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Due to high spatial resolution, low cost, and wide bandwidth, distributed optical

fiber acoustic sensing (DAS) is regarded as a potential tool for data acquisition in

vertical seismic profile (VSP) surveys. However, in real DAS-VSP records, desired

signals are often seriously plagued by various noise, which does not appear in

the conventional seismic data received by electronic geophones. Exploring a

high-performing attenuationmethod for the background noise can significantly

improve the quality of DAS-VSP records and has essential impacts on the

following imaging and interpretation. Deep-learning-based methods,

especially convolutional neural network (CNN), have shown remarkable

performance in seismic data denoising. However, the conventional CNN-

based methods may degrade when dealing with DAS-VSP records in low

signal-to-noise ratio. In this study, we propose a novel multi-scale dense-

connection denoising network (MDD-Net) to achieve high-accuracy

processing of the complex DAS background noise. Unlike conventional

multi-scale networks, MDD-Net utilizes widen convolution block to capture

the multi-scale features of the analyzed data. On this basis, dense connection

operations are employed to fuse the features and improve the network

efficiency. Meanwhile, an enhanced spatial attention (ESA) block is designed

to reinforce the features, which are helpful for noise suppression and weak

signal recovery. Both synthetic and field DAS-VSP records are processed to

verify the effectiveness of MDD-Net. Meanwhile, we also compare the

denoising results with other competing methods. The experimental results

demonstrate that MDD-Net can significantly attenuate the complex DAS

background noise and restore the desired signals, even for the weak

upgoing signals.
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1 Introduction

Distributed optical fiber acoustic sensing (DAS) is a novel

acquisition method that uses the phase information of the

scattered signals to receive the deformation induced by the

seismic wave field (Spikes et al., 2019; Dong and Li, 2020).

Compared with traditional geophones, DAS is superior in

terms of recording resolution and acquisition cost, such as

easy arrangement and high-observation density (Bellefleur

et al., 2020; Feng and Li, 2022). Due to its advantages, DAS

has begun to apply in seismic surveillance and seismic

exploration. Moreover, some successful applications are

reported in vertical seismic profile (VSP) data acquisition (Yu

et al., 2016). Nonetheless, the weak scatter optical signals tend to

be contaminated by the DAS background noise, resulting in a low

signal-to-noise ratio (SNR) for field DAS data (Binder et al.,

2020). In addition, rare studies focus on analyzing the properties

of DAS noise, which has become one of the obstacles to designing

effective attenuation methods. To our knowledge, DAS noise is

mainly composed of instrument noise and coupled interferences,

representing differently from the noise in the geophones-

acquired seismic records (Dong et al., 2020; Tian et al., 2022).

Notably, some types of background noise, such as time-frequency

variant noise and horizontal noise, uniquely exist in DAS records

(Zhong et al., 2022a). Thus, we can deduce that it is challenging

for the available denoising methods to deal with the DAS

background noise. Attenuating the seismic background noise

is significant for the following process, such as seismic inversion

and interpretation. Therefore, research on effective approaches to

suppress the DAS background noise has attracted increasing

attention in the seismic data processing.

To suppress the DAS background noise, some attempts are

put into practice to improve the data quality. However, due to the

short development time of DAS technology, only some simple

denoising methods, such as weighted-mean stack (Kobayashi

et al., 2020) and linear filtering techniques (Soto et al., 2016), are

applied to the issue of background noise suppression. In addition,

the denoising performance for these methods may degenerate

when confronted with complex DAS data. Although the

denoising issues for DAS data have not been extensively

studied, we still can get references from similar research in

conventional seismic data processing. The conventional

denoising methods can be roughly divided into five categories

according to the denoising principles, including classical

methods, time-frequency-based methods, decomposition

methods, sparse transform methods, and diffusion filtering.

