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Elastic least-squares reverse time migration (ELSRTM) describes the reflectivity

of the undergroundmediamore accurately than acoustic LSRTM in theorywhile

suffering from the P- and S-waves crosstalk artifacts. We propose a new

wavefield decomposed ELSRTM scheme to alleviate these crosstalk artifacts,

which is different from conventional methods. In our new scheme, we

implement the wavenumber domain elastic wavefield vector decomposition

equivalently in the time-space domain to decompose source wavefield without

Fourier transform, but with high precision. Then we decompose adjoint

wavefield by constructing the shear component in a decoupled adjoint wave

equation. Finally, based on elastic impedance parameterization, we derive the

gradients with respect to elastic reflectivity in the wavefield-decomposed

ELSRTM. Numerical examples show that our method is feasible even when

applied to models with complex and uncorrelated P- and S-wave velocity

structures.
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1 Introduction

The work of several scholars marked the advent of reverse time migration (RTM) in

the 1980s (Hemon, 1978; Baysal et al., 1983; McMechan, 1983; Whitmore, 1983).

Compared with other migration methods, the reverse time migration based on the

two-path wave equation has stronger amplitude preservation and higher image quality for

the complex geological structure with steep dip angle and sharp velocity changes.

However, conventional RTM assumes that seismic data is obtained by regular surface

sampling with a recording aperture as large as possible, which cannot be achieved in

practice. Without these perfect assumptions, the conventional RTM algorithm is likely to

fail even fed with accurate velocity and density models (Zhang et al., 2015).

The least square migration (LSM) (LeBras and Clayton, 1988) is a revolutionary

innovation which solves imaging problems by an inversion method: match the
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observed data with the numerical simulation data under the

Born approximation, and update the imaging results through

multiple inversion iterations (Schuster, 1993; Nemeth et al.,

1999). LSM is believed to be able to image subsurface structure

and reflections with higher resolution and better amplitude

preservation, which is beneficial to more reliable and high-

precision elastic parameter inversion and reservoir

characterization. The LSM idea can be combined with a

variety of imaging techniques. Scholars have introduced the

idea of LSM into RTM, which is called least-squares reverse

time migration (LSRTM) (Dong et al., 2012; Yao and

Jakubowicz, 2012; Dai and Schuster, 2013; Zhang et al.,

2013, 2015; Feng and Schuster, 2017; Liu and Peter, 2018;

Yang et al., 2019).

Most studies about LSRTM have been focused on acoustic

medium assumptions, the elastic characteristics of the

wavefield are treated as noise rather than an additional

source of information of the subsurface parameters (Sears

et al., 2010). However, elastic assumptions describe the

underground media more accurately than acoustic. In

addition, with PP and PS reflectivity, the identification of

fluid contacts, lithologies, fractures and hydrocarbon

reservoirs will be clear. Therefore, it is necessary to study

LSRTM based on elastic theory for land seismic data.

Considering that ELSRTM suffers from crosstalk between

P- and S-waves, wavefield decomposition methods are

usually used to suppress crosstalk artifacts.

One of the wavefield decomposition methods is based on the

Helmholtz theorem (Dellinger and Etgen, 1990; Sun and

McMechan, 2001), in a homogeneous and isotropic medium,

the elastic wavefield can be separated into a curl-free P wavefield

and a divergence-free S wavefield. However, extra complex and

computationally expensive polarity corrections are needed since

the divergence and curl operators lead to phase shift and

amplitude distortion (Yan and Sava, 2008; Du et al., 2012;

Duan and Sava, 2015).

The second strategy for wavefield decomposition is the

decoupled wave equations (Ma and Zhu, 2003; Li et al., 2007;

Zhang et al., 2007; Xiao and Leaney, 2010), which decompose

wavefields by solving the P- and S-wave separated wave

equations. In recent years, the decoupled wave equations

prevail in elastic RTM (Wang and McMechan, 2015; Du

et al., 2017; Zhou et al., 2018) and ELSRTM (Gu et al., 2018;

Qu et al., 2018; Zhong et al., 2021; Shi et al., 2021; Zhang and Gao

,2022; Liu et al., 2022) because it is easy to implement and does

not cause phase shift and amplitude distortion of decomposed

wavefields (Duan and Sava, 2015; Du et al., 2017; Gong et al.,

2018). However, if migration models are not smooth enough, the

decoupled wave equation methods may suffer.

