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Lithofacies classification is a fundamental step to perform depositional and reservoir

characterizations in the subsurface. However, such a classification is often hindered

by limiteddata availability andbiased and time-consuming analysis. Recentwork has

demonstrated the potential of image-based supervised deep learning analysis,

specifically convolutional neural networks (CNN), to optimize lithofacies

classification and interpretation using core images. While most works have used

transfer learning to overcome limited datasets and simultaneously yield a high-

accuracy prediction. This method raises some serious concerns regarding how the

CNNmodel learns and makes a prediction as the model was originally trained with

entirely different datasets. Here, we proposed an alternative approach by adopting a

vision transformer model, known as FaciesViT, to mitigate this issue and provide

improved lithofacies prediction. We also experimented with various CNN

architectures as the baseline models and two different datasets to compare and

evaluate the performance of our proposed model. The experimental results show

that the proposed models significantly outperform the established CNN

architecture models for both datasets and in all cases, achieving an f1 score and

weighted average in all testedmetrics of 95%. For the first time, this study highlights

the applicationof theVisionTransformermodel to ageological dataset.Our findings

show that the FaciesViT model has several advantages over conventional CNN

models, including (i) no hyperparameter fine-tuning and exhaustive data

augmentation required to match the accuracy of CNN models; (ii) it can work

with limited datasets; and (iii) it can better generalize the classification to a new,

unseendataset.Our study shows that the applicationof theVision transformercould

further optimize image recognition and classification in the geosciences and

mitigate some of the issues related to the generalizability and the explainability

of deep learning models. Furthermore, the implementation of our proposed

FaciesViT model has been shown to improve the overall performance and

reproducibility of image-based core lithofacies classification which is significant

for subsurface reservoir characterization in different basins worldwide.
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1 Introduction

Since the seminal work of Krizhevsky et al. (2012) that

used deep convolutional neural networks (CNN), known as

AlexNet, to win the ImageNet challenge, the application of

CNNs has been widely popular and has significantly

transformed the landscape of visual and pattern

recognition. Availability of big data and easy access to

high-performance computing resources allows rapid

development of deeper and wider CNN architectures to

learn more complex features in an image and produce a

prediction accuracy that surpasses human accuracy (LeCun

et al., 2015; He et al., 2016). CNNs are particularly powerful

for image analysis because CNNs are translational and scale

invariance through weight sharing and pooling, respectively.

In geosciences, various CNN algorithms have been explored

and implemented to perform either supervised or

unsupervised learning approach on multi-scale image

datasets and analyzes, including basin-scale seismic

interpretation (Wrona et al., 2018; Alaudah et al., 2019);

Wu et al., 2019 and micro-scale analysis of petrography or

computed tomography scan datasets (Alqahtani et al., 2018;

Koeshidayatullah et al., 2020; Ferreira et al., 2022).

Previous works have highlighted CNNs as a data-hungry

model, and to achieve a high-performance result, a much deeper

network is required to increase the receptive fields and capture

long-range dependencies (LeCun et al., 2015; He et al., 2016).

This issue can be mitigated by the ability of CNNs to be trained in

a domain where a large volume of datasets is obtainedmore easily

and transfer the knowledge to a more specific domain where data

is difficult to collect and expensive (Weiss et al., 2016). This

method is referred to as transfer learning, and it provides a way to

optimize machine learning performance when the dataset is

limited, such as in geosciences. Since then, most deep learning

implementations in geosciences, particularly for image analysis

tasks, have relied primarily on transfer learning methods (Li

et al., 2017; de Lima et al., 2019; Baraboshkin et al., 2020; Wu

et al., 2020). Although this method allows for some

breakthroughs in geological image classification and

recognition, the model was originally trained on a domain

that inherently has different data features and distributions,

but can still produce a high-performance result that could

raise some concerns in the long run (Pires de Lima and

Duarte, 2021; Koeshidayatullah, 2022). Furthermore, this is

compounded by the relatively stagnant performance and low

explainability of various CNNmodels, which created the urgency

to develop a deeper and wider CNN model. In such a case, while

the performance of CNN models may improve, it comes with a

significant trade-off, in which the models become

computationally expensive and even more challenging to

interpret.

Motivated by the success of the self-attention mechanism in

natural language processing tasks (Vaswani et al., 2017; Devlin

et al., 2018), the recent development of CNN models for vision

tasks has also attempted to incorporate such self-attention

modules within CNN layers and has been shown to improve

the overall image classification performance (Cao et al., 2020).