Here, the classical methods refer to the methods derived from

Applied Mathematics and Physics, such as Wiener filtering

(Mendel, 1977), median filtering (Huang et al., 2017), band-

pass filtering (Stein and Bartley, 1983), and f-x deconvolution

(Canales, 1984). All these methods attempt to utilize the

differences between the signals and interferences in physical

properties, such as propagation velocity and frequency

components. To simplify the problem, these methods also

make some prior assumptions, such as the noise should be

stationary (Zhong et al., 2015). It means that these methods

will suffer from degraded performance if the assumptions are not

tally with the actual noise properties. Thus, the classical methods

fall short of expectations when dealing with complex seismic

data, although they are still widely used in the exploration

industry due to their stableness and efficiency. Inspired by the

classical methods, the denoising methods, which utilized the

features of time-frequency plate, have been employed to cope

with the seismic noise. The time-frequency-based attenuation

methods, such as S-transform (Stockwell et al., 1996), short-time-

Fourier-transform and time-frequency peak filtering (TFPF)

(Xiong et al., 2014; Zhuang et al., 2015), outperform the

classical methods in denoising capability. The good

performances of these methods are built on good separation

ability and appropriate threshold setting. However, the reflection

signals always overlap with the background noise in the

frequency domain, and these methods have very limited

effects on the spectral aliasing noise (Wu et al., 2014). Similar

to time-frequency-based methods, the noisy seismic data can also

be sparse decomposed, thereby reconstructing the desired signals

by leveraging the decomposition results. Typical decomposition

methods, such as wavelet transform (WT) (Chakraborty and

Okaya, 1995), empirical mode decomposition (EMD) (Bekara

and van der Baan, 2009), and ensemble empirical mode

decomposition (EEMD) (Gaci, 2016), can separate the

effective signals and unwanted noise into different intrinsic

modes or decomposition coefficients, then the noise-

dominated components are discarded to recover the desired

signals. Nonetheless, it is challenging to determine the optimal

reconstruction strategy for the seismic records in low-SNR

conditions, resulting in severe residual noise and signal

amplitude loss (Dong et al., 2020). Besides, sparse transform

methods, including but not limited to curvelet transform

(Herrmann et al., 2008), shearlet (Liu et al., 2019), seislet (Liu

et al., 2015), and dictionary learning method (Chen et al., 2016),

are proposed to suppress the complex seismic noise. The basic

principle for these methods is to take advantage of the differences

within the sparse properties to recover reflection signals from the

field noisy records. However, the huge computational cost

becomes an obstacle to the widespread use of the

corresponding methods, especially for the massive exploration

data processing. Moreover, due to the parameter selection

dilemma, some untrue information, such as false events, may

be restored and mistaken for effective signals, bringing negative

impacts on the subsequent processing of the seismic records

(Zhong et al., 2020). To further improve the denoising capability,

the diffusion filtering methods, such as fractal conservation law

(Meng et al., 2015), fractional anisotropic diffusion (Zhou et al.,

2016), and deep complex reaction-diffusion model (Zhang et al.,

2022), are gradually applied in the complex seismic data

processing. As we know, the denoising process has similarities
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to the thermal diffusion phenomenon, and the diffusion process

can be modified by a given partial differential equation (PDE).

Notably, we can control the noise attenuation and signal

preservation ability by amending the diffusion term and anti-

diffusion term of the PDE. Like time-frequency-based methods,

diffusion filtering always shows its downside when attenuating

spectral aliasing noise (Zhong et al., 2022b). Other denoising

methods, including singular value decomposition (Oropeza and

Sacchi, 2011), robust principal component analysis (RPCA)

(Cheng et al., 2015), and local-feature-based methods (Bonar

and Sacchi, 2012), are also introduced to suppress the complex

seismic noise, however, their applications in DAS data processing

are rarely reported. Overall, although the conventional denoising

methods can improve seismic data quality to a certain extent, it

still has an urgency to design powerful denoising methods to

meet the requirements of DAS data processing.

In recent years, convolutional neural networks (CNN) have

achieved significant breakthroughs with the development of

hardware and optimal algorithms (Sun et al., 2018). In

addition, some CNN-based denoising methods, such as

generative adversarial network (GAN) (Wang et al., 2020) and

feedforward denoising CNNs (DnCNNs) (Zhao et al., 2019), are

also introduced to cope with the complex seismic noise. Inspired

by these researches, deep learning networks are also utilized to

achieve the DAS noise attenuation (van den Ende et al., 2021).

