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The importance of railway safety cannot be overemphasized; hence it requires

reliable traffic monitoring systems. Widespread trackside telecommunication

fiber-optic cables can be suitably deployed in the form of dense vibration

sensors using Distributed Acoustic Sensing technology (DAS). Train-induced

ground motion signals are recorded as continuous “footprints” in the DAS

recordings. As the DAS system records huge datasets, it is thus imperative to

develop optimized/stable algorithmswhich can be used for accurate tracking of

train position, speed, and the number of trains traversing the position of the DAS

system. In this study, we transform a 6-days continuous DAS data sensed by a 2-

km cable into time-velocity domain using beamforming on phase-squeezed

signals and automatically extract the position and velocity information from the

time-beampower curve. The results are manually checked and the types of the

trains are identified by counting the peaks of the signals. By reducing the array

aperture and moving subarrays, the train speed-curve/motion track is obtained

with acceptable computational performance. Therefore, the efficiency and

robustness of our approach, to continuously collect data, can play a

supplementary role with conventional periodic and time-discrete monitoring

systems, for instance, magnetic beacons, in railway traffic monitoring. In

addition, our method can also be used to automatically slice time windows

containing train-induced signals for seismic interferometry.
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Introduction

The growing freight volume conveyed by railway systems and the increase of high-

speed trains demand more reliable train dynamics monitoring. Currently, railway traffic

monitoring in use require the integration of both onboard and wayside measurement as

well as data transfer in between them (Ulianov et al., 2018). Conventionally, in the aspect
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of large-scale railway position monitoring, onboard satellite-

based positioning systems such as Global Positioning Satellite

(GPS) play a fundamental role. However, when trains go through

tunnels or mountains, GPS positioning could be less accurate, or

even unreceivable (Sasani et al., 2015). For more stable and real-

time monitoring purposes, on a small-scale aspect, magnetic

beacons are deployed on railway sleepers as counters to

determine if a train has passed (Bruni et al., 2007).

Nonetheless, magnetic beacons may suffer from

Electromagnetic Interference and lead to missed or wrong

messages (Yüksel et al., 2018). Onboard speedometers or

accelerometers can measure precise velocity information and

need wireless transmission conditions, which could be disrupted

due to wireless interference (Baldini et al., 2010).

Recently, Distributed Acoustic Sensing (DAS) technology

has been extensively used in the seismological community (Dou

et al., 2017; Zeng et al., 2017; Martin et al., 2018; Ajo-Franklin

et al., 2019; Zhan, 2019; Lindsey et al., 2017; Spica et al., 2020).

When a DAS interrogator is connected to a fiber-optic cable, laser

pulses are sent. Subsequently, Rayleigh back-scattered phase

shifts are measured and converted to axle strain or strain rate,

thereby, the sensing cable becomes a dense array withmeter-scale

spatial resolutions (Parker et al., 2014). With the use of the dense

array features, DAS records high-fidelity seismic wavefields and

can be applied in event monitoring, such as aftershock detection

(Li et al., 2021; Lv et al., 2022), icequake detection (Walter et al.,

2020; Hudson et al., 2021), and urban traffic monitoring (Lindsey

et al., 2020). Another advantage of DAS is in its convenient mode

of deployment, whereby, widespread existing telecommunication

cables can be utilized as dense array sensors, especially in highly-

built cities (Lindsey et al., 2020; Song et al., 2021). It is worth

noting that urban-scale DAS applications are not limited to

vehicle traffic monitoring (Chambers, 2020; van den Ende

et al., 2021) and interferometry studies (Dou et al., 2017; Song

et al., 2021), but other moving sources like subways (Ferguson

et al., 2020) and railway trains (Cedilnik et al., 2018; Wiesmeyr

et al., 2020). The trackside cables connected to an interrogator

can provide researchers with the opportunity to record train-

induced signals, and monitor the location and speed of trains,

towards enhancing the train control system.

In previous seismological studies on train-induced signals,

the characteristics of the signal itself have attracted extensive

attention (Fuchs and Bokelmann, 2017; Lavoué et al., 2020; Jiang

et al., 2022). Another idea is to utilize train-induced signals as

strong noise source in ambient noise tomography (Quiros et al.,

2016; Brenguier et al., 2019; Liu et al., 2021; Sager et al., 2022).

Compared to the aforementioned, railway traffic monitoring

(i.e., train detection and speed estimation) using DAS could

help select proper noise windows for seismic interferometry

applications using noise generated from moving trains as

source. Trackside DAS recordings require a lot of man-hour

inspection/observation to extract the locations of moving trains;

this necessitates the need to develop automatic methods for

monitoring railway traffic using the high-volume original

waveform data. Given that the train-induced signals are

spatially continuous, and leave data “footprints” as linear

features in the DAS recordings, the Kalman filter has been

suggested to be an effective approach to extracting the tracks

of individual trains (Wiesmeyr et al., 2020), yet the method may

not achieve stable track predictions when it comes to significant

speed variant cases. In addition, the method may not accurately

extract/predict the locations from cross superimposed signals

(Iswanto and Li, 2017), which could be the case when two trains

from opposite directions move and pass each other. Train-

induced signals in the “waterfall diagram” can be cut out and

the signal front over time can be aligned, thereby the speed

change could be extracted using spectral shifts (Cedilnik et al.,

2018), yet the method requires accurate alignment of the train-

induced signal fronts and the calculation of speeds are not in an

automatic manner. Similar issues also apply to vehicle

monitoring studies where array beamforming technique has

been tested and proven to be effective in investigating traffic

patterns, and dealing with heavy traffic scenarios (Chambers,

2020; Ende, 2021; van den Ende and Ampuero, 2021).

