image and input it into the

convolutional neural network model to identify the object

category in the frame. By scanning the entire image with

anchors of different sizes, we recognize and locate the object

when the probability of the box-selected image segment

predicted as ground truth is greater than the set threshold.

The object detection algorithm is divided into two categories

according to the processing steps. The two-stage method

generates a series of region proposals through a particular

module. It then uses a convolutional neural network for

sample classification and regression positioning to detect

objects represented by Faster R-CNN (Ren et al., 2015). The

one-stage method directly extracts features from anchors to

predict the object category and location, as described by SSD

FIGURE 1
DAS array in Changping, Beijing. The yellow line is the optical cable, and the yellow circle indicates the location of the DAS interrogator. We used
data from the sub-array (No. 191–315, blue line) and No. 91 (one of the cross-road channels) for traffic monitoring.
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(Liu et al., 2016) and YOLO series (Redmon et al., 2016; Redmon

and Farhadi, 2017; Redmon and Farhadi, 2018). Two-stage

detection has high accuracy but slow detection speed. One-

stage detection accuracy is low but much faster than the two-

stage algorithm and is widely used in real-time object detection

tasks.

We preprocessed DAS continuous waveforms for channels

191–315 into 1-min segments without overlap. The 1-min

waveforms of 125 channels were converted to images in the

size of 1167*875, resulting in around 21,000 photographs over

the course of 15 days. To train a new

YOLOv5 model for vehicle detection and speed

estimation, we manually annotated a dataset of about

10,000 photographs.

For vehicle trace labeling in DAS images, LabelImg (2022)

is employed. LabelImg is a graphical image annotation tool

that labels object bounding boxes in images. These images are

manually categorized as automobiles with varying speeds or

noises without any car passing. First, we utilize bounding

boxes for each image to entirely contain the vehicle traces

with a predetermined size. One box represents an automobile

that has been labeled, and the car number is the sum of the

number of boxes. As the vehicle traces are contained within

the boxes, the height and width of the boxes correspond to the

driving distance and journey duration of the cars. Therefore,

it is possible to determine the speed ranges of vehicles by

calculating the aspect ratio of the bounding boxes. Once

vehicle traces have been tagged, the width, height, and

FIGURE 2
Overall data processing flow.
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center coordinates of the boxes are automatically recorded as

the ground-truth location for model training.

By counting the number of boxes and computing their

box aspect ratio, we can determine the number of cars and

their speed in each 1-min DAS image. In a ratio of 8:1:1, the

dataset is randomly divided into training, validation, and

testing sets. For training, we employ the SGD (Robbins and

Monro, 1951) optimizer with momentum and weight decay

coefficients of 0.937 and 0.0005, respectively. The learning

rate is 0.01, and the initial training epoch has been set to 300.

The deep learning processing flow of YOLOv5 is shown in

Supplementary Figure S2. Due to the early stop mechanism,

the training process on a server with two Nvidia GeForce RTX

3090 GPUs was terminated at epoch 228 after 10 h of

training (Figure 3). Currently, the best model is the No.

128 epoch, with training precision as high as 95.9%

(Figure 3).

Box loss, object loss, and class loss are the primary

evaluative factors for object detection algorithms. Given

that the length and width of the boxes are critical to the

distance and travel time of vehicle traces in DAS

photographs, the box’s dimensions are crucial in this

instance. The slight box loss provides a more precise

bounding box position and enhances the speed estimation

performance. YOLOv5’s box loss is a CIoU (complete

intersection over union) loss between the predicted and

ground-truth box (Zheng et al., 2020). IoU (intersection

over union) is computed in the following manner:

IoU � |B ∩ Bgt|
|B ∪ Bgt| , (1)

where Bgt = (xgt, ygt, wgt, and hgt) is the ground-truth bounding box

and B = (x, y, w, and h) is the predicted bounding box.

CIoU loss is defined as follows:

LCIoU � 1 − IoU + ρ2(b, bgt)
c2

+ αv , (2)

where b and bgt denote the central points of B and Bgt, ρ2

represents the square of the distance between the center

points of the prediction box b and the gt (ground-truth) box

bgt, and c2 represents the square of the diagonal length of the

smallest box that can just contain the prediction box and the

gt box.

α as a trade-off parameter is shown in Eq. 3:

α � v

(1 − IoU) + ] . (3)

Here, ν is used to measure the consistency of the aspect ratio

between the predicted box and the gt box, and its definition is

shown in Eq. 4:

v � 4

π2(arctanw
gt

hgt
− arctan

w

h
)

2

, (4)

where wgt and hgt, respectively, represent the width and height of

the gt box, and w and h, respectively, represent the width and

height of the prediction box.