On this basis, a series of important findings are obtained (Zhu

et al., 2019). These denoising networks aim to establish a non-

linear high-dimensional mapping relationship between desired

signals and noisy records. Meanwhile, we can use training data to

strengthen the learned mapping, and the final denoising models

are obtained after the training process. Notably, unlike

conventional methods, the denoising network can be

considered a “data-driven” approach to adaptively accomplish

complex seismic noise suppression without parameter fine-

tuning (Dong et al., 2022). It is always true that CNN-based

networks have advantages over conventional methods if

appropriate training data can feed into the networks.

Although CNN-based methods can provide excellent results,

the denoising performance can be further improved since

most networks only utilize single-scale information. Taking

DnCNN as an instance, it only uses a simple architecture with

unitary convolutional layers to extract the potential features of

the analyzed data, leading to the degeneration of trained models

for the seismic data with a low SNR (Ma et al., 2020). Another

important factor that hinders the improvement in denoising

capability is the generalization and authenticity of the training

dataset (Zhong et al., 2022c). It is known that we cannot separate

the clean signals from the real seismic records. Thus, finding an

FIGURE 1
The Architecture for MDD-Net: (A) the architecture, (B) widen convolution block, and (C) ESA block.

TABLE 1 Physical parameters for the forward models.

Parameters Specifications

Seismic wavelet Ricker, single, double, symmetrical wavelets

Central frequency of seismic wavelets 10–80 Hz

Well depth 500–5,000 m

Trace interval 1 m

Sampling frequency 2,000 Hz

Wave velocity 1,000–4,500 m/s

Density 1,272–2,500 kg/m3
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appropriate way to construct the training dataset is challenging,

having critical effects on the attenuation results.

To break through the predicament in DAS data processing,

we propose a multi-scale dense-connection denoising network

(MDD-Net) in this paper. Here, the multi-scale strategy for

MDD-Net is accomplished by applying the widen convolution

block. Compared with conventional convolution, widen

convolution block utilizes the convolution layers with different

kernel sizes to capture the multi-scale features of the analyzed

seismic data. It means that the features neglected by the

conventional networks, such as DnCNN, could be extracted

and used by MDD-Net, thereby improving the representability

of the effective features. On this basis, we employ dense

connections to guide feature extraction and promote feature

fusion. Meanwhile, we design an enhanced spatial attention

(ESA) block to improve denoising performance by reinforcing

discriminatory features. Furthermore, we combine the synthetic

data and field DAS noise records to construct a high-quality

training dataset to meet the network training requirements. For

investigating the denoising capability, a detailed comparison with

other popular methods is made, both for synthetic and field data

processing. The experimental results indicate that MDD-Net can

tell the desired signals from the complex DAS noise, even for the

weak upgoing signals.

2 Network architecture and training
process

2.1 Architecture for MDD-Net

Recently, multi-scale networks have achieved attention in

signal processing due to their excellent performance. However,

the feature interactions between different scales are time-

consuming, resulting in the low efficiency of the

corresponding networks. Here, a novel multi-scale strategy,

combing widen convolution block with dense connection

operations, is utilized in MDD-Net to ensure processing

accuracy and improve network efficiency. Figure 1A shows

the network architecture. Specifically, the widen convolution

block can significantly reinforce the feature extraction ability

and effectively reduce the elapsed time in the interaction

process. On this basis, the dense connection operations are

established to fuse the potential features. The feature extraction

capability for MDD-Net can be strengthened by changing the

connection fashion rather than stacking convolutional layers.

We can use fewer convolutional layers to obtain excellent

performance by applying dense connections, further

reducing the network size. Besides, the ESA block is also

applied to refine and enhance the effective features,

minimizing the impact of negative samples and secondary

features. The descriptions for the network components are

shown below:

2.1.1 Widen convolution block
As shown in Figure 1B, the widen convolution block is

composed of three convolutional layers with kernel sizes of

1×1, 3×3, and 5×5. Therefore, widen convolution block can

use different receptive fields to extract the multi-scale

features. Unlike conventional multi-scale networks, we

use novel convolutional layers to exact multi-scale

features, not through multi-scale network architectures.

Here, the output of the widen convolution block oi can be

expressed as:

FIGURE 2
The forward model and corresponding synthetic DAS record: (A) the forward model, and (B) the synthetic DAS data.

TABLE 2 Network parameters of MDD-Net.

