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Distributed acoustic sensing (DAS) is regarded as a novel acquisition technology

for seismic data. Compared with conventional electrical geophones, DAS has a

series of obvious advantages including low-cost, high spatial resolution, good

coverage, and strong resistance to the harsh environment. Noise attenuation is

an essential step in seismic data processing. However, there are two main

difficulties faced by the denoising task of DAS seismic data. On the one hand,

some background noise in DAS seismic data, such as optical low-frequency

noise, horizontal noise, and fading noise, is unique and not presented in the

conventional seismic data; on the other hand, the signal-to-noise ratio (SNR) of

DAS seismic data is relatively low. Recently, a convolutional neural network

(CNN) has shown superior denoising performance compared to the traditional

method. To follow this promising trend, we propose a multi-scale interactive

convolutional neural network (MSI-Net) and apply it to denoise the challenging

DAS seismic data. Different from most of the existing CNN architecture used in

seismic data denoising, theMSI-Net considers both coarse-scale and fine-scale

features by improving the inherent serial convolution to multi-scale parallel

convolution, which is beneficial to recover detailed information. Moreover, we

utilize some connections to achieve the information interaction between

different scales, which promotes the flow of information and enables the

network to extract more informative multi-scale features from the DAS

seismic data. Moreover, both synthetic and real examples demonstrate that

the proposed MSI-Net can effectively attenuate a variety of unique DAS

background noise and also completely recover the weak signals. Compared

with conventional CNN architecture, MSI-Net exhibits better performance in

global SNR and local details.
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Introduction

In the wake of developments in oil and gas exploration, the

quality requirements for seismic data have gradually increased,

finding a seismic data processing technology with higher

accuracy and resolution is also a difficult problem we must

face. Distributed acoustic sensing (DAS) is considered an

emerging acquisition technology in seismic exploration. DAS

uses changes in the phase information of the scattered optical

signal to record the wavefield (Spikes et al., 2019). Compared to

conventional electronic geophones, DAS has advantages in

acquisition geometry, such as low cost and high-density

observations. In recent years, DAS has been applied to vertical

seismic profile (VSP) data acquisition (Dong et al., 2022).

However, the scattered light signal with weak energy is

extremely susceptible to background noise, which negatively

affects the quality of the acquired seismic data (Binder et al.,

2020). In addition, the in-well acquisition environment also

brings new challenges to data processing, and some

disturbances are not present in conventional seismic surveys,

such as time-varying optical noise and coupling noise (Wang

et al., 2021). The seismic data collected in the field is mixed with a

wide variety of noise due to the underground geological

conditions, collection conditions and environmental factors.

Affected by the mixed noise, the quality of the real seismic

records decreases, and the signal-to-noise ratio (SNR) and

resolution of the data are relatively low, which brings

difficulties to subsequent inversion, imaging and

interpretation. Improving the SNR and resolution of data is of

great significance to the study of underground structures and the

exploration of oil, gas and mineral resources.

In seismic data processing, obtaining data with high SNR and

resolution is the goal. The noise can interfere with the effective

seismic information to cause a low SNR, at the same time,

narrowing the effective frequency band of the seismic data

and reducing the data resolution. It is a challenging problem

to reduce the noise in seismic data while taking into account the

resolution. Among the traditional noise reduction methods,

Band-pass filtering, Wiener filtering (Mendel, 1977) and F-X

deconvolution (Canales, 1984) was used earlier for seismic noise

suppression. Several time-frequency attenuation algorithms have

also been developed to improve the denoising capability of

seismic data, including short-time Fourier transform (Lu and

Li, 2013) and time-frequency peak filtering (TFPF) (Wu et al.,

2011). In general, the denoising principle of these methods is

based on the difference between the reflected signal and the

background noise in terms of physical characteristics or

frequency components to eliminate complex interference.

However, the above methods cannot handle the complex DAS

background noise. In addition, multi-scale denoising methods

use the features of the sparse decomposition results to construct

suitable filters for the purpose to suppress the noise to retain the

effective signal, and typical methods include wavelet transform

filtering (Mousavi et al., 2016; Anvari et al., 2017), Curvelet

transform filtering (Neelamani et al., 2008; Gorszczyk et al.,

2014), Shearlet transform filtering (Gan et al., 2015; Chen and

Fomel 2018), empirical mode decomposition (EMD) (Bekara and

van der Baan, 2009; Amezquita Sanchez et al., 2017) and

variational modal decomposition (VMD) (Kesharwani et al.,

2021). Unfortunately, when dealing with DAS recordings

containing complex noise, researchers have difficulty in

obtaining optimal filtering parameters, which leads to noise

residuals and loss of amplitude of the effective signal. In

addition, many other methods have been widely used in

seismic data processing including singular value

decomposition (SVD) (Oropeza and Sacchi, 2011), dictionary

learning methods (Chen et al., 2016; Yarman et al., 2018; Wang

and Ma, 2020), robust principal component analysis (RPCA)

(Cheng et al., 2015; Liu et al., 2021), but the application of these

methods in DAS data denoising is rarely reported. It is difficult

for conventional methods to provide a better processing effect

when the DAS data is seriously disturbed by noise, and give

consideration to SNR and resolution. Meanwhile, it involves the

manual selection of various parameters in data processing for

conventional methods introduced above, which greatly increases

the running time of the processing work and depends on artificial

experience heavily. For the sake of high-precision seismic

exploration, more intelligent and faster data processing

technology is urgently needed.