The third wavefield decomposition method, which with clear

physical significance and higher accuracy, is the wavefields

decomposition in the wavenumber domain (Zhang

and McMechan, 2010; Du et al., 2014; Zhang et al., 2020), the

output decomposed P- and S-wavefields have the same

amplitude, phase, and physical units as the input wavefields

even in the case of inaccurate migration velocity. However,

methods in the wavenumber domain suffer from expensive

computation.

Shi et al. (2021), Zhong et al. (2021), Zhang & Gao (2022) and

Liu et al. (2022) constructed the decoupled wave equation and

applied it to both source and adjoint wavefields decomposition. It is

different in this paper: we propose a compound strategy to suppress

P- and S-wave cross-talk artifacts in an efficient way. Inspired by the

work of Zhang and McMechan (2010) in the wavenumber domain,

but avoiding taking the Fourier transform, we reconstruct the

wavenumber domain decomposition operator, and transform it

into time-space domain to decompose source wavefields. Then

we decompose the adjoint wavefields by constructing the shear

component in a decoupled adjoint wave equation. Finally, we obtain

the gradients with respect to elastic reflectivity in the wavefield-

decomposed ELSRTM. In addition, the gradients were updated

using the conjugate gradient method.

This paper is organized as follows. First, we review the

basic theory of ELSRTM including the Born approximation

for the velocity-stress elastic wave equations, the virtual

sources of the elastic demigration, the adjoint

equations and gradients of ELSRTM. Next, we introduce

an elastic wavefield vector decomposition method in the

time-space domain and a decoupled adjoint wave

equation. Then we obtain the gradients with respect to

elastic reflectivity in the decoupled P- and S-wave frame.

Finally, we use two numerical examples to demonstrate the

feasibility of the proposed wavefield decomposed ELSRTM

scheme.

2 Methodology

2.1 Basic theory of ELSRTM

In the 2D case, the elastic isotropic wave equation can be

expressed by the first-order particle velocity and stress equation

(Virieux, 1986) as

ρ
zvx
zt

� zσxx
zx

+ zτzx
zz

,

ρ
zvz
zt

� zτxz
zx

+ zσzz
zz

,

zσxx
zt

� (λ + 2μ) zvx
zx

+ λ
zvz
zz

,

zσzz
zt

� λ
zvx
zx

+ (λ + 2μ) zvz
zz

,

zτxz
zt

� μ(zvx
zz

+ zvz
zx

).

(1)

Where ρ stands for the density, λ and μ are the Lame constants of

models, vx and vz represent particle velocities in the horizontal
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and vertical respectively, σxx and σzz are the normal stresses, τxz
(or τzx) is the shear stress.

According to the perturbation theory, a

perturbation δm � [δρ, δλ, δμ]T of the background model

parameters m � [ρ, λ, μ]T will lead to wavefields

perturbation δu � [δvx, δvz, δσxx, δσzz, δτxz]T with respect

to the background wavefields u � [vx, vz, σxx, σzz, τxz]T. The
perturbed source wavefields which can be expressed as:

ρ
zδvx
zt

− zδσxx
zx

− zδτzx
zz

� fx,

ρ
zδvz
zt

− zδτxz
zx

− zδσzz
zz

� fz,

zδσxx
zt

− (λ + 2μ) zδvx
zx

− λ
zδvz
zz

� fxx,

zδσzz
zt

− λ
zδvx
zx

− (λ + 2μ) zδvz
zz

� fzz,

zδτxz
zt

− μ(zδvx
zz

+ zδvz
zx

) � fxz.