The implementation of attention modules allows the model to

focus on specific areas of the input image that has more

influence on the prediction. However, one major drawback

of using self-attention for the image data set is the quadratic

complexity of the sequence length, because the image pixel

needs to be unrolled into long 1D sequences, and each pixel

needs to attend to all other pixels. These issues make

transformer models computationally expensive and

inefficient for image analysis. Furthermore, the transformer

model requires positional embedding to capture the correct

pixel sequence, which requires architectural changes. Recent

work proposed a new architecture, Vision Transformer (ViT),

to mitigate these issues by splitting the image into 16x16-sized

patches and treating these patches as tokens (Dosovitskiy et al.,

2020). Furthermore, this model encodes positional embedding

and class embedding to capture the spatial relationship between

patches and learn the global relationship of the image,

respectively. This model achieved state-of-the-art results on

the ImageNet dataset, which inspires further works to develop

ViT architectures for various computer vision tasks (Chen C.-F.

et al., 2021; Liu et al., 2021). Despite these successful

applications, the ViT model is well-known for requiring a

large number of training datasets. Recent work has focused

its efforts on improving the ViT model in order to make the

model work with a small dataset.

In geosciences, most image classification and segmentation

tasks are dominated by CNNs, and the application of ViT is still

significantly limited. To date, only a few studies have

experimented with ViT, primarily for remote sensing images

(Bazi et al., 2021; Chen H. et al., 2021), and no studies have

utilized the Vision Transformer model to perform lithofacies

classification on borehole core images. Therefore, our study aims

to explore how ViT learns and makes predictions on a geological

dataset. Furthermore, we evaluate and validate (i) the

performance of ViT to classify the lithofacies of subsurface

core images; (ii) the ability of ViT to generalize the learning

process and predict new, unseen datasets, and further compare

the prediction with conventional CNNs architecture (base and

pretrained models); and (iii) the limitation and potential of ViT

for classifying limited geological dataset. The successful

application of ViT has the potential to improve the

generalizability and explainability of deep learning models in

geosciences.

2 Core-based lithofacies analysis

The characterization of the subsurface reservoir involves

multi-scale and -dimensional analyzes, from one-dimensional
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borehole analysis (well log and core samples) to three-

dimensional depositional and property modeling (Amel et al.,

2015; Al-Ramadan et al., 2020; Anees et al., 2022b; Anees et al.,

2022a). In such cases, the classification and interpretation of

lithofacies play a key role in providing the basic building block to

a more advanced interpretation. Lithofacies (facies)—is defined

as a body of rock with certain specified attributes that distinguish

it from other rock units (Leeder, 2012). In reservoir

characterization, lithofacies classification is particularly

important for identifying depositional processes and

delineating the depositional environment and quantifying the

net-to-gross ratio of reservoir facies (Amel et al., 2015;

Koeshidayatull ah et al., 2016; Ashraf et al., 2019).

Information related to lithofacies can be obtained from well

data (e.g., Gamma-Ray, Neutron-Density), seismic attribute

analysis, and cored intervals in a borehole. The latter is the

only dataset that provides the ground truth of lithofacies

classification and interpretation. However, it is also the most

expensive and difficult to obtain and characterize from the

subsurface; hence, its availability is relatively limited.

Conventional lithofacies classification from core samples

relies on visual pattern analysis (e.g., grain size, depositional

texture, and structure analysis) (Rothwell and Rack, 2006).

Secondary physical and chemical analyzes, such as hardness,

acid tests and other nondestructive geochemical techniques, can

also be performed to confirm the mineralogy of the lithofacies

(Croudace and Rothwell, 2015; McPhee et al., 2015; Amao et al.,

2016). Although physical analysis cannot be analyzed in machine

learning, machine learning is an excellent tool for replicating

visual pattern analysis and performing more robust and unbiased

classification (Thomas et al., 2011; Baraboshkin et al., 2018;

Martin et al., 2021). Visual-based machine learning,

specifically deep neural networks, has been widely applied in

the past 5 years to perform lithological classification (de Lima

et al., 2019; Baraboshkin et al., 2020; Koeshidayatullah et al.,

2020). The primary motivation behind employing machine

learning for this task is a time-consuming, expensive, and

potentially biased interpretation when performed by a human.

To date, it is clear that machine learning will never completely

replace humans or geologists in performing this task, but

machine learning has the potential to help optimize and

standardize the process. Such advancement will not only

significantly reduce the cost associated with core description

but also improve the reproducibility of core analysis across

geologists.