FIGURE 3
Vehicle detection YOLOv5 model training. Box regression loss (box loss), object loss (obj loss), class loss (cls loss), training accuracy, and recall
are depicted in the top row, from the left to the right. Similar to the first row, the first three figures in the second row are loss functions for the
validation set instead. The next two figures represent the mean average precision for IoU thresholds greater than 0.5 and for the range (0.5, 0.55,
0.60, ..., 0.95).
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CIoU loss takes three geometric properties into account,

i.e., the overlap area, central point distance, and aspect ratio, and

leads to a faster convergence and better performance. It is

apparent in the first column of Figure 4 that the box

regression loss dropped rapidly within 10–20 epochs. Object

loss is the confidence loss of ground-truth and predicted

bounding boxes for determining the probability of whether

there are objects in the predicted bounding box. Object loss

uses BCE loss (binary cross-entropy loss) in YOLOv5. BCE loss is

defined in Eq. 5:

LBCE � { −log(p) y � 1,
−log(1 − p) Otherwise,

(5)

where p is the probability of the predicted bounding box

belonging to the gt box, y represents the value of the ground-

truth bounding box, and the value range of y is {1, 0}.

Class loss used in YOLOv5 is focal loss. Focal loss is defined

as follows:

Lfocal � −(1 − pt)γlog(pt) , (6)

where pt is the probability of the predicted class that belongs to

the true class and γ is the focusing parameter (γ ≥ 0).

We only identified one class of automobile trace in the DAS

photographs; hence, the class loss values of training and

validation are both zero. There are considerable fluctuations

in the first 100 epochs of the training precision and recall

curves, but after the first 100 epochs, the curves gradually

converge, and the accuracy is over 94%, and the recall is over

91%. In addition, the mean average accuracy with an IoU

threshold of more than 0.5 is greater than 95%, and the mean

average precision with an IoU threshold between 0.5 and 0.95 is

close to 83%.

After training the model, we applied it to all DAS data and

systematically recognized passing vehicles and their speed in the

15-day period. In a laptop with an Nvidia GeForce RTX

3060 Laptop GPU, the detection procedure only takes a total

of about 0.5 h.

Passing vehicle detection and speed
estimation by slant stacking

We also applied the slant stacking approach developed by

Wang et al. (2021) to detect the passing vehicle and its speed.

Similar to previous YOLOv5 processing, we segmented the

prepossessed continuous DAS time series from the same

125 channels (about 500 m, the blue line in Figure 1) at 2-

min intervals. The longer interval instead of 1 min can provide a

more stable estimation of vehicle speed but will be more time-

consuming during the slant stacking procedure. We used 2-min

intervals for accurate speed estimation and for speeding up the

computation. The 125 channels were further divided into sub-

arrays with 74 channels and overlapped by 24 channels (i.e., slide

with 50 channels). In each sub-array, we first performed data

quality control by deleting these channels with a cross-

correlation coefficient with adjacent channels smaller than 0.5.

We then stacked the waveforms in the sub-array with the fourth

root method (Rost and Thomas, 2002) by scanning the different

FIGURE 4
Cars across the cross-road fiber cable and their raw signals in the No. 91 DAS channel in the 4-min period. The cross-road fiber is beneath the
white line in pictures. The events are labeled with numbers by time order. Cars No. 3 and No. 4 passed the channel almost the same time, and their
waves are stacked together. Car No. 7 was not photographed since it turned to the restaurant as the yellow arrow indicates and did not have any
signals captured on channels 191–315 during that time. Cars No. 2 and No. 4 also did not go through channels 191–315, according to our
manual waveform inspection.
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vehicle trace slopes (p). The vehicle’s speed(c) can be determined

as follows:

c � mps

ppdt
, (7)

where m, s, and dt are the number of channels, the channel

interval, and the time sampling rate, respectively. In this study,

the values are 125, 4 m, and 0.05 s, respectively. We have

established a speed estimation range of over 25 km/h to

100 km/h based on road conditions. This indicates that the

slope p ranges from 28.8 to 115.2 in one direction

and −115.2 to −28.8 in the opposite direction. The sign of p

conveys information about the movement direction.

We shifted both sides of the middle channel of each

subarray’s p*dt samples in the opposite direction and then

stacked their energies. In addition, we utilized local maxima

analysis to identify the peaks in order to estimate the number

of vehicles and their speeds per 2 min. The results of the two

sub-arrays are mutually verified for reducing vehicle

detection and speed estimation errors by calculating the

mean values of the vehicle numbers and speed ranges,

respectively. All of the aforementioned DAS data slant

stack processing procedures require roughly 85 h serially

running on a Linux server with two AMD EPYC 7702 64-

Core processors.