(2)

Where the virtual sources are as follows:

fx � −δρ zvx
zt

,

fz � −δρ zvz
zt

,

fxx � δλ(zvx
zx

+ zvz
zz

) + 2δμ
zvx
zx

,

fzz � δλ(zvx
zx

+ zvz
zz

) + 2δμ
zvz
zz

,

fxz � δμ(zvx
zz

+ zvz
zx

).

(3)

Equation 2 are the Born approximation for the velocity-stress

elastic wave equation in the 2D case.

Using the adjoint-state method (Liu and Tromp, 2006;

Plessix, 2006), the adjoint wave equations can be derived as:

ρ
zϕx

zt
− λ

zφzz

zx
− (λ + 2μ) zφxx

zx
− μ

zφxz

zz
� δVx − δVobs

x ,

ρ
zϕz

zt
− λ

zφxx

zz
− (λ + 2μ) zφzz

zz
− μ

zφxz

zx
� δVz − δVobs

z ,

zφxx

zt
− zϕx

zx
� 0,

zφzz

zt
− zϕz

zz
� 0,

zφxz

zt
− (zϕx

zz
+ zϕz

zx
) � 0.

(4)

Here, ϕ represents the adjoint wavefields of velocity, φ denotes

the adjoint wavefields of stress, δVi and δVobs
i , i ∈ {x, z} represent

the simulated and observed seismogram received in the horizontal

(x) and vertical (z) directions respectively.

And gradients are derived as:

zJ

zδρ
� ∫T

0
ϕx

zvx
zt

+ ϕz

zvz
zt

dt,

zJ

zδλ
� ∫T

0
−(φxx + φzz)(zvxzx

+ zvz
zz

)dt,
zJ

zδμ
� ∫T

0
−(2φxx

zvx
zx

+ 2φzz

zvz
zz

+ φxz(zvxzz
+ zvz
zx

))dt.
(5)

2.2 The elastic wavefields decomposition

2.2.1 Decomposition of source wavefields
Zhang and McMechan (2010) proposed elastic wavefield

decomposition in the wavenumber domain, which has been

FIGURE 1
Quasi Sigsbee2A model. The structure of the P- and S-wave velocity models is identical.
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used to improve elastic full waveform inversion in Ren and

Liu (2016). However, the two-dimensional forward and

inverse Fourier transforms must be repeated in each time

slice, resulting in expensive calculations. Different from

Ren and Liu (2016), in our scheme, the work of Zhang and

McMechan (2010) was introduced into the time-spatial

domain, thereby avoiding the Fourier transforms, and was

applied to ELSRTM efficiently.

The P- and S- wavefields in 2D case are decomposed in the

wavenumber domain according to the following equations given

by Zhang and McMechan (2010) as follows:

~vpx(kx, kz) � K2
x~vx(kx, kz) + KxKz~vz(kx, kz),

~vpz(kx, kz) � K2
z~vz(kx, kz) +KxKz~vx(kx, kz),

~vsx(kx, kz) � K2
z~vx(kx, kz) −KxKz~vz(kx, kz),

~vsz(kx, kz) � K2
x~vz(kx, kz) − KxKz~vx(kx, kz).

(6)

where ~vx and ~vz represent particle velocities in the wavenumber

domain,Kx� kx/k andKz � kz/k are normalized wavenumbers, in

which (kx, kz) is the wavenumber vector that defines the

direction of wave propagation in 2D case, and

k � ������
k2x + k2z

√ � ω/vpha, vpha is the phase velocity, ω denotes

angular frequency. Zhang and McMechan (2010) further

described Eq. 6 in a short form as:

~V
P � K(K · ~V),

~V
S � −K × (K ×~V). (7)

where ~V � ~V
P + ~V

S
, ~V � (~vx, ~vz), ~VP � (~vpx, ~vpz ), ~VS � (~vsx, ~vsz),

and we noticed that the operator K � Kxax +Kzaz � ~∇ /ik,

where ~∇ � ikxax + ikzaz denotes the nabla operator in the

wavenumber domain which corresponds to ∇ � z/zxax +

FIGURE 2
Migration results for the Quasi Sigsbee2A model. The true (A) PP and (B) PS reflectivity distribution without filtering processed.
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z/zzaz in the spatial domain (ax and az are defined as unit basic

vectors in the Cartesian coordinate system).