Various models and approaches have been proposed to

conduct core-based lithofacies analysis, from support vector

machine (SVM) to deep neural networks. A set of works that

aims to classify rocks by different types of features. A set of works

extracted different color distributions and intensity (e.g., color

histogram, hue, saturation) from rock samples and used different

algorithms based on statistics (Singh et al., 2004; Harinie et al.,

2012), SVM (Lobos et al., 2016; Patel et al., 2016; Patel et al.,

2017), combination of statistics and machine learning (Prince

et al., 2005; Thomas et al., 2011; Seleznev et al., 2020), to perform

lithology classification. In addition, previous works applied

LeNet (named CIFAR in the publication) and other

convolutional neural networks to classify granite tiles (Ferreira

and Giraldi, 2017) and rock images (Zhang et al., 2017). Another

work shows the application of deep convolutional neural

networks (CNN) to classify different lithologies directly from

core images (de Lima et al., 2019). Despite highlighting several

limitations of deep learning, this study shows a promising

potential of CNN in optimizing core-based lithofacies analysis

only from digital core images. Several follow-up studies

demonstrated the power of CNN to perform core lithofacies

classification by comparing different architectures and found that

ResNet architecture (He et al., 2016) outperforms other CNN

architectures, achieving up to 95% in analytical precision

(Baraboshkin et al., 2018; Ivchenko et al., 2018; Baraboshkin

et al., 2020). Recent work byMartin et al., 2021 shows a successful

case of coupling core facies and extracted color-channel

log(CCL) to predict centimeter-scale lithofacies. This study

uses two different CNN, WaveNet (Oord et al., 2016) and

Deep TEN (Zhang et al., 2017), to perform sequence-to-

sequence learning in the CCL data and texture classification

in the core image dataset, respectively. The CNN currently

applied for different rock types and analyses: igneous rocks

(Fan et al., 2020; Fu et al., 2022), rock quality designation

(Alzubaidi et al., 2021), and trace fossils detection (Ayranci

et al., 2021; Timmer et al., 2021). Furthermore, a recent work

proposed the use of elemental data in addition to images to

improve the accuracy of classification (Xu et al., 2021).

A previous study explored how networks learn by extracting

different feature maps at different layers, indicating that

networks learn rather differently than humans and, most of

the time, use unrelated features to predict lithofacies

(Baraboshkin et al., 2020). Furthermore, this study shows that

the model could not achieve the same level of performance in a

new unseen core dataset with similar lithofacies, so the accuracy

dropped to close to 50%. This raises a serious concern about the

explainability and generalizability of CNN models and how

much we can trust the model. While another study

highlighted how probability averaging may improve the

results of classification (Alzubaidi et al., 2021), the class

imbalance problem, which is very typical in the geosciences

dataset, could have a detrimental impact on the overall

performance of the deep learning model (Koeshidayatullah

et al., 2020; Koeshidayatullah, 2022). This is further

compounded by the fact that most of these studies rely

heavily on the transfer learning method and intensive data

augmentation to perform training (Baraboshkin et al., 2020).

Therefore, there is an urgent need to explore another deep

learning method, such as Vision Transformer, to analyze

geological image datasets and improve the explainability of

deep learning.
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3 Methodology

This section presents themethodology designed and followed

to evaluate ResNet, ViT, and the hybrid structures of ResNet and

ViT to classify Core Lithofacies.

3.1 Dataset collection and preparation

Table 1 describes the datasets used in this study collected by

Baraboshkin et al. (2020). 10% of the training set are used for

validation. The first dataset was collected from different wells placed

in Russia, it includes various formations: Bazhenov, Abalak

(Vasuganskaya and Georgievskaya), Vikulovskaya, and Domanik.

The second dataset is collected from the Achimov formation. The

dataset was collected as a photo of core boxes from the RFGF

(unified fund of subsurface geological information) website and

automatically cropped out from the photo to separate different core

box columns. The columns were then sliced into 10 x 10 cm images.

Each image is resized to 256 × 256 pixels and normalized to a range

of pixel intensities from 0 to 1.

3.2 Augmentation

The augmentation technique is a powerful tool for increasing

the generalization performance ofmodels byminimizing overfitting.

It can be carried out online or offline. Online augmentation, also

known as real-time augmentation, is performed during the training

phase, whereas offline augmentation is first implemented on the

dataset before training, then the augmented dataset is used for

training the model. It is noteworthy that both online and offline

augmentations have their benefits and drawbacks. For example, the

main disadvantages of offline augmentation include space

complexity and implementation complexity (Shorten and

Khoshgoftaar, 2019). On the other hand, a main drawbacks of

online augmentation is that the original samples of the datasetmight

not be kept during the training. Another issue with online

augmentation compared with offline augmentation is that the

size of the dataset is as the same as the size of the original dataset.