In recent years, deep learning methods have become popular

solutions to various seismic data processing problems. Deep

learning (DL) (Lecun et al., 2015) is considered an important

machine learning method that has started to be introduced into

seismic data processing. And there are already some successful

applications such as seismic data denoising (Chen et al., 2019;

Saad and Chen, 2020), arrival picking (Tsai et al., 2018; Yuan

et al., 2019; Zhang et al., 2020), fault identification (Wu et al.,

2019), lithology prediction (Zhang et al., 2018) and geologic

structure classification (Li, 2018). The deep learning algorithm

can automatically learn highly complex nonlinear features, and it

is applied to the suppression of background noise in pre-stack

seismic data to achieve automatic and efficient background noise

separation by automatically learning random noise features. Yu

et al. (2019) proposed an intelligent CNN-based denoising

method, which does not require precise modeling of signal

and noise, nor optimization of parameter tuning. Wang and

Chen (2019) used a deep CNN framework with residual learning

for 2-D post-stack seismic random noise attenuation. Treating

seismic signals as time series, Saad and Chen (2020) proposed a

deep denoising autoencoder (DDAE) to attenuate seismic

random noise. Li et al. (2022) proposed to leverage a deep

convolutional neural network (CNN) to achieve seismic image

super-resolution and denoising simultaneously. Jiang et al.

(2021) proposed an improved convolutional autoencoder

(CAE) method to achieve simultaneous reconstruction and

denoising of seismic data. Yang et al. (2021) proposed an
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improved ResNet to achieve seismic random noise attenuation.

Wang et al. (2022)) are applied to seismic noise attenuation tasks

(Creswell et al., 2017; Wang et al., 2021), and some successful

applications on ground record processing have been achieved.

Furthermore, transfer learning was introduced into the training of

denoising networks to enhance the generalization of the model to

process the real records (Li et al., 2022; Sun et al., 2022). Supervised

learning-based denoising methods need to label a large number of

clean seismic data to fit the network, which will increase labor and

computational costs. Therefore, some denoising models based on

unsupervised learning or self-supervised learning have been

proposed to address the lack of paired data in seismic signal

processing (Wang et al., 2022; Yang et al., 2021; Liu et al., 2021;

2022; Qiu et al., 2022). Meanwhile, deep learning-based algorithms

have also achieved good results in denoising DAS records (Zhao

et al., 2022;Wang et al., 2021). In general, these denoising networks

aim to establish a non-linear high-dimensional mapping

relationship between noisy records and desired signals. In the

training process, we can use training data to strengthen the learned

mapping, and the final denoising models are obtained after

training and have been proven to be effective in practical

application. Notably, unlike conventional methods, the

denoising network can be considered a “data-driven” approach

to adaptively accomplish complex seismic noise suppression

without parameter fine-tuning. If the training data is complete,

CNN-based networks can always achieve more advantageous

results than conventional methods. However, most of the

traditional networks, such as DnCNN (Zhang et al., 2017), are

based on single-scale information to extract potential features,

which has reduced effectiveness and generalization when dealing

with complex seismic data (Zhong et al., 2022). In addition, most

existing methods transmit input through a network and

reconstruct output at the last layer. Although the

characterization learned by this type of network can aggregate

local features with the increase of layers, it also has the

characteristics of coarse scale, that is, the resolution after

reconstruction is not fine enough and some detail features are

ignored. As a result, it is difficult to obtain accurate prediction

results in the task of seismic data processing, especially when the

data is disturbed by strong noise. The stronger noise can lead to a

rapid decrease in the sensitivity of the final output characterization

space, a decrease in the accuracy of the reconstruction, and even

some false seismic events.

Therefore, there has been an increasing interest in designing

efficient denoising networks to improve the processing capability

of DAS-VSP data. To solve the above problem, a multi-scale

interactive deep convolutional neural network (MSI-Net) is

constructed in this paper. The network builds a multi-scale

framework by gradually fusing sub-networks on the main

network, and repeated information interactions are performed

on parallel multi-scale sub-networks to complete the repetitive

information fusion between scales, which enhances the

generalization ability of the network. The network can learn

more abundant multi-scale characterization and reconstruct

high-resolution seismic data. The experiment results show that

the network can not only suppress noise effectively, but also

predict effective signals accurately, it can achieve processing

requirements of high SNR and resolution, and greatly reduce

false seismic events. We construct a high-quality training dataset

containing synthetic signals and actual DAS background noise to

train the network. We also process synthetic and field DAS data

to check the effectiveness of the proposed network. Compared

with traditional denoising methods and recently proposed

denoising networks, the proposed method in this paper has

advantages in DAS background noise attenuation and weak

signal amplitude retention.