Naturally, set the intermediate results in parentheses as
~V
P
tmp � K · ~V and ~V

S
tmp � K ×~V, and note that k � ω/vpha,

more specifically:

~V
P

tmp � 1
ik
~∇ · ~V � vppha

iω
~∇ · ~V,

~V
S

tmp �
1
ik
~∇ · ~V � vspha

iω
~∇×~V. (8)

Note that iω denotes the derivative operator in the frequency

domain, which corresponds to z/zt in the time domain. Moreover,

according to the differential property of the Fourier transform,

correspondingly, in the time-space domain:

zVp
tmp

zt
� vppha∇ · V,

zVS
tmp

zt
� vspha∇× V.

(9)

where V � VP + VS, V � (vx, vz), vx and vz represent particle

velocities in the spatial domain.

In the same way as ~V
P � K ~V

P
tmp and ~V

S � −K × ~V
S
tmp, the

decomposed vector wavefields in the spatial domain are described as:

zVP

zt
� vppha∇V

P
tmp,

zVS

zt
� −vspha∇× VS

tmp.

(10)

where VP � (vpx, vpz ), and VS � (vsx, vsz).

2.2.2 Decomposition of adjoint wavefields
It is different from the decomposition of source

wavefields, since the first-order particle velocity-stress

equation is not self-adjoint, we reconstruct the adjoint

wave equations (Eq. 4) as follows to decompose adjoint

wavefields into P- and S-wave components:

ρ
zϕx

zt
� λ

zφzz

zx
+ (λ + 2μ) zφxx

zx
+ μ

zφxz

zz
+ fadj

x ,

ρ
zϕz

zt
� λ

zφxx

zz
+ (λ + 2μ) zφzz

zz
+ μ

zφxz

zx
+ fadj

z ,

ρ
zϕS

x

zt
� μ(zφxz

zz
− 2

zφzz

zx
),

ρ
zϕS

z

zt
� μ(zφxz

zx
− 2

zφxx

zz
),

ϕP
x � ϕx − ϕS

x,

ϕP
z � ϕz − ϕS

z,

zφxz

zt
� zϕx

zz
+ zϕz

zx
,

zφxx

zt
� zϕx

zx
,

zφzz

zt
� zϕz

zz
.

(11)

Where ϕPx , ϕ
P
z , ϕ

S
x, ϕ

S
z are the decoupled P- and S- adjoint

wavefields of particle velocity.

2.3 The gradient of wavefield decomposed
ELSRTM

According to the work of Feng and Schuster (2017) and Ren et al.

(2017), the reflectivity images of elastic impedances can be defined as:

Rp � δIp
Ip

, Rs � δIs
Is
, Rρ � δρ

ρ
. (12)

where Ip � ρ
�����
λ + 2μ

√
, Is � ρ

��
μ

√
, δIp and δIs are the perturbed P-

and S- impedance, and the perturbed λ and μ can be express as:

δλ � 2
ρ
(I2pRp − 2I2sRs), δμ � 2

ρ
I2sRs. (13)

Then substitute Eq. 13 into Eq. 3, the new virtual sources of

elastic demigration can be written as:

FIGURE 3
For the quasi-Sigsbee2A model, the DELSRTM image
reflectivity profiles are compared with the real reflectivity in a
single trace at 3090 m. (A) for PP comparison, (B) for PS
comparison, the dashed blue lines and solid red lines indicate
real and DELSRTM reflectivity, respectively.
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fx � −ρRρ
zvx
zt

,

fz � −ρRρ
zvz
zt

,

fxx � (2I2pRp − 4I2sRs

ρ
)(zvx

zx
+ zvz

zz
) + 4I2sRs

ρ

zvx
zx

,

fzz � (2I2pRp − 4I2sRs

ρ
)(zvx

zx
+ zvz

zz
) + 4I2sRs

ρ

zvz
zz

,

fxz � 2I2sRs

ρ
(zvx
zz

+ zvz
zx

).