In this study, online augmentation is taken into account and

implemented on the input dataset using TorchVision

Transforms in Pytorch. The considered image augmentation

includes cropping, rotation, flipping, color jitter, and Gaussian

blur. They are implemented by random selection. To alleviate the

aforementioned drawbacks of online data augmentation, we

created three data loaders and combined them. The first is for

the original data (to ensure the original samples are included in

the training) and the other ones for the considered augmentation

types with different orders and parameters.

• Random crop: Each input image is first resized to 256 × 256

pixels. Then random subset with 224 × 224 pixels from the

original image is created.

• Rotation: Images are rotated at 90 and 180° for the first and

the second image augmenters.

• Flipping: horizontal and vertical flips are considered with a

probability of 0.5 for the first and second image

augmenters.

• Color jitter: this type of augmentation is to randomly

change the contrast, brightness, saturation, and hue of

an image. The brightness factor of 0.5 is considered to add a

random brightness jitter to images for one data loader.

However, the brightness for the other data augmenter is

not changed. The saturation factor is chosen uniformly

from 0 to one to adjust the amount of jitter in saturation.

Hue factor of 0.3 is also adopted to add random shade to

the images.

• Blur: using Gaussian filter to blur an image. For the first

data augmenter the kernel width and height size of 21 is

adapted, whereas a kernel size of five is used for the second

image augmenter.

TABLE 1 Datasets description.

Class Dataset I Dataset II

Training Testing All samples Testing

Argillaceous 517 104 621 37

Granite 550 111 661 0

limestone 263 53 316 0

Sandstone-Laminated 534 108 642 217

Sandstone-Massive 561 114 675 60

Siltstone 542 110 652 126

Total 2967 600 3567 440
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Figure 1 depicts examples of the developed data loaders.

3.3 Training and fine-tuning

Optimization is the process of adjusting model parameters to

reduce model error in each training step. Stochastic gradient

descent (SGD) optimizer is used with Momentum (Qian, 1999)

value of 0.9 in order to help accelerate SGD in the relevant

direction and dampens oscillations.

The learning rate warm-up (Goyal et al., 2017) approach is

adopted at the beginning of the training steps by which the

learning rate increases linearly from zero to the initial learning

rate during the defined steps. Then, for the remaining steps the

learning rate goes down from the initial learning rate to zero

following cosine function/curve.

Dropout as a regularization technique is a significant

method to prevent overfitting. It deactivates randomly

chosen neurons during training phase by assigning zero

values for the selected neurons. Dropout cannot only be

applied for the neuron level but also on the path level

(Drop-path) in order to prevent co-adapting different

depths of sub-networks.

Weight decay is also implemented to help prevent overfitting

and the exploding gradient problem issues by adding a penalty

term to the cost function. In this study, L2 penalty is applied

which leads to shrink the model weights. Cross-entropy loss is

applied to adjust the weights during the training phase to

minimize the loss value.

Loss � −∑
n

i�1
tilog pi( ) (1)

where n is the number of classes, in this study n = 6, ti is the truth

label and pi is the Softmax probability for class i.

The transfer learning paradigm is utilized here for both

CNN-based and ViT-based architectures due to the small size

of the training dataset. Networks were pre-trained using

ImageNet Dataset (Deng et al., 2009) and the generated

weights are fine-tuned and the networks were re-trained for

the classification task of this study.

3.4 Evaluation measures

To evaluate the proposed models, the confusion matrix,
precision, precision, recal, and F1 are considered. A confusion
matrix is an N × N table where N is the number of classes in the
dataset. It is a good method to evaluate the performance of
classification models especially, for highly imbalanced datasets. It
is composed of four main evaluation measures namely: True
Positive (TF), True Negative (TN), False Positive (FP) and False
Negative (FN). Several different evaluation measures can be
formulated from those four measures, including Accuracy,
Precision, Recall and F1.

FIGURE 1
Examples of (A) original data, (B) image augmenter I and (C) image augmenter II.
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Accuracy � number of instances classified correctly
total number of instances

� TP + TN

TP + TN + FP + FN
(2)

Precision � TP

TP + FP
(3)

Recal � TP

TP + FN
(4)

F1 � 2 ×
Precision × Recal

Precision + Recal
(5)

Weighted average (WA) is considered due to the

imbalanced nature of the datasets especially Dataset II (El-

Alfy and Al-Azani, 2020).

WAPrecision � ∑iPrecisionipcounti
∑icounti

(6)

WARecal � ∑iRecalipcounti
∑icounti

(7)

WAF1 � 2 ×
WAPrecision × WARecal

WAPrecision +WARecal
(8)

TABLE 2 Description and variations of ViT (Dosovitskiy et al., 2020) models.