Due to the proximity of the fiber cable to the road in

comparison to the measurement length, both the apparent

speeds determined by YOLOv5 and slant stacking are

considered to be the vehicle speed. Using the following

formula, we estimated the hourly average speed (vavg) as

follows:

vavg �
∑n

i�1vi
n

, (8)

FIGURE 5
Vehicle detection comparisons. The three planes from up to down correspond to the findings of peak detection, slant stacking, and YOLOv5.
Their respective detections are indicated by red dots, crosses, and boxes with correlation coefficients. The numbers in the circles are identical to
those in Figure 4, but their order has altered due to their differing movement orientations. Cars 2, 4, and 7 do not pass through the DAS array on
channels 191–315.

TABLE 1 Vehicle detection verification.

Method Ground truth Detection Missed detection False detection Repeat detection

Peak detection (array at No.91) 11 13 1 3 0

Slant stacking (array at No. 191–315) 8 7 1 0 0

YOLOv5 (array at No. 191–315) 8 9 0 0 1
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where vi is the individual vehicle speed detected by YOLOv5 or

the slant stacking method and n is the number of vehicles in

1 hour.

Detection of vehicles and analysis of their
weights by waveform amplitudes

Using transient fluctuations in waveform energy (amplitude)

is a conventional technique for detecting seismic events, and it

can also be utilized to detect passing cars. This detection can be

performed with a single sensor, which is simple and requires

minimal computational resources. But the method is difficult to

estimate the movement speed and is more likely to be falsely

triggered by pedestrians or other non-vehicle vibrations in the

vicinity.

The continuous waveforms in a piece of cross-road cable

(channel 91 in Figure 1) were independently used to count the

vehicle number. As shown in Figure 4, moving automobiles

caused obvious waveform changes, and their amplitudes may

be relative to the vehicle’s weight. The original

waveforms in this channel were downsampled,

detrended and mean value removed, then

transformed to waveform envelopes and smoothed with 2-s

windows.

We used local maximal analysis to detect the events. Through

several tests, the amplitude threshold and minimum event

interval are set to 2000 count and 2 s, respectively.

Results

Vehicle detection comparison and
verification

We begin by comparing the detections of the three

techniques. On channel 91, we use a 4-min window for peak

detection (Figure 4). During this time, we took photographs of

vehicles crossing the channel. Photographs and waveforms on

the channel confirm the passage of 11 vehicles within a 4-min

period. For slant stacking and YOLOv5 methods, we extend the

4-min window on channels 191–315 by 1 minute at both ends.

Due to the distance between the two observation sites

(approximately 400 m) and the time shifts caused by passing

vehicles, the 6-min window will ensure that the measurements

for the three methods overlap.

We visually inspect the DAS array records for 11 vehicles that

passed channel 91 and confirm that three of them (No.2, 4, and

7 in Figure 5) did not enter channels 191–315. Therefore, the

ground-truth passed vehicle numbers for channel 91 are 11 and

FIGURE 6
Daily variations in the traffic volume for event peak detection, YOLOv5, and slant stacking methods in 15 days. The zoom-in image in the lower
panel highlights daily and weekly periodic patterns.
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those for the DAS array on channels 191–315 are 8. Table 1

shows the vehicle detection verification of peak detection, slant

stacking, and YOLOv5 methods. The number detected by the

peak method is 13, and the three incorrectly detected signals are

likely the result of local vibrations, such as people walking or a

stopped car with its engine running. Supplementary Figure S3

shows more similar wrong detection cases, implying that the

single-channel detection approach is susceptible to both moving

vehicles and local events. The slant stacking and

YOLOv5 methods each identify seven and eight vehicles,

respectively. The absence of a detected vehicle in slant

stacking is primarily due to the fact that the event signals on

the different channels are split by the time window, and the

stacking energies in both windows are too weak to identify

(Figure 5). Two cars (Nos. 10 and 11) that are following

closely are correctly identified by either slant stacking or

YOLOv5. Unlike the slant stacking, a trace across two

windows may be detected twice by YOLOv5 (Figure 5), which

needs to remove duplicates by comparing their speeds and corner

coordinates at the adjacent boxes. Other strong vibrations on

FIGURE 7
Hourly traffic volumes of 15 days derived from three detection methods. Different colored lines correspond to each day, and the gray vertical
dot lines represent the rush hour.
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channels 191–315 that are unrelated to traffic can be efficiently

suppressed using both array-based methods, as shown in

Supplementary Figure S3.