Hyper-parameter Specification

Optimizer ADAM

Patch size 64×64

Batch size 64

Epoch number 50

Learning rate range [10–3,10–5]

Input channels 1

Total Layers 24

Convolution kernel size 3×3×64、1×1×64 or 5×5×64
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oi � ∑
k�1,3,5

wkxi + ∑
k�1,3,5

bk (1)

where xi is the input data, while ωk and bk are the weight and bias

parameters.

2.1.2 Dense connection block
The shallow features will have limited contribution on the deep

features with the increase of the network depth, resulting in the loss

of the features. Tomake full use of the features, the dense connection

operations have been applied inMDD-Net. Specifically, the input of

eachmodule is also connected to the subsequentmodules, serving as

the guide information, achieving great feature fusion results and

enhancing the accuracy of the captured features. In addition, a

1×1 convolutional layer, right after the widen convolution block, is

applied to maintain the channel number to a proper size, thus

further reducing the model complexity.

2.1.3.Enhanced spatial attention block
In this study, an ESA block is designed to refine the extracted

features and improve the denoising performance, while the detailed

architecture is depicted in Figure 1C. To minimize the computational

cost, a 1×1 convolutional layer is utilized to reduce the channel

number. On this basis, we use down-sampling and up-sampling

blocks to modify the feature map size, and then the detailed features

are captured by two 3×3 convolutional layers. Here, we use a sigmoid

function to obtain the probability distributions for different features.

Therefore, the attention mechanism is accomplished by multiplying

the input features with the probability distributions, thereby

enhancing the effective features. On the whole, the effects of the

ESA block can be denoted as follows:

AE(FI) � σ(W1(FI
avg(W3(FI

up(W3(W1))))) + 1)
Fo � AE(FI) ⊗ FI (2)

where FI and FO are the input and output of the ESA block. In

addition, W1 and W3 denote the 1×1 and 3×3 convolutional

layers, while σ represents the sigmoid function.

2.1.4 Denoising principle
In seismic data processing, we also assume that the noisy data

y can be regarded as the combination of effective signals x and

unwanted noise n, denoted as y=x+n (Zhong et al., 2022a). After

the training process, a non-linear mapping R is established

between the noisy record and desired signals, and the

estimated signals xest are represented as:

xest � R(y, θ) (3)

where network parameter θ={ω, b}is composed of weight ω and

bias b, respectively. For optimizing the learning process, a loss

function based on l2 norm is utilized, as shown below:

l(θ) � 1
2M

∑M
i�1

����R(yi, θ) − xi

���� (4)

where ‖ · ‖ is the Frobenius norm, while xi and yi represent the

signal and noisy data patches in the training dataset. The optimal

parameters θopt can be obtained by minimizing the loss function.

On this basis, we can reconstruct the desired signal xopt.

xopt � R(y, θopt) (5)

2.2 Training process

2.2.1 Construction of the training dataset
As we know, the supervised network can derive the

potential features from the training dataset. Thus, the

FIGURE 3
The generation of the noisy DAS data: (A) the forward model, (B) the clean synthetic record, (C) the added field DAS background noise, and (D)
the noisy synthetic record.

TABLE 3 Network parameters of DnCNN, U-Net and RED-Net.

Hyper-parameter DnCNN U-Net RED-Net

Optimizer ADAM ADAM ADAM

Patch size 64×64 64×64 64×64

Batch size 64 64 64

Epoch number 50 50 50

Learning rate range [10–3,10–5] [10–3,10–5] [10–3,10–5]

Input channels 1 1 1

Total Layers 20 28 35

Convolution kernel size 3×3×64 3×3×64 3×3×64
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quality of training data has a significant impact on the

denoising performance of the trained models (Dong et al.,

2022). In MDD-Net, we need to construct two training

datasets, a signal set and a noise set, to support the

network training process. Meanwhile, it is unable to

separate pure signals from the field DAS records. To solve

the problem of clean signal scarcity, the synthetic data,

generated by forward modeling methods, is utilized to

constitute the signal set. Specifically, we generate

60 geological models, considering the pre-acquired profile

records. It can ensure that the geological models conform

to the actual characteristics and guarantee the rationality of

the generated synthetic data. By utilizing the elastic wave

equation, the corresponding forward models are excited by the

seismic wavelets with different dominant frequencies. On this

basis, a series of synthetic records are obtained. Table 1 lists

the detailed parameters for the forward models. Figure 2 gives

a typical forward model and the generated clean signal

records. We can observe that the synthetic record has

similar properties to the field DAS data. Finally, the clean

signal records are intercepted, and 17004 64×64 signal patches

are randomly selected to compose the signal set. Similarly, we

extract 19003 64×64 noise patches from the field DAS

background noise records to compose the noise set. Then,

both signal patches and noise patches are fed into the network,

and the signal patches are taken as the label data.