Layers Hidden size dim Heads MLP dim Params

ViT-Base (ViT-B) 12 768 12 3027 ~86M

ViT-Large (Vit-L) 24 1024 16 4096 ~307M

ViT-Huge (ViT-H) 32 1280 16 5120 ~632M

FIGURE 2
An overview of Vision Transformer architecture: (A) FaciesViT, (B) the hybrid ResNet and ViT architecture, and (C) the encoder block. The output
layer is represented by Classes from C1 to C6 where C1: Argil, C2: Granit, C3: limestone, C4: Standstone lam, C5: Standstone mas, and C6: Siltstone.
Since the input image belongs to limestone, this is highlighted in the output layer.
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3.5 CNN architecture

Residual-based Convolutional Neural Network (ResNet) (He

et al., 2016) is considered as our baseline in this study due to its

scalability while achieving satisfying results in image

classification and object detection comparing with other

CNN-based architectures. ResNet has different structures. In

this study we consider ResNet50 and ResNet101 structures.

Both ResNet50 and ResNet101 are trained either from scratch

or by utilizing the pretraining approach. Therefore, four

networks are evaluated as the baseline of this study, namely

Basic ResNet50 (B-ResNet50), Basic ResNet101 (B-ResNet101),

Pretrained ResNet50 (P-ResNet50) and Pretrained ResNet101

(P-ResNet101). Those models are implemented using Pytorch

framework.

3.6 Vision transformers

3.6.1 ViT-base (ViT-B)
Three main models are presented and developed by

Dosovitskiy et al. (2020) described in Table 2. Due to the

small sizes of the datasets used in this study, the ViT-B

structure is selected to be evaluated among others.

TABLE 3 Parameters considered for training models.

Parameter Batch size Learning rate Momentum Weight decay Decay type #Epochs Learning
rate warmup (K)

Value 64 1e-02 0.9 1e-04 Cosine 100 1

TABLE 4 Classification reports for CNN-based models for Dataset I and Dataset II.

Dataset I

B-ResNet50 B-ResNet101 P-ResNet50 P-ResNet101 support

prc recal f1 prc recall f1 prc recall f1 prc recal f1

argil 0.817 0.856 0.836 0.795 0.894 0.842 0.942 0.942 0.942 0.917 0.962 0.939 104

granite 0.973 0.973 0.973 0.973 0.982 0.978 0.982 0.973 0.977 1.000 0.973 0.986 111

limestone 0.839 0.887 0.862 0.906 0.906 0.906 0.906 0.906 0.906 0.925 0.925 0.925 53

sandstone_lam 0.759 0.759 0.759 0.784 0.806 0.795 0.808 0.898 0.851 0.890 0.824 0.856 108

sandstone_mas 0.863 0.772 0.815 0.860 0.860 0.860 0.899 0.860 0.879 0.861 0.868 0.865 114

siltstone 0.728 0.755 0.741 0.817 0.691 0.749 0.885 0.836 0.860 0.809 0.845 0.827 110

Accuracy 0.828 0.852 0.902 0.897

Weighted Avg 0.830 0.828 0.828 0.852 0.852 0.850 0.903 0.902 0.902 0.898 0.897 0.897 600

Dataset II

argil 0.442 0.622 0.517 0.299 0.541 0.385 0.647 0.297 0.407 0.364 0.216 0.271 37

granite 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

limestone 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

sandstone_lam 0.939 0.355 0.515 0.927 0.410 0.569 0.841 0.512 0.636 0.845 0.502 0.630 217

sandstone_mas 0.154 0.167 0.160 0.067 0.067 0.067 0.241 0.333 0.280 0.200 0.267 0.229 60

siltstone 0.652 0.683 0.667 0.707 0.651 0.678 0.678 0.651 0.664 0.756 0.492 0.596 126

Accuracy 0.445 0.443 0.509 0.443

Weighted Avg 0.708 0.445 0.510 0.694 0.443 0.516 0.696 0.509 0.576 0.691 0.443 0.535 440
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As depicted in Figure 2A, an input image with a resolution of

244 × 224 × 3 first is divided into 16 patches and input into the

patch embed block to generate a sequence of 2D patches. The

Embedding Block is composed of a convolution layer of 16 × 16

and a flatten layer. The output of the flatten layer (196 × 768) is

then contacted with a class token with a size of 1 × 768 and added

to the training parameter, Position Embedding, to retain

positional information, which is followed by the Dropout

Layer. The resulting sequences of embedding vectors are fed

into the Encoder Block which is composed of alternating layers of

multi-headed self-attention depicted in Figure 2C. The outputs of

the Encoder Block is fed into the Layer Norm. The output related

to the class token (1 × 768) is then extracted and fed into MLP

Head block.