In this study, we use time-domain beamforming procedure to

estimate the short-term average over long-term average traces

(STA/LTA; Allen, 1978) of DAS waveform data, to extract the

location and speed of individual trains, and demonstrate the

effectiveness and stability of our method. In addition, our

method can extract the footprint of speed variant trains by

constantly moving the subarrays with acceptable real-time

performance. Therefore, we first introduce the observation

system and further show several typical signals induced by

different kinds of trains. Thereafter, the detection and speed

estimation are done by the beamforming method. In a bid to

demonstrate the reliability of our method, we compare the

detection results with the train schedules. Finally, we test the

impacts of different signal-to-noise ratio levels and array

apertures on beamforming performance, and discuss the

applicability of our method.

Data

The experimental site for our study is located ~5 km north of

Hangzhou Railway Station, Hangzhou, Eastern China. Towards

the North, the rail tracks run directly underneath NE-SW

trending Desheng expressway, while in the south lies the

maintenance Depot for Electric Multiple Unit (EMU) trains

(Figure 1). We connect the interrogator (HiFi-DAS provided

by Puniutech) with an existing trackside telecommunication

cable set at a 2-m channel spacing, and calibrate the cable

into 1001 sensors. The cable is protected by polyvinyl chloride

conduits underground. The data is acquired at a sampling rate of

50 Hz and the gauge length is 10 m. Strain data are continuously

recorded over a period of 6 days in 2 different stages, starting
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FIGURE 1
Map showing the location of the fiber-optic cable (black line) 5 km north of Hangzhou station (https://lbs.amap.com/demo/javascript-api/
example/map/map-english/). Grey shade denotes the Depot. The numbers in black are the start and end channel numbers. The alternating grey and
white lines are railway roads (Hanghang Line, Zhegan Line). The blue arrow indicates the direction of the train station. The yellow solid lines denote
expressways, and Desheng Expressway is marked where the cable segment from channel 1 to channel 200 lies. Hangzhou (red triangle) and
other major cities (black star) are also marked on the inset map.

FIGURE 2
One-hour DAS data records under a heavy railway traffic scenario. The reverse blue triangles mark three typical train events shown in Figure 3
(corresponding to (A–C) from left to right).
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from 23rd to 26th in August 2021 and 2nd to 3rd in September

2021, respectively.

A 1-h DAS record for a heavy-traffic period is shown in

Figure 2. We could easily identify the train-induced, quasi-static

deformation signals, leaving the “footprint” of passing trains

across the array. The slope of the track can be considered as the

speed of individual trains, and in total, there are 13 identical slant

lines which demonstrate that the trains pass our array at near

constant speeds. From ~ Ch1-130, there are persistent noises that

could have been generated by high-frequency vehicle traffic on

Desheng expressway, yet the train-induced signals are still visible.

At 11:30, there is an indication that a train moves at low-speed

comes from north to south at ~5 km/h, and fades away at ~

Ch400. This is conceived to be an EMU parking event for

maintenance to the Depot in the south.

Trains passing through the site include 8 or 16-wagon EMUs

which is powered by each unit (~26 m in length), and the

conventional or locomotive-hauled trains which typically

consist of −18—21 wagons powered by the locomotive,

individually. Figures 3A–C show raw waveforms recorded at

Ch500 due to wagon 8, wagon 16 (from the EMU), and a

conventional train, respectively. We then compute their

spectrograms (Figures 3D–F) and observe that the signals

cover the entire frequency band. In all the 3 cases earlier

mentioned (Figure 3), no main frequency is identical and the

equal-distance spectral lines observed using seismometers (in the

work of Fuchs and Bokelmann, 2017) are also clear in our DAS

observations. The distance in-between the spectral lines was

suggested to be related to the train speed and the length of

bogies (Lavoué et al., 2020). Previous studies have shown that

the peaks of train-induced signals correspond to the number of

bogies, usually the number of wagons plus 1 (Kowarik et al.,

2020; Lavoué et al., 2020). To reduce the influence of high-

frequency noise, we apply a 5 Hz lowpass filter on the three

waveform signals, thereby enhancing the relatively long-

period train-induced signals. After filtering, we could

observe clearer periodic signals and peaks (Figures 3G–I),

where the peaks correspond to the 9th (8-wangon EMU),

17th (16-wagon EMU), and 21st (20-wagon conventional

train) bogies.

Materials and method

Though we could manually identify trains “footprints”

from raw waveform DAS data, however, it is still a challenge to

detect train-induced events and estimate their speeds

automatically. In our experiment, trackside cables are

FIGURE 3
Typical train-induced signals of CH500 (A–C), their spectrograms (D–F), and lowpass filtered signals (G–I). The blue circles denote peaks.
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linearly distributed, and as an ultra-dense array, so it is

suitable to use the beamforming approach to transfer the

raw data to the time-velocity domain whose results are

known as vespagram (eg., Rost and Thomas, 2002). The

method shifts the phase of each waveform with respect to a

range of velocities and then stack the time-shifted waveforms

as a beam, whereby the vespagram is the result of all beams

calculated all over the speed range (Meng and Ben-Zion