Methods

DAS records often contain complex wave fields, including

incident down-going waves and reflected up-going waves. The

recovery of events in seismic records is very important,

however, it is difficult to identify seismic events with the

interference of noise, hence noise suppression is necessary.

The convolutional neural network can eliminate noise, and

also plays an important role in the high-resolution

reconstruction of signals. To make the signal recovery more

accurate, it is common practice to obtain exact semantic

information through down-sampling, and then perform an

up-sampling operation to restore high-resolution signal

details, such as U-Net (Ronneberger et al., 2015). However,

this practice leads to some loss of effective information in the

continuous upsampling and downsampling. If the high-

resolution transmission is maintained throughout the whole

process, such as DnCNN (Zhang et al., 2017), a wider range of

perceptions cannot be obtained, and some false events are often

generated in the results. In this paper, a wide range of semantic

information is obtained through parallel multiple resolution

sub-networks and continuous information interaction between

different network branches. And the proposed method achieves

the purpose of recovering signal details accurately while

suppressing noise effectively. To better denoise the actual

DAS data, we analyzed the wave fields and complex noise in

real DAS data. Then, we constructed a dedicated training set to

train the model. The following sections introduce the analysis of

wavefield and noise in the DAS record, the construction of the

dataset, the structure of the network and the denoising

principle.

Analysis of wavefield and noise in DAS-VSP

Figure 1 shows DAS-VSP data acquired from Xinjiang,

western China. The horizontal coordinate represents the

number of seismic traces and the vertical coordinate
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represents the time. The time sampling interval of the DAS data

shown is 400 μs and the spatial sampling interval is 1 m. From the

figure, we can observe that the data are heavily contaminated by

noise, and the effective signals such as the incident down-going

waves (as indicated by the blue line) and reflected up-going waves

(as indicated by the yellow line) are almost covered by noise. It can

be observed that the types of noise are also complex, such as

random noise (as shown in region A), background abnormal

interference (as shown in region B), fading noise (as shown in

region C), horizontal noise (as shown in region D) and

checkerboard noise (as shown in region E) and coupling noise

(as shown in region F). The characteristics and causes of these

noises are described as follows.

The random noise is common background noise in DAS-

VSP data, with a wide frequency band and strong energy, mainly

caused by vibration during data acquisition. The source of noise

may come from machine vibration, underground random

vibration, current disturbance, etc. Random noise is generally

more uniformly distributed and is the main factor affecting the

quality of DAS-VSP data.

The abnormal interference with low dominant frequency and

very strong energy may be caused by downhole temperature

anomalies. The abnormal interference tends to have large areas

and high amplitudes in the records. In the presence of abnormal

interference, the effective signal is completely covered and the

DAS-VSP data quality is seriously affected.

The fading noise is caused by the phase canceling interference of

randomly spaced backscattered light. Fading noise is mainly

manifested in long periods and high amplitude. In general, the

fading noise appears on the uppermost side of the record, less

affecting the effective signal below the first arrival wave. It is easy to

mix with horizontal noise to generate new types of noise.

The horizontal noise is caused by vibration during optical

measurements. Shaking the interrogator box is probably the

main trigger. The potential leakage of electronic equipment

can also be another cause of horizontal noise. The horizontal

FIGURE 1
DAS VSP data with several common noises. Areas (A–F) are marked with random noise, background abnormal interference, fading noise,
horizontal noise, checkerboard noise and coupling noise, respectively.
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noise usually appears as a short horizontal band with essentially

the same phase in all traces and decreasing in amplitude

over time.

The checkerboard noise is generally generated by a

mixture of horizontal noise and fading noise. The

checkerboard noise has approximately the same properties

as the horizontal noise. For example, both checkerboard noise

and horizontal noise have horizontal motion, and the

amplitude gradually decays over time. However,

checkerboard noise tends to have different phases in

different traces. In general, the checkerboard noise is also

more distributed before the first arrival.

The coupling noise is mainly caused by the poor coupling of

the fiber and the measurement line. It often accompanies the

reflected signal and is highly similar to the signal within the local

view. Conventional methods are generally more difficult to

distinguish between signal and coupled noise. At present,

there are three ways to deploy DAS systems in wells. The first

one is to permanently fix the fiber outside the casing. It

maximizes the coupling between the fiber and the formation,

resulting in less coupling noise in the acquired DAS data (Jiang

et al., 2016). The second one is to fix the fiber to the tubing and

there will still be a small amount of coupling noise. The third one

is to use weights to suspend the fiber in the casing. However, the

FIGURE 2
Construction of the dataset. (A) The velocity model. (B) The corresponding synthetic DAS-VSP record. (C) Samples of the signal dataset.
(D) Samples of the noise dataset. These patches are the random noise, the abnormal interference, the checkerboard noise, the fading noise, the
horizontal noise and the coupling noise from top to bottom.
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optical fiber is not in close contact with the borehole, which may

produce strong coupling noise (Constantinou et al., 2016).