3.6.2 ResNet50-ViT
Instead of feeding image patches into the transformer, feature

maps generated using CNN can be fed into the transformers

(Dosovitskiy et al., 2020). A hybrid model of CNN, especially

ResNet50 and vision transformer is also evaluated in this study

(ResNet50-ViT). The ResNet50 network serves as a feature

extractor. Therefore, the input to the vision transformer is the

features maps generated using ResNet instead of feeding the

image patches in the previous vision transformer model. Figures

2B,C depict the structure of the hybrid model.

3.7 Experimental setup

Our experiments are implemented on a LambdaWorkstation

of AMD® Ryzen threadripper pro 3975wx 32-cores × 64 and

three NVIDIA GeForce RTX 3090 GPUs with a graphic memory

of 24 GB for each. Anaconda 4.13.0 (2022-05-19) is configured

on Ubuntu 20.04.4 LTS and Pytorch framework is used (Paszke

et al., 2019). In addition, Scikit learn package (Pedregosa et al.,

2011) is used to report the results. Table 3 presents the parameters

considered for training and evaluating the models.

4 Results

4.1 Dataset I

4.1.1 Convolutional neural networks
In this study, we evaluated and compared two different

residual-based CNN architectures (ResNet), ResNet50 and

FIGURE 3
Confusion matrices for Dataset I (A) B-ResNet50 (B)B-ResNet101 (C)P-ResNet50 (D)P-ResNet101 (E) FaciesViT (F) P-R50-ViT.
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ResNet101 to train and perform image classification on the first

core image dataset. In the first experiment, we train the CNNs

from scratch following the learning parameters established

in Table 3. Overall, ResNet101, which has more layers, skip

connections, and deeper networks, perform better than

ResNet50 achieving up to 86% in all classification metrics,

particularly the weighted average of f1 score, precision, and

accuracy (Table 4). In contrast, RestNet50 only achieved 83%

in both the f1 score, precision, and weighted average across the

metrics (Table 4). In the second experiment, we pre-trained the

ResNet models with the ImageNet dataset and with learning

parameters similar to those in the previous experiment. All

classification metrics in both models have improved

significantly yielding up to 90% in the weighted average of

all metrics and accuracy, an increase of 8.5% from the

first experiment (Table 4). Unlike the first experiment, the

ResNet50 performs slightly better than the ResNet101 during

the second experiment (Table 4).

The result table and the confusion matrix further show

that the baseline ResNet50 model particularly struggled to

classify laminated sandstone, massive sandstone, and siltstone

(Figure 3 and Table 4). The model is often confused between

laminated sandstone and siltstone. In contrast, the baseline

ResNet101 model faces some difficulties to differentiate between

argillite and siltstone (Figure 3). However, this mistake is rather

consistent with a typical human error as argillite and siltstone

can have very similar appearances. Although pre-trained

models achieved much improved results, the models still exhibit

issues similar to baseline models, particularly in distinguishing

between sandstones and siltstone (Figure 3).

4.1.2 Vision transformer
For Dataset I, two Vision Transformer-based architectures,

mentioned above, were evaluated. This was conducted to have a

better insight into the actual performance of ViT in the

geosciences dataset. Both models were pre-trained with the

TABLE 5 Classification reports for ViT-based models for Dataset I and Dataset II.

Dataset I

P-R50-ViT FaciesViT support

prc recal f1 prc recal f1

Argil 0.936 0.990 0.963 0.990 0.990 0.990 104

Granite 0.991 1.000 0.996 1.000 0.991 0.995 111

limestone 0.962 0.962 0.962 1.000 0.981 0.990 53

sandstone_lam 0.881 0.889 0.885 0.856 0.935 0.894 108

sandstone_mas 0.929 0.921 0.925 0.944 0.886 0.914 114

Siltstone 0.932 0.873 0.901 0.945 0.936 0.941 110

Accuracy 0.937 0.950

Weighted Avg 0.937 0.937 0.936 0.952 0.950 0.950 600

Dataset II

Argil 0.700 0.378 0.491 0.429 0.162 0.235 37

granite 0.000 0.000 0.000 0.000 0.000 0.000 0

limestone 0.000 0.000 0.000 0.000 0.000 0.000 0

sandstone_lam 0.870 0.585 0.700 0.797 0.705 0.748 217

sandstone_mas 0.267 0.333 0.296 0.447 0.567 0.500 60

siltstone 0.769 0.556 0.645 0.697 0.659 0.678 126

Accuracy 0.525 0.627

Weighted Avg 0.745 0.525 0.612 0.690 0.627 0.651 440
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ImageNet dataset and with hyperparameters similar to CNN

models (Table 3). In general, both ViT-basedmodels significantly

outperform all CNN architectures, with an increase of up to 15%

in all classification metrics (Table 5). Our proposed ViT achieved

95% in both the weighted average of the f1 score and other

metrics (Table 5), while the hybrid model shows a slightly lower

performance, achieving around 93% in both the weighted average

of the f1 score and other metrics in the test data set (Table 5).