(14)

Equation 15 express the gradients of elastic impedance

parameterization which are related to the Lamé parameters in Eq. 5:

zJ

zRp
� 2vpIp

zJ

zδλ
,

zJ

zRs
� −4vsIs zJ

zδλ
+ 2vsIs

zJ

zδμ
.

(15)

Then substitute Eq. 5 into Eq. 15, the new gradients based on

elastic impedance parameterization are:

zJ

zRp
� −2vpIp ∫T

0
(φxx + φzz)(zvxzx

+ zvz
zz

)dt,
zJ

zRs
� 2vsIs ∫T

0
(2φxx

zvx
zx

+ 2φzz

zvz
zz

− φxz(zvxzz
+ zvz
zx

))dt.
(16)

In P- S- decoupled elastic system, the elastic wavefields

will be replaced by separated P- or S- wavefields to derive pure

wave mode gradients, while the adjoint strains exist in the

gradients with respect to reflectivity (Eq. 16) but not

decoupled in our algorithm (Eq. 11). Ren and Liu (2015,

2016) suggested that according to the particular solutions

of portion adjoint equations, the transformation from

strains to particle velocities in the gradient equations can

be written as:

FIGURE 4
Modified marmousi2 model with uncorrelated (A) P- and (B) S-wave velocity models
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φxx �
zψx

zx
,

φzz �
zψz

zz
,

φxz �
zψx

zz
+ zψz

zx
,

ψx � ∫t

T
ϕP
xdτ + ∫t

T
ϕS
xdτ,

ψz � ∫t

T
ϕP
zdτ + ∫t

T
ϕS
zdτ.

(17)

Moreover, the gradients with respect to elastic reflectivity

in the wavefield decomposed ELSRTM frame can be

derived as:

zJ

zRp
� −2vpIp ∫T

0
(zvPx
zx

+ zvPz
zz

)(zψP
x

zx
+ zψP

z

zz
)dt,

zJ

zRs
� 2vsIs ∫T

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2
zvPx
zx

zψS
x

zx
+ 2

zvPz
zz

zψS
z

zz

−(zvPx
zz

+ zvPz
zx

)(zψS
x

zz
+ zψS

z

zx
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt.

(18)

3 Numerical examples

To verify the feasibility of the proposed wavefield decomposed

ELSRTM (DELSRTM), we designed two experiments based on

quasi-Sigsbee2A model and modified Marmoisi2 model,

respectively. To ensure the efficiency and stability of finite

difference, we made some modifications based on the original

FIGURE 5
The true (A) PP and (B) PS reflectivity distribution of the Modified Marmousi2 model in our numerical test. The reflectivity distribution of
uncorrelated P and S-wave velocity structures is indicated by yellow boxes.
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velocity models. In the quasi-Sigsbee2A experiment, we investigated

the accuracy of DELSRTM. In the modified Marmoisi2 experiment,

we focused on suppressing crosstalk artifacts and compared the

DELSRTM imaging results with true reflectivity. We define (Vtrue-

Vmig)/Vmig as the true reflectivity distribution, where the subscript

true and mig means true velocity model and migration velocity

model, respectively.

3.1 Quasi-Sigsbee2A model

To demonstrate the accuracy of our proposed DELSRTM,

we used a portion of the Sigsbee2A model structure (Figure 1)

and modified the velocity to meet the stability of finite

difference and cost-less calculation. The S-wave velocity is

constructed by linear calculation based on the P-wave

velocity. Moreover, the density is set to be a constant

(1.0kg/m3). The size of this model is 290(z) by 600(x),

and the spatial sampling interval is 10 m. We planned

40 sources and 600 receivers, which were 150 m apart and

10 m apart. The Ricker wavelet with a peak frequency of

30 Hz was injected into normal stress items in elastic wave

equations and received 40 shots as the observed seismic data.

Before imaging, we muted the direct waves and most of the

diving waves to reduce the interference of low-frequency

noise.