Construction of training set

The purpose of deep learning is to learn the feature, which

can obtain hierarchical feature information adaptively through

the network, solving the problem of manually designing

operators for feature extraction in the past. Dataset is an

important basis for deep learning algorithms, and its

completeness determines the potential upper limit that the

method can touch. In seismic exploration, it is difficult to

obtain pure seismic signals. To obtain a more complete and

realistic training set, forward modeling is used to construct a pure

signal set as shown in Figure 2. For DAS-VSP, to obtain

subsurface information, we usually place artificial sources to

excite the seismic wave field and place receivers along the

longitudinal direction to record the seismic waves. In this

paper, the synthetic data are modeled based on the acoustic

wave equation in the time domain, as shown in the following

equation.

z2u(x, y, t)
zt2

� v(x, y)2(z2u
zx2

+ z2u

zy2
) + s(x, y, t) (1)

where v represents the wave velocity and u represents the

acoustic wavefield. s(x, y, t) denotes the function of the

source. (x, y) denotes the spatial location and t denotes time.

We have built 100 velocity models with different stratigraphic

configurations. The detailed parameters of the model are shown

in Table 1. After preparing the velocity models, the shots of the

seismic data corresponding to each velocity model are generated

in the numerical simulation of the acoustic wavefield. We solve

the acoustic wave equations using a staggered-grid finite-

difference method in the time domain. The size of each grid

is defined as 10 m × 10 m. As for the observation of each velocity

model, we place a source as shown in Figure 2 to simulate the shot

gathers. The source is placed at (500, 0) m. The survey line is

placed along the vertical direction at x= 10 m. The recording

geometry consists of 2000 receivers. In Figures 2A,B, we show a

representative velocity model and the corresponding generated

seismic record. By solving the wave equation, 100 simulated pure

seismic records with a size of 2,000 × 2,000 are obtained, which

can be used as a part of the pure signal set for network learning.

To adapt to the network training, we divide the amplitude-

normalized synthetic seismic records into patches with a size

of 400 × 400 to obtain the pure signal setX � {x1, x2,/, xe}. Part
of the pure signal patch is shown in Figure 2C.

A large amount of noise data is needed to synthesize the noise

set. The noise in the training set should be as close as possible to

the noise in field seismic data. We have selected various types of

noise data collected from the actual DAS records to enrich the

noisy set. A complete noise set N � {n1, n2,/, ne} can be built,

and Figure 2D shows a portion of the noise patch. Similarly, the

noise data is divided into patches with a size of 400 × 400 and

superimposed with the pure signal patches to generate a noisy set

Y � {y1, y2,/, yg}.

The structure of network

In the denoising process, the higher the resolution of the local

structure, the more conducive to the reduction of the noise, but

the rich information brought by the high resolution will also

produce misjudgment in processing, resulting in some false

seismic events. Therefore, it is also important to grasp the

overall structure of data, which requires us to use data at

different resolutions. The lower-resolution data components

are more conducive to the recovery of the overall signal. It is of

great significance to improve the performance of the overall task

by analyzing and processing signals at different resolutions.

How to design a network with multi-resolution representation

is a key issue for us to consider. To make the network achieve

multi-scale feature extraction, the model gradually adds sub-

networks with low-resolution feature maps in parallel to the

main network with high-resolution feature maps to complete

the feature fusion between scales. The multi-resolution

interactive network shown in Figure 3A is used for noise

suppression and high-resolution reconstruction of seismic

data. The design idea of the proposed network takes

reference from HRNet (Sun et al., 2019). In Figure 3A, the

horizontal transfer process represents the representation

changes with the increase of processing layers, and the

vertical process represents the scale change of the feature

maps. The first level (which we called stage 1) shows the

main network, and its feature map is maintained at a high-

resolution standard. The signal is transmitted through the main

network in stage1, and more low-resolution sub-networks are

gradually added in parallel in subsequent stages. The resolution

of the parallel sub-network in the latter stage is composed of all

previous resolutions and a new resolution, that is, in the n-th

TABLE 1 The parameters of the forward modeling.

Parameter Value

Source number 1

The distance between the source and well 400–500 m

Receiver number 2000

Spatial sampling interval 1 m

Velocity model size (500,2000)

Sampling time interval 4 × 10−4 s

Seismic wavelet Ricker

Dominant frequency 50–70 Hz

Maximum traveltime 2 s
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stage, feature processing is performed in sub-networks of n

resolutions in parallel. Every time a lower resolution sub-

network is added, the resolution is reduced to half, and the

corresponding channels are doubled.