2.2.2 Training process and experimental
environment

The excellent performance of CNN-based methods

mainly relies on the hardware condition and

computational efficiency. In this study, the configuration

of the experimental environment can be concluded as

follows: a CPU (Intel i9-9990K, 3.6 Hz), an NVidia

GeForce GTX 1080Ti, and a RAM (16 GB). All the

experiments are conducted in Matlab 2016b, and the

CNN-based methods use the same training dataset. In

general, the batch size and the initial learning rate of the

network are set to 32 and [10–3, 10–5], respectively. Here, we

use ADAM algorithm to optimize the training process, and

the training process is composed of 50 epochs. Table 2 lists

the network parameters for MDD-Net.

FIGURE 4
The processing results for different methods: (A) the clean data and the added DAS noise, and (B–H) represent the processing results of TFPF,
BPF, RPCA, DnCNN, U-Net, RED-Net and MDD-Net, respectively.
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3 Processing results for synthetic data
and field DAS-VSP records

3.1 Synthetic data analysis

For investigating the denoising performance, a synthetic

record, shown in Figure 3B, is generated based on the forward

model in Figure 3A. The forward model contains four formations

with different geometric features. Notably, for a fair comparison,

the forward model and the synthetic record are not included in

the training dataset. On this basis, we add the field DAS noise

data (Figure 3C) to the clean synthetic record, then the noisy

record with an SNR of -5 dB (Figure 3D) is obtained. By

observing the figures, the effective signals are seriously

FIGURE 5
The enlargements for the results shown in the yellow blocks in Figure 4: (A) the enlargements for the clean data and the added DAS noise, and
(B–H) represent the enlarged processing results of TFPF, BPF, RPCA, DnCNN, U-Net, RED-Net, and MDD-Net, respectively.

TABLE 4 The comparisons of SNR and RMSE for different attenuation methods.

Original
record/
dB

TFPF BPF RPCA DnCNN U-Net RED-Net MDD-Net

SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE SNR/
dB

RMSE

0 3.78 0.605 9.42 0.916 5.87 0.475 15.18 0.163 17.91 0.119 20.63 0.087 22.56 0.070

−2 2.06 0.737 7.31 0.403 4.19 0.577 12.02 0.234 14.37 0.178 17.66 0.122 19.98 0.094

−5 0.07 0.927 5.79 0.480 2.01 0.741 9.89 0.299 12.29 0.227 14.26 0.181 17.07 0.131

−7 −3.18 1.347 3.65 0.614 −1.56 1.182 7.76 0.382 11.01 0.263 11.99 0.235 14.37 0.179

−10 −7.88 2.315 1.07 0.826 −3.23 1.355 5.73 0.483 8.24 0.362 9.53 0.312 12.79 0.214

TABLE 5 The computational cost for different attenuation methods.

Specification TFPF BPF RPCA DnCNN U-Net RED-Net MDD-Net

Training time (hour) 0 0 0 6.10 12.21 9.87 6.56

Processing time (s) 3.71 0.101 1.378 0.165 0.314 0.267 0.171
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contaminated by the complex DAS noise. Thus, it is challenging

to recover effective signals, especially for the weak events buried

in the intense interferences.

3.1.1 Comparisons of denoising results
For getting compelling results, we choose some conventional

methods and classical denoising networks as the competing

methods to verify the effectiveness of MDD-Net. Here, the

conventional methods mainly include BPF, TFPF, and RPCA.