The migration results of iteration 40th for the quasi-

Sigsbee2A model are shown in Figure 2. To demonstrate the

accuracy of DELSRTM, the DELSRTM image reflectivity profiles

are compared with the real reflectivity in a single trace (Figure 3),

which located at the distance of 3090 m and cross the middle

diffraction point. Compared with true PP and PS reflectivity, we

found that without the help of filtering process, the PP- and PS-

image generated by our DELSRTM clearly reconstructed the

reflectivity distribution and all the high-speed diffraction points

converged perfectly.

FIGURE 6
Migration results for the modified marmousi2 model. No filtering processed (A) PP- and (B) PS-image which generated from proposed
DELSRTM after 40 times iteration. The images of uncorrelated P and S-wave velocity structures are indicated by yellow boxes.

Frontiers in Earth Science frontiersin.org08

Lv et al. 10.3389/feart.2022.991093

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.991093


3.2 Modified Marmousi2 model

To further verify the anti-crosstalk effect of the

DELSRTM, we tested our algorithm using a modified

marmousi2 model (Figure 4) with uncorrelated P- and

S-wave velocity structures. Moreover, the density is set to

be constant (1.0kg/m3). This model is discrete into a grid of

233(z) by 662(x) with a spatial sampling interval of 20 m in

both directions. We deployed 30 P-wave sources and

662 receivers, which were uniformly deployed along the

surface with 440 and 20 m apart. We used Ricker wavelet

with a peak frequency of 40 Hz as the source signature, and

the total recording time is 2s, with a sample interval of

0.5 ms. To simulate the propagation of seismic waves

numerically in time domain, we used the high-order

staggered grid finite-difference (FD) scheme to solve the

elastic wave equation with a 5 m by 5 m discrete spatial

grid size. Before imaging, we only removed the direct

wave to ensure that the DELSRTM gradient is not

contaminated by low wave components.

Figure 6 shows the migration results after forty iterations

performed. There are a few low wave-number artifacts in the

imaging results since the residual diving waves. The energy

of artifacts suppressed some of the weak reflectivity

imaging, however, a low-cut filtering process can also

annihilate weak reflectivity imaging, which is why we

chose not to do high-pass filtering. Compared with the

true reflectivity distribution (Figure 5), migration results

for the modified marmousi2 model (Figure 6) imaging

complex structures accurately, and according to the

comparison of single trace which is located at the

distance of 5790 m in Figure 7, the proposed DELSRTM

reflectivity imaging results are close to the real one. Besides,

these yellow boxes in Figure 6 marked imaging results of

where P- and S-wave velocity models are

uncorrelated. There are few crosstalk artifacts in the

image of the marked structures. From what has been

discussed above, the P- and S-waves crosstalk

artifacts are suppressed in our new DELSRTM scheme

when applied to complex and uncorrelated elastic

structures.

4 Conclusion

We propose a new scheme of decomposed wavefield least-

squares reverse time migration, which effectively suppressed

the P- and S-waves crosstalk artifacts. Since the first-order

particle velocity-stress equation is not self-adjoint, we adopt a

compound strategy to ensure that our algorithm is robust. In

the processing of source wavefields vector decomposition, we

transform the advantages of wavenumber domain-based

wavefields vector decomposition method into time-space

domain and improve the computational efficiency with

minimal computational cost. Different from the method of

source wavefields vector decomposition, in the process of

adjoint-wavefield decomposition, we construct the shear

component which is subtracted to separate P- and S-

waves mode. The gradient of the decomposed wavefield

least-squares reverse time migration was calculated using

the separated P- and S-waves wavefields on both sides, and

crosstalk-less gradients guarantee the accuracy of reflectivity

imaging. Unlike ELSRTM, which is based on the decoupled

wave equation method, our scheme produces correct results

even when the P- and S-wave velocity models are

uncorrelated and change dramatically. In addition, the

physical significance of our new wavefield-decomposed

ELSRTM scheme is clear.
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FIGURE 7
For the modified Marmousi2 model, the DELSRTM image
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dashed blue lines and solid red lines indicate real and
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