Traffic flow estimation and analysis

We used YOLOv5, slant stacking, and event peak detection to

identify passing vehicles in about 2 weeks’ worth of DAS data

between 11/12/2021 00:00 (Saturday) and 25/12/2021 20:00

(Monday) for the investigation of traffic patterns. We

compared the variations in the number of automobiles per

hour detected by the aforementioned three independent

approaches. As seen in Figure 6, the three estimation methods

for traffic volume yield comparable traffic patterns but differ in

terms of the number of vehicles. The event peak detection

method predicts the greatest number of vehicles, whilst the

YOLOv5 method estimates a somewhat lower number, and

the slant stacking method estimates the smallest number.

Traffic volume estimations are affected by a number of

variables. One of the causes is the variance in the processing

time window. With shorter time windows, more vehicles would

be spotted, particularly during rush hour, but they would also be

identified many times because the signals may span two units of

FIGURE 8
Figures in the top row represent the daily and weekly variations of the average speed, as estimated by YOLOv5 and the slant stacking technique.
The figures in the second row represent hourly variations of the same methods. The gray dot line in the second row of figures divides each day into
three distinct time intervals with varying average speed trends.

FIGURE 9
Relationship between the traffic volume and mean speed derived from the detection results of YOLOv5 (left) and slant stacking (right). The
colors of the scatters represent the time of the day.
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data in continuous time series for array-based algorithms, such as

YOLOv5 or slant stacking. False identifications can be avoided to

a considerable extent with array-based approaches, which need

coherent signals over many channels. In contrast, we discovered

erroneous identifications in the peak detection method, where

the erroneous peaks were likely generated by the neighboring tree

swaying in windy conditions. In order to acquire more

dependable traffic patterns, it is necessary to improve the

detection algorithm, such as recognizing multiple objects

simultaneously in an array-based approach.

Similar daily and weekly fluctuations exist for each of the

three procedures. Each day’s traffic volume peaks in the

morning, lowers during the midday, reaches another peak

in the afternoon, and finally declines in the evening. We

emphasize the two traffic volume peaks that occur within a

certain time period for each technique, illustrating the

weekday peaks. On weekdays, the morning rush hour

occurs between 6 and 9 h, and the afternoon rush hour

occurs between 15 and 18 h. However, this tendency is not

appropriate on weekends, as depicted in the graph. From the

zoomed-in graph, we can note that the weekday traffic volume

peaks are quite narrow. We also find it intriguing that all

methodologies forecast Friday’s morning rush hour to have

significantly less traffic volume than other days. The weekly

variations with a regular pattern may be related to the

commute times of nearby neighbors.

We study the hourly traffic volume variations of event peak

detection, YOLOv5, and the slant stacking method in greater

detail (Figure 7). The majority of traffic volume accumulates

between the morning and afternoon rush hours. During

6–18 h, the traffic volume of the event peak detection

method ranges from 40 to 100 vehicles per hour, the

YOLOv5 method ranges from 30 to 80 vehicles per hour,

and the slant stacking method ranges from 20 to 60 vehicles

per hour. The traffic volume estimation of the

YOLOv5 approach is more accurate than that of the slant

stacking method as the results of event peak detections

represent the actual traffic volume. The hourly variance of

each day is divided into five time-groups based on the morning

and afternoon rush hours. From 0 to 6 h is the initial time

where the majority of traffic volume is less than 10 vehicles per

hour. The morning rush hour is the second interval between

6 and 9 a.m. Compared to 9–15 h, the third session has a

relatively lower but stable volume of traffic. The afternoon

rush hour is the fourth time between 15 and 18, characterized

by the biggest volume of traffic. The final phase, between

18 and 0 h, is characterized by a sharp decline in the traffic

volume.

FIGURE 10
Passing vehicles’ amplitudes over the time.

FIGURE 11
Hourly vehicle numbers and their mean amplitudes from
peak detection. The colors of scatters represent the hour of
the day.
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Vehicle speed estimation

Figure 8 depicts the average speed variation of YOLOv5 and

slant stacking. The YOLOv5 mean speed ranges between 30 km/

h and 80 km/h, while the slant stacking method ranges between

30 km/h and 90 km/h. In general, the mean speed predicted by

the slant stacking method is around 10 km per hour faster than

YOLOv5. A vehicle trace in a DAS image is a width-measured

line (the last panel in Figure 5). The slope of the middle section of

the line is more representative of the actual vehicle speed. When

the bounding box identified by YOLOv5 entirely encloses the

entire vehicle trail, the speed calculated by the aspect ratio of the

bounding box is always lower. The speed determined via slant

stacking is more accurate than that of YOLOv5. The

YOLOv5 technique speed range is upward and rises from

40 km/h to 60 km/h, whereas the slant stacking method speed

range rises from 50 km/h to 70 km/h during the day. Figure 8’s

top row depicts the daily and weekly fluctuations of the average

speed assessed using YOLOv5 and the slant stacking approach.