In addition to analyzing signals in a multi-scale manner, the

repeated exchange of information at various resolutions to

promote multi-resolution information fusion is also an

important reason for the network to maintain high

performance. Similarly, it enables the network to maintain

the accuracy of high-resolution reconstruction of signals

under the blessing of low-resolution features. As shown in

Figure 3B, taking a fusion at the 3-th stage as an example, it

can be seen that the output of each resolution is related to the

inputs at three different resolutions, namely

Rτ ′ � T1→τ(R1) + T2→τ(R2) + T3→τ(R3). At the same time, a

new output at a lower resolution is produced, that is,

R4′ � T1→4(R1) + T2→4(R2) + T3→4(R3), where Ri represents

the input feature map of different resolutions, R′
i represents

the output feature map of different resolutions, and Ti→τ is an

operator to process features between different resolutions. The

operator is a down-sampling operation from high to low

resolution, an up-sampling operation from low to high

resolution, and the identity during the same resolution,

respectively. In this way, while the parallel convolutional

operations move forward synchronously, the network also

carries out feature interaction between scales, to realize

multi-scale feature fusion and extraction. Among them, the

basic block adopts the structure of ResNet (He et al., 2016). The

detailed introduction of each module is shown in Figure 3C.

The introduction of each functional module can be obtained in

FIGURE 3
The architecture of the proposed network. (A) The architecture of MSI-Net. (B) The structure of a stage (Take the 3-th stage as an example)
(C) Detailed structure of each part in Figure 3B.

TABLE 2 The specific description of the layers or functions.

Layers Description Function

Conv 2d Convolution y � W*x + b

BN Batch Normalization Normalize all samples for the entire batch

ReLU Rectified Linear Unit y � max(0, x)
Upsample Upsample function Upsample feature maps
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Table 2. The designed network consists of four stages, and the

feature extraction of each resolution in every stage is completed

by four residual convolution operations. With the final

integration of the feature maps obtained on each resolution,

noise suppression and high-resolution signal reconstruction

can be completed.

The denoising principle

In this paper, the DAS-VSP record disturbed by noise can be

expressed as:

y � x + n (2)

among them, x refers to the potential pure seismic signal and n

refers to noise interference. In the proposed structure, the

constructed high-resolution reconstruction network aims to

learn the end-to-end mapping function between the noisy

signal y and the pure signal x, and the predicted pure signal

can be expressed as:

~x � H(y;Θ) (3)

In Equation 3, H represents the multi-scale interactive

reconstruction network, Θ � {W, b} is the network optimized

parameters with weights W and biases b.

Figure 4 shows the workflow of the DL-based denoising

algorithm. During the training process, we can calculate the

error between the network output ~x and the pure record x, and

update the network parameters by gradient backpropagation.

After several iterations, the error will converge to a small

enough value and the network parameters can be

determined. In the inference process, given the seismic data,

the denoised DAS data can be predicted by the network. In this

paper, the L2 loss function is used as the cost function to guide

the training process of the model, and the equation is given as

follows:

L � 1
2N

∑N
i�1

����H(yi;Θ) − xi

����2F (4)

where H(yi;Θ) represents the denoising result of the training
sample yi, and xi represents the pure signal which we called

the label, that is, the output we expect from the network. i is

the index of the sample and N is the batch size. The gradient

descent method is used to minimize the loss function. To

improve the reconstruction ability for seismic signals, the

network adjusts the weight parameters reversely layer by

layer and performs frequent iterative training. Specifically,

TABLE 3 The details of training the proposed network.

Hyperparameter Value

Batch size 16

Epochs 200

Learning rate range [1 × 10−4; 1 × 10−3]

Patch size 400×400

Optimizer Adam

FIGURE 4
The flowchart of MSI-Net denoising procedures.
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we use Adam optimizer to optimize the network. More

network training parameters can be found in Table 3. After

the training, we use the trained network to process the noisy

DAS records.

Results

Experiment settings

Synthetic DAS-VSP data were generated by forward

modeling, and a seven-layer 2D geological model is shown in

Figure 5. The horizontal coordinates indicate the horizontal

distance and the vertical coordinates indicate the depth. The

velocities of the P-wave from the top to the bottom are 2,000,

2,250, 2,500, 2,750, 3,000, 3,250, and 3,500 m/s. And the media

densities from the top to the bottom are 2,050, 2,100, 2,150, 2,200,

2,250, and 2,300 kg/m3. Next, we set up the acquisition geometry.

As shown in Figure 5, the inverted triangle represents the source

and the vertical black line represents the measurement line

formed by the fiber optic sensor. The time sampling interval

is 400 μs, and the spatial sampling interval is 1 m. By solving the

elastic wave equation, we can obtain the synthetic clean DAS

-VSP data as shown in Figure 5B, where D1 is the direct wave,

R1-R5 are the reflected up-going wave, and D2-D5 are the

incident down-going waves. Common noises in DAS, such as

random noise (as shown in region A), background anomalous

interference (as shown in region B), fading noise (as shown in

region C), horizontal noise (as shown in region D), and

checkerboard noise (as shown in region E) are added as

shown in Figure 5C. Because the generation mechanism of

coupling noise is not yet clear, in the simulation experiment,

it is not considered to add coupling noise to the simulation DAS

record. The remade simulated pure signals and the noise

collected together form synthetic noisy records and are used

as a test. Figure 5D shows the synthesized noisy DAS-VSP data.