By analyzing the energy distribution of DAS data, the pass-band

for BPF is set to [30–70 Hz], and the window length for TFPF is

selected to 11. In addition, for RPCA, we set the weight on sparse

error term in loss function to 0.025. Besides, the classical

denoising network, including DnCNN, Residual Encoder-

Decoder Networks (RED-Net), and U-Net, are also taken as

the competing methods. Table 3 lists the corresponding network

parameters. To facilitate comparison, we train the competing

denoising networks with the same dataset, as MDD-Net used.

We use the aforementioned methods to process the noisy

record shown in Figure 3D, and the denoising results are

displayed in Figure 4. As shown in Figure 4B, TFPF fails to

attenuate the DAS noise and only suppress some high-frequency

components. Although BPF and RPCA, depicted in Figures

4C,D, can achieve better results, the recovered signals of BPF

are disordered, and plenty of residual interferences still severely

influence the recognition of the effective signals for RPCA results.

On the contrary, the CNN-based methods outperform the

conventional methods both in noise attenuation and signal

preservation, such as the recovery of the weak upgoing

signals. Overall, MDD-Net (Figure 4H) has the best

performance in complex DAS noise suppression, compared

with the results of competing CNN-based networks

represented in Figures 4E–G. On this basis, we also enlarge

the area marked by the yellow block for detailed comparisons.

Notably, the effective signals are seriously contaminated by the

time-variant noise, and no reflection events can be clearly

observed in the area of interest. By observing the results

shown in Figure 5, MDD-Net can recover the signals with

great continuity and smoothness.

3.1.2 Quantitative comparison and
computational cost analysis

In this study, we use SNR and root-mean-square error

(RMSE) to quantitatively evaluate the denoising results for

different methods (Zhao et al., 2019). In general, SNR is the

energy ratio of clean signals and residual noise, and RMSE is the

estimated errors between the clean signals and recovered results.

Thus, SNR can reflect the noise attenuation capability, while

small RMSE demonstrates that the corresponding method

performs well in signal amplitude preservation. The definition

equations for SNR and RMSE are shown below:

SNR(dB) � 10 log10
⎛⎜⎜⎜⎜⎝ ∑N

i�1∑M
j�1u(i, j)2∑N

i�1∑M
j�1[u(i, j) − v(i, j)]2⎞⎟⎟⎟⎟⎠ (6)

RMSE �
��������������������������
1

MN
∑N

i�1∑M

j�1[u(i, j) − v(i, j)]2√
(7)

where the v(i, j) and u(i, j) are the clean record and recovered

signals. Meanwhile,M and N represent the time samples and the

trace index, respectively. Here, we use the aforementioned

methods to process the noisy synthetic records with different

SNR. Table 4 shows the improved SNR and RMSE. By observing

the results, we can obtain that the CNN-based networks precede

the conventional methods in denoising capability since the

improved SNR for the denoising networks surpass the

conventional methods. Among these denoising methods,

MDD-Net can obtain the most significant improvement in

SNR, such as over 22 dB increment for the noisy DAS data.

Thus, we can conclude that MDD-Net is effective in DAS noise

attenuation and desired signal recovery. In addition, the

computational cost for different methods is also analyzed, as

listed in Table 5. Compared with conventional methods, the

training process for CNN-based methods is time-consuming,

such as that for U-Net is over 12 h. Among these denoising

FIGURE 6
The field DAS-VSP record.
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FIGURE 7
The processing results for the field DAS data in Figure 6: (A–G) are the denoising results (top subfigures) and filtered noise (bottom subfigures)
obtained by TFPF, BPF, RPCA, DnCNN, U-Net, RED-Net and MDD-Net.
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networks, MDD-Net has a similar backbone and number of

convolutional layers with DnCNN. Avoiding the sampling

operating in U-Net, their training costs are relatively small,

such as those for DnCNN and MDD-Net are 6.10 and 6.56 h.

Although the training time cannot be neglected, the processing

time for these networks is competitive by comparing with

conventional methods. Taking MDD-Net as an example, the

average processing time is only 0.171 s, only inferior to BPF.

Notably, CNN-based networks always have generalization

ability. The trained models can be applied to plenty of DAS

records with similar properties to the training datasets. From this

view, the high computational cost is acceptable, and the situation

will be relieved with the development of hardware and

optimization algorithms.