The fluctuations in the average speed over time for YOLOv5 and

slant stacking are comparable. During the interval between

midnight and dawn, the average speed of both the techniques

is very variable, and the period contains both the minimum and

maximum average speeds. In the second row of Figure 8, both the

methods exhibit a gradual decrease in the average speed from six

to eighteen o’clock, which corresponds to the rush hour periods

discussed in the previous section. The average speed decreases

from 60 km/h to 50 km/h for the YOLOv5 method and from

70 km/h to 50 km/h for the slant stacking method.

On the graphs of the hourly traffic volume and mean speed,

we compare the results of YOLOv5 and the slant stacking method

(Figure 9). For YOLOv5, there are less vehicles between midnight

and early morning with divergent average speeds between 30 km/

h and 80 km/h, while the majority of the vehicles are

concentrated during the day with convergent average speeds

between 40 km/h and 60 km/h. Slant stacking demonstrates the

same distribution as YOLOv5 but with greater mean speeds and

smaller traffic volume; the midnight and early morning period

mean speed range is over 30–90 km/h, and the daylight period

mean speed range is over 50–70 km/h.

Vehicles classified by amplitude

The DAS-measured vehicle-passing amplitude is roughly

proportional to the vehicle’s mass and load. In general, the

stronger the vibration, the greater the total mass is. Figure 10

depicts the distribution of amplitudes across time for all

identified events, while Figure 11 compares the vehicle

numbers and their average amplitudes during the daily

hours. Similar distributions are seen to those depicted in

Figure 9. On the basis of these distributions, we broadly

split the amplitudes into three categories: amplitudes

higher than 12,500 counts, amplitudes fewer than

5,000 counts, and amplitudes in between. Figure 12 shows

the vehicle counts over time for the three groups and their

respective totals, binned per hour. Similar time-distribution

features exist across the medium-amplitude bins and the

entire event volume. Generally, the high-amplitude and

low-amplitude distributions exhibit contrasting

characteristics. High-amplitude gears usually appear during

the morning rush hour, whereas low-amplitude values

FIGURE 12
Distributions of vehicle numbers per hour for different vehicle weights. The vehicles are categorized into three classes: amplitude over
12,500 counts (High amp), lower than 5,000 counts (Low amp), and between 5,000 and 12,500 counts (Middle amp). The origin line is for total
numbers.
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typically appear during the evening rush hour. These periods

include high and low vehicle speeds, respectively (Figure 8).

Figure 8 depicts that the average hourly velocity variation

during the morning rush is greater than that of the evening

rush, which is consistent with the high and low amplitudes

depicted in Figure 12. Consequently, we hypothesize that the

vehicle speed can influence the amplitude. Also, there is a link

between velocity and amplitude; the faster the velocity, the

greater the amplitude is.

Conclusion

In this study, we present a deep learning strategy based on

the YOLOv5 real-time object recognition framework for

recognizing the passage and velocity of automobiles in

DAS photographs. After training on a massive amount of

labeled data, our model’s precision is 95.9%. The new strategy

for vehicle detection and speed estimation yields comparable

results to the conventional slant stacking seismic array

processing method. Unlike slant stacking, its processing

speed for processing large DAS data is significantly faster,

and it can be implemented in near-real-time data processing

situations. With rapid data processing capacity, constructing

a city-wide DAS network for traffic monitoring will be viable

and operable using the city’s existing densely packed

communication optical fiber network. In addition to

augmenting the existing traffic video surveillance

network, the network will also help for the development of

smart cities.

Traditional seismic array processing, such as slant

stacking, can use wavefield attributes to reconstruct vehicle

motion parameters, such as driving directions, and is

immediately applicable in a number of contexts. Deep

learning requires the training of pertinent models. Because

we did not identify the driving direction to construct a

comparable training set, the system cannot discern the

driving direction of the car in this experiment. Currently,

we lack more comprehensive training for difficult situations,

such as multiple vehicles passing simultaneously. This area

must be expanded in the near future. In addition, the model’s

ability to generalize across diverse circumstances has not been

fully evaluated. In addition, integrating YOLOv5 with the

slant stacking technique may help calibrate YOLOv5’s

speed estimation and improve the performance of the

YOLOv5 algorithm.
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