We synthesized 10 noise-bearing records as the test set. The effect

of the proposed method on the signal reconstruction task is

evaluated on the test data set. The data used for testing and the

data used for training are independent of each other.

Experiments were carried out by the Pytorch framework for

network training and testing in the Python environment and

deployed on a computer equipped with Inter Xeon CPU E5-2620

and double Nvidia GeForce GTX 1080Ti GPUs. The proposed

method is used to process synthetic and field noisy records.

Meanwhile, some competitive methods are also used to process

records, including the conventional method—band-pass

filtering, wavelet transform filtering, weighted nuclear norm

minimization (WNNM) and the deep learning common

models—DnCNN and U-Net. For the convenience of

description, the proposed method in this paper is calledMSI-Net.

Synthetic data denoising results

Taking a synthetic DAS-VSP record containing complex

noise as an example in Figure 5D, this paper shows the signal

reconstruction results and removed noise in Figure 6 of different

methods. The SNR of the synthesized noisy record is −0.5132 dB.

FIGURE 5
Construction of the noisy synthetic DAS-VSP record. (A) The
velocity model. (B) The theoretical pure DAS-VSP record. (C) The
added field noise. (D)The synthetic noisy record with the SNR of
-0.5132 dB.
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We can observe thatMSI-Net can suppress many common noises at

one time, and the denoising process is more efficient and faster. The

results are shown in Figures 6K,L, where Figure 6K is the denoising

result and Figure 6L is the difference between noisy input and the

predicted pure signal, which can also be considered as the noise

predicted by the method. From the quantitative analysis, on the

whole, the SNR of the results of the three deep learning methods is

much higher than that of the traditional methods. In deep learning

methods, the SNR of the result of the MSI-Net (19.0062 dB) is the

highest, which is higher than that of DnCNN (18.3209 dB) and

U-Net (18.4935 dB). From the point of view of signal recovery, all

kinds of signals in the wave field are recovered, and the direct wave,

reflected up-going wave and incident down-going waves which were

originally polluted by noise can be observed, which will be beneficial

to the subsequent inversion and imaging. From the point of view of

noise suppression, all noises are suppressed. In contrast, the

denoising effect of the conventional method for DAS-VSP

records does not meet the requirements of seismic exploration.

The analysis of the processing results shows that band-pass filtering

can only attenuate noise in a defined frequency band in Figure 6A,

which not only fails to suppress the noise but also damages the

signal. Wavelet transform filtering can only remove a part of

random noise, and most of the noise is still retained in the

denoised record in Figure 6C. The filtering effect of WNNM is

poor, only part of the noise can be removed mechanically, there is

still a large amount of noise residue in the record in Figure 6E, and

obvious signal leakage can also be observed in the removed noise

result in Figure 6F, which is unacceptable for reconstruction.

Compared with the three traditional methods, DnCNN, U-Net

and MSI-Net have better denoising effects, the noise suppression

is more uniform and thorough, and there is no obvious signal

leakage in the removed noise results.

The comparison results of the three deep learning methods

are more focused on the high-resolution reconstruction of the

signal structure. For MSI-Net, the idea of multi-scale analysis is

adopted, and the suppression effect of noise is better than that of

DnCNN (only at a single scale). At the same time, we can see that

MSI-Net has the highest resolution in denoised recovery, and the

recovery effect of weak signals is better than DnCNN and U-net,

which shows that MSI-Net is more suitable for the high-

resolution requirements of seismic exploration. We also

analyze the signals and differences of various methods in the

frequency domain as shown in Figure 7, and mainly expect to

observe whether the signals leaked by various methods through

the frequency spectrum. From the frequency domain, it can be

seen that the traditional method does not recover the signal well.

At the same time, there are different degrees of signal leakage in

their differences. In contrast, the results of the three deep learning

methods are closer to the original record. And it is difficult to see

the leakage of the signal in the difference between the three

methods. The three deep learning methods are not significantly

different in the frequency domain. The comparison of the three

kinds of deep learning relies more on quantitative analysis.

FIGURE 6
Comparisons for denoising results of different methods.
(A–B) The denoising result with the SNR of 1.9371 dB and
predicted noise of Band-pass filtering. (C–D) The denoising
result with the SNR of 1.0421 dB and predicted noise of
Wavelet transform filtering. (E–F) The denoising result with the
SNR of 0.5712 dB and predicted noise of WNNM. (G–H) The
denoising result with the SNR of 18.3209 dB and predicted
noise of DnCNN. (I–J) The denoising result with the SNR of
18.4935 dB and predicted noise of U-Net (K–L) The denoising
result with the SNR of 19.0062 dB and predicted noise of
MSI-Net.
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The signal-to-noise ratio (SNR) is one of the important

indexes to measure the quality of seismic data, and the

improvement of SNR is an important index to evaluate the

performance of denoising methods. According to the size of

the calculation, SNR can be divided into global SNR and local

SNR. Global SNR is usually used to measure the overall quality of

seismic data. Besides, mean absolute error (MAE), mean square

error (MSE) and structural similarity (SSIM) (Wang et al., 2004)

are commonly used measures. In this paper, SNR, MAE, MSE

and SSIM are used to quantitatively evaluate several methods.