Furthermore, the FaciesViT model shows the most stable

performance across different classes and classification metrics

(Figure 4 and Table 5).

The confusionmatrix shows that the hybrid CNN-ViTmodel

has almost correctly predicted all classes, except between laminated

and massive sandstones (Figure 3). Although this issue may

not occur for geologists, it can be understood when looking at

the training and test datasets of these two classes as they can

sometimes appear similar (Figure 1). The FaciesViT model seems

to fix this problem and can achieve 95% accuracy (Figure 3).

However, the model still struggled slightly to differentiate between

argillite and siltstone (Figure 3).

4.2 Dataset II

In this study, we examined the generalizability of all models

by performing a blind test on a new, unseen core dataset (Dataset

II). This core dataset is collected from a different geological basin

but has almost all the rock types as in Dataset I, except granite

and limestone. Across the different CNN models, baseline and

pre-trained, both the accuracy and the weighted average of the

f1 score have decreased significantly, only 44 and 57%,

FIGURE 4
Confusion matrices for Dataset II (A) B-ResNet50, (B)B-ResNet101 (C)P-ResNet50 (D)P-ResNet101 (E) FaciesViT (F) P-R50-ViT.

TABLE 6 Summary of results. The best results are presented in bold.

Dataset Model Precision Recall f1 Acc

Dataset I B-ResNet50 0.8297 0.8283 0.8284 0.8283

B-ResNet101 0.8521 0.8517 0.8504 0.8517

P-ResNet50 0.9035 0.9017 0.9019 0.9017

P-ResNet101 0.8977 0.8967 0.8968 0.8967

FaciesViT 0.9517 0.9500 0.9503 0.9500

P-R50-ViT 0.9366 0.9367 0.9363 0.9367

Dataset II B-ResNet50 0.7079 0.4455 0.5102 0.4455

B-ResNet101 0.6938 0.4432 0.5160 0.4432

P-ResNet50 0.6961 0.5091 0.5763 0.5091

P-ResNet101 0.6911 0.4432 0.5354 0.4432

FaciesViT 0.6898 0.6273 0.6510 0.6273

P-R50+ViT 0.7445 0.525 0.6116 0.5250

Frontiers in Earth Science frontiersin.org10

Koeshidayatullah et al. 10.3389/feart.2022.992442

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.992442


respectively (Table 4). While the recall values show similar scores

across CNN architectures, precision could produce around 70%

in Dataset II (Table 4) with the baseline ResNet achieving the

highest value among all CNN-based models. The model most

correctly predicted siltstone and laminated sandstone but at the

same time struggles to classify the rest of the rock types and even

made a classification error between laminated and massive

sandstones (Figure 4).

Although the ViT models also experienced a similar

performance decrease in this dataset. Both ViT-based

models still outperform CNN models, achieving up to 65%

in both f1-score and accuracy (Table 5). Furthermore, the base

ViT model performs slightly better than the hybrid ViT-CNN

model (Tables 5 and 6). Compared to all models, the weighted

average precision score of the hybrid model yields the highest

value, reaching 75% (Table 5). However, its performance is

not stable and only achieved 52% in the weighted average

recall score. The results of our experiment with Dataset II

further show that our proposed FaciesViT model exhibits the

most consistent and stable performance across all the

evaluation metrics. Similarly, both transformer-based models

show high accuracy when classifying laminated sandstone and

siltstone (Figure 4 and Table 5). The confusion matrix shows that

the proposed FaciesViT model can generalize better and predict all

types of rock more equally than the other CNNmodels (Figure 4).

5 Discussion

5.1 Vision transformer for core lithofacies
classification

Applications of deep learning to automate core lithofacies

classification have reached state-of-the-art results, matching

geologist-level classification for core interpretation (de Lima

et al., 2019; Baraboshkin et al., 2020; Falivene et al., 2022).