3.2 Field data processing results

In this subsection, we process some field DAS-VSP records to

verify the effectiveness of our proposed method. Figure 6

represents a field DAS-VSP record that contained 1400 trace

records with a sampling frequency of 2500 Hz. It is shown that

the field DAS data are affected by various types of interferences,

resulting the challenges in detecting the weak upgoing signals.

We apply the aforementioned methods to process the DAS

record, and the corresponding results are shown in Figure 7.

Here, for the CNN-based methods, we utilize the denoised

models, having the best performance in synthetic data

processing, to tell the desired signals from the unwanted

noise. As shown in Figures 7A,B, TFPF and BPF cannot offer

satisfactory denoising results. TFPF can only eliminate a small

quantity of noise, and the obvious horizontal noise leakage

(marked by the red arrows) remains in the denoising results

of BPF. Meanwhile, although RPCA (Figure 7C) can attenuate

the complex noise to some extent, the residual noise still

influences signal recognition and negatively impacts the DAS

data processing. Consistent with the synthetic data results, CNN-

based networks, shown in Figures 7D–G, can separate the weak

events from the intense interferences, representing better

performance by comparing them with conventional methods.

Notably, only MDD-Net can effectively suppress the horizontal

noise owing to its efficient multi-scale strategy. On this basis, a

comparison for the area of interest (the yellow block in Figure 6)

is also conducted, and the corresponding results are plotted in

Figure 8. It is shown that the conventional methods all have

limitations in DAS background noise attenuation, while the

denoising results, as shown in Figures 8A–C, suffer from the

apparent residual noise. In contrast, CNN-based methods,

plotted in Figures 8D–G, can almost eliminate the noise

impacts and recover the signals. Compared with other CNN-

based methods, MDD-Net has the best performance with the

smooth recovered signals and a clean background.

Meanwhile, another field DAS-VSP record (Figure 9A) is

processed to further investigate the generalization and denoising

capability of MDD-Net. Notably, the effective signals in the DAS

data are different from those in Figure 7. On this basis, the DAS

data is processed by MDD-Net and other competing methods.

Figures 9B–H give the denoising results. It is demonstrated that

TFPF and BPF fail to provide acceptable attenuation results,

similar to the finding reflected in Figure 7. Moreover, RPCA still

cannot eliminate time-variant noise, and the noise leakage

impedes the detection of weak events. Furthermore, although

the CNN-based methods can effectively suppress the DAS

background noise, the performances of the competing

networks also need further improvement in attenuating the

horizontal noise. By observing the results, MDD-Net

(Figure 9H) outperforms the other denoising networks, while

no conspicuous residual noise or signal leakage can be observed.

FIGURE 8
The enlargements for the results shown in Figure 7: (A–G) represent the enlarged denoising results obtained by TFPF, BPF, RPCA, DnCNN,
U-Net, RED-Net and MDD-Net.
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FIGURE 9
The denoising results for another field DAS-VSP record: (A) is the field DAS data, and (B–H) are the attenuation results after TFPF, BPF, RPCA,
DnCNN, U-Net, RED-Net and MDD-Net, respectively.
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In summary, all the corresponding results demonstrate that

MDD-Net is a competent method to cope with complex DAS

background noise.

4 Conclusion

In this study, a novel denoising network, called MDD-Net,

is proposed for DAS-VSP data processing. In general, MDD-

Net use the multi-scale strategy, combined widen convolution

with dense connections, to accurately extract the potential

features in seismic data. At the same time, an ESA block is

also applied to fuse the features and enhance those beneficial to

the denoising task. To guarantee the denoising performance, we

generate high-quality training data according to DAS data

properties. On this basis, synthetic and field DAS-VSP

records are processed. We compare the denoising results

with other popular denoising methods. It is shown that

MDD-Net can achieve the best denoising performance with

an SNR increment over 22dB, reflecting the superiority over the

competing methods in complex DAS noise attenuation. Overall,

the experimental results prove the effectiveness of the proposed

methods, especially for the recovery of the desired signals

seriously contaminated by the intense interferences. It means

that the MDD-Net can significantly improve the quality of

seismic data, bringing convenience for the following procedure

of seismic data processing, such as imaging and inversion.

However, the denoising ability of MDD-Net is related to the

quality of the training data. The performance may degenerate if

the seismic data has different properties from the training

dataset.
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