Generally speaking, higher SNR, SSIM and smaller MAE,

MSE represent better denoising results. The denoising results of

different methods are shown in Table 4, fromwhich it can be seen

that MSI-Net has the highest performance in the evaluation of

four indexes. We also realize that the global SNR may not be

sensitive to the quality of local data. There may be some cases

FIGURE 7
F-K domain analysis for the denoising results of differentmethods. (A,B) F-K spectrumof the pure record and noise data. (C,D) F-K spectra of the
denoising results and predicted noise of Band-pass filtering. (E,F) F-K spectra of the denoising results and predicted noise of Wavelet Transform
filtering. (G,H) F-K spectra of the denoising results and predicted noise of WNNM. (I,J) F-K spectra of the denoising result and predicted noise of
DnCNN (K,L) F-K spectra of the denoising result and predicted noise of U-Net (M,N) F-K spectra of the denoising result and predicted noise of
MSI-Net.
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FIGURE 8
Local SNR analysis. (A) Local SNR of the synthetic noisy DAS-VSP data. (B–G) Local SNR of the denoised result of Band-pass filtering, Wavelet
transform filtering, WNNM, DnCNN, U-Net, MSI-Net, respectively.
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where the local data quality is poor, but the overall SNR is high,

which is unacceptable for DAS records with large differences in

global. The local SNR can describe the quality of local seismic

data in detail, so it is used to quantitatively analyze the denoising

performance of the proposed method. A moving window with a

size of 5 × 5 and a step of one is used to segment DAS-VSP data,

and the local SNR is calculated in the moving window. The local

SNR of the data at (t, x) can be expressed as

SNR(t, x) � 10log10
∑t+(w−1)/2

i�t−(w−1)/2∑x+(w−1)/2
j�x−(w−1)/2(S(i, j) − �S(i, j))2

∑t+(w−1)/2
i�t−(w−1)/2∑x+(w−1)/2

j�x−(w−1)/2(Dn(i, j) −Dn(i, j))2
(5)

where Sis the pure signal and Dnis the denoised data. �Sand Dn is

the mean of Sand Dn, respectively. And w is the window length.

The local SNR of the result of the MSI-Net and the methods for

comparison is shown in Figure 8, where the abscissa is the

number of seismic traces, the ordinate is the sampling point

and the number in the color bar is the SNR (dB). Figure 8A shows

the local SNR of synthetic noisy DAS-VSP data. We can see that

the local SNR of areas affected by different noises is low, which is

consistent with the actual situation. Figure 8G shows the local

SNR of the results processed by the proposed method. It can be

seen that the method proposed in this paper has the best

performance in improving the local SNR.

Denoising results of field DAS-VSP data

To verify the practicability and generalization performance

of the network, the field DAS-VSP data was processed through

the proposed method and other competitive methods. The time

sampling interval of the DAS data shown is 400 μs and the spatial

sampling interval is 1 m. The processing results are shown in

Figure 9. From the field seismic records, it can be observed that

there is a lot of noise in the records, and the SNR is generally low.

Some random noise interferes with the presentation of effective

signals seriously and even submerges the seismic events

completely. Traditional methods are less effective in denoising

the actual records. Band-pass filtering makes a rough distinction

between signal and noise, greatly destroying the valid signal in

Figure 10A. The reconstructed result of wavelet transform

filtering still retains some random noise, and the recovery of

the effective signal is also poor in Figure 10B. The suppression

effect ofWNNM on various kinds of noise is not obvious, and the

result after denoising still retains a large number of various kinds

of noise in Figure 10C. It can be seen that, compared with the

traditional denoising methods, the MSI-Net is effective for signal

recovery and noise suppression in actual records. As shown in the

blue area in Figure 10F, the reflected up-going wave and the

converted wave, which were originally seriously affected by noise,

become clearer and more continuous after denoising, which

proves that MSI-Net has a good ability to recover the signals

in DAS-VSP. As shown in the red area in Figure 10F, the reflected

up-going wave with weak energy can hardly be observed under

the influence of noise. After being treated by the MSI-Net, it is

obviously recovered. Compared with DnCNN and U-Net, the

amplified signal leakage of the method proposed in this paper is

obviously less. It proves that MSI-Net has a better ability to retain

valid signals. This makes the MSI-Net better meet the high

amplitude-preserving requirements of DAS-VSP data

processing. For the actual records after processing, we also

observe that the first arrival of the processed direct wave is

discontinuous. The first arrival wave in the original record may

be discontinuous due to the poor coupling of the optical fiber

during the data acquisition. The neural network not only

removes noise but also restores weak signals. This also causes

the discontinuity of the first arrivals to be more prominent. This

problem can be resolved during acquisition.