Now more than ever, the need to automate subsurface

geological interpretation has peaked due to rapid digital

transformation and streamlined data transfer. However,

the true potential of deep learning for core image

classification remains under-explored due to limited data

availability and a high-quality labeled dataset. This is

further compounded by the narrow focus of applying

Convolutional Neural Networks and supervised learning to

perform this task. Recent developments of a deep learning

algorithm for computer vision have introduced the

implementation of a transformer-based algorithm, known

as Vision Transformer (ViT; Dosovitskiy et al., 2020). This

algorithm differs from CNN because it focuses on the

sequence of images and patches rather than individual

pixels. Furthermore, this model benefits from a multi-head

self-attention mechanism to learn the importance of features

for the classification and optimize the classification with a

limited dataset. Recent work indicates that Vision

Transformer has outperformed CNN in many computer

vision tasks, including image classification, image

superresolution, and segmentation (Liu et al., 2021; Xie

et al., 2021). However, the applications of ViT are very

limited in geosciences and further exploration is required

to fully uncover the power and applicability of the

transformer-based algorithm to conduct visual recognition

in geosciences.

In this study, for the first time, we proposed and developed

a novel transformer-based framework to perform fully

automated core lithofacies classification using datasets that

have been studied by Baraboshkin et al. (2020). To evaluate

and validate our proposed model, we conducted several

experiments using recent CNN architectures (ResNet50 and

ResNet101) and a hybrid CNN-ViT model. Our results show

that the proposed FaciesViT model is much superior to the

CNN and hybrid CNN-ViT models, achieving a weighted

average f1 score 15% higher than all CNN architectures

(Table 6). In addition, we further tested the trained ViT

model (train to Dataset I) to perform classification on the

entirely new and unseen dataset (Dataset II). A similar

experiment was previously performed and showed that

their best CNN model that achieved > 90% could not

generalize the information to the new dataset and only

achieved a score of less than 50% f1-score even after

extensive data augmentation (Baraboshkin et al., 2020). In

our study, we showed that the proposed ViT model could

generalize better when tested on the unseen data set compared

to other CNN algorithms. This phenomenon suggests that ViT

learns better than CNN and could transfer knowledge from

the dataset where it is trained to the out-of-distribution

dataset. This is evident through the visualization of the

layers using the attention rollout to show what features are

important for the classification (Figure 5) and most are similar

to the characteristics used by geologists to identify the

different types of rocks. Among the different methods, the

mean attention rollout provides the most information on how

the FaciesViT model informed its decision (Figure 5). This can

be justified as the FaciesViT works better with the original

images than with the feature maps extracted using CNN which

is a major advantage of using ViT because the ViT model can

outperform CNN models without requiring preprocessing

steps and feature extraction processes. This provides a

major advance towards developing a general deep learning

model for image classification using transformed-based

architecture. As reported in previous work, ViT has the

potential to replace CNN in performing various computer

vision tasks because it provides (i) a more efficient and robust

model; (ii) a model with higher generalizability, and (iii) a

more explainable deep learning model.
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FIGURE 5
Visualizations of learned features within the transformer layers using attention rollout in different rock types.
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5.2 Future recommendation and limitation

This study is designed as a proof-of-concept on the

application of ViT for core lithofacies classification and

explores how it improved the overall performance of a deep

learning algorithm for such a task when compared with

traditional CNN algorithms. Hence, we also acknowledged

several limitations of this work, including: (i) our study uses a

fairly limited dataset (< 10k) and an imbalance dataset which

may have a negative impact on the learning and prediction

processes. Therefore, an additional dataset is required to

unravel the actual potential of ViT; and ((ii) we only

examined the six most common lithofacies in the subsurface

reservoir and uses a general category to group them. A typical

reservoir characterization would require a more detailed analysis

and grouping. For example, limestone can be further divided into

at least five lithofacies, such as mudstone, wackestone, packstone,

grainstone, and boundstone which will hold more information

than just using limestone as a category. Although we have tested

our model to predict an unseen dataset from different geological

settings to test the transferability of our model, future works

should consider using more detailed lithofacies types to better

represent actual subsurface reservoir conditions and

complexities. In addition, ViT-based models require larger

training dataset and more computational recourses compared

to CNN-basedmodels due to the complexity of the used attention

mechanism. We recommend using more advanced ViTs

overcoming such limitations. Furthermore, a more advanced

data augmentation (e.g., label smoothing, CutMix;

Koeshidayatullah, 2022) may further improve the performance

of the model and optimize the training processes.

6 Conclusion

• This study, for the first time, utilized a transformer-based

architecture FaciesViT, to perform lithofacies classification

directly from core images.

• Our proposed model can match the performance of other

CNN models without heavy data augmentation.

Furthermore, the model can generalize better for the

unseen dataset, which provides a significant step

forward in the application of deep learning to lithofacies

interpretation.

• The attention rollout technique shows that the

algorithm bases its classification on features used by

geologists to differentiate and classify lithofacies. This

improves the overall explainability and transferability of

the model.

• Although the model can predict an unseen and out-of-

distribution dataset with an accuracy of up to 65%, a more

diverse and larger volume of dataset would help the

prediction of our model to other datasets.
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