FIGURE 9
Field DAS-VSP data.

TABLE 4 Performance statistics of different denoising methods on the
test sets.

Metric MAE MSE SNR SSIM

The original record 0.18832 0.12074 −0.4005 0.0516

Bandpass filtering 0.0947 0.0728 1.8221 0.1495

Wavelet transform filtering 0.1565 0.0907 0.8423 0.0518

WNNM 0.1611 0.0991 0.4593 0.0881

DnCNN 0.0293 0.0016 18.3303 0.3641

U-Net 0.0278 0.0016 18.4876 0.4081

MSI-Net 0.0274 0.0014 19.0006 0.4127
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FIGURE 10
Comparisons for the denoising results of the field DAS-VSP record. (A–F) The denoising results for Band-pass filtering, Wavelet transform
filtering, WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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FIGURE 11
Local enlargements for the denoising results of different methods. (A) Local enlargements of the field noisy DAS-VSP data. (B–G) Local
enlargements of denoising results by utilizing Band-pass filtering, Wavelet transform filtering, WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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FIGURE 12
Comparisons for the predicted noise of different methods. (A–F) The predicted noise for Band-pass filtering, Wavelet transform filtering,
WNNM, DnCNN, U-Net, and MSI-Net, respectively.
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To further illustrate the denoising ability of different

methods, we selected a representative local enlargement to

evaluate them in detail in Figure 11. Though the interference

of random noise can be eliminated basically, the three deep

learning methods have different performances in the recovery of

signals. Observing the magnified partial processing results, it can

be found that the recovered signals recovered by DnCNN shown

in Figure 11E are not continuous due to the relatively small

receptive field. In DnCNN, the features are only based on single-

scale analysis, and the expansion of the receptive field can only

depend on the increase of the number of layers, which makes it

difficult to expand the receptive field of DnCNN too much.

The continuity of reconstructed signals by U-Net shown in

Figure 11F is relatively better, but some details of the signals are

still missing. On the whole, the MSI-Net has more advanced

effects on the high-resolution reconstruction of signals, whether

in the maintenance of events continuity or the recovery of signal

details as shown in Figure 11G. From the local view, the method

proposed in this paper is obviously better for signal recovery.

Specifically, DnCNN is always maintained in high-resolution

representation, so the prediction of the signal may be limited by

the local receptive field, which is often vague. U-Net adopts the

processing mode of downsampling before upsampling, and its

recovery effect for high resolution is not as good as that of MSI-

Net. The MSI-Net adopts a multi-scale processing method, and it

also frequently uses information exchange among scales, which

better fuses multi-scale signals, so it has a better effect on high-

resolution restoration.

In addition, the difference between each method is shown in

Figure 12. From the difference, we can observe that there is often

some residual signal in the results processed by the conventional

method. For example, the leakage of the signal can be clearly

observed in the difference in the band-pass filtering. In contrast,

it can be seen that the signal leakage in the difference between the

three deep learning-based methods is very small. Among them,

there is basically no signal leakage in the difference between the

MSI-Net. It proves that the method proposed in this paper

basically does not damage the effective signal.

FIGURE 13
The denoising result of another field DAS-VSP record. (A) The new field DAS-VSP data. (B) The denoising results for the proposed method.
(C) The predicted noise of the proposed method.
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The generalization ability is a crucial evaluation criterion

for a denoising network in practice applications. The main

purpose of training the network is to obtain capture features

and learns the laws from the training data. The model should

have the generalization ability that can make the trained

model perform well when processing different data with a

similar pattern. To test the generalization performance of

MSI-Net, we utilize MSI-Net to process more records.

Figure 13A shows other DAS records that contain various

types of noise. It was collected from other wells in the same

region as the record shown in Figure 9. Figure 13B shows the

result processed by MSI-Net, and Figure 13C shows the

difference after denoising. It can be seen that for each

DAS record, the effective signal has been completely

restored. The MSI-Net can still maintain good

performance in the denoising of other records, indicating

that our model has a good generalization ability for DAS

records. At the same time, the different kinds of noise in the

DAS-VSP record were completely predicted. In particular,

the trained network can also accurately predict the coupled

noise in the record. This is even more important for the high-

resolution reconstruction of the DAS record.

Conclusion

In this paper, we proposed a network for high-resolution

reconstruction of DAS-VSP records. With the help of multi-

scale feature learning and frequent information interaction

between scales, the network can successfully acquire abundant

multi-resolution characterizations. The low-resolution

information of different scales is used to supplement the

high-resolution information at the same time, to realize

accurate high-resolution reconstruction. The proposed

method achieves an excellent reconstruction effect in

processing synthetic and field DAS-VSP records, especially

improving the SNR and resolution. Benefiting from multi-

scale analysis, the network recovers local details better than

previous general network architectures. High-resolution

reconstructed records can have positive implications for

subsequent imaging. In addition, the multi-scale analysis

also inevitably increases the computational cost, so

more efficient multi-scale strategies will be explored in the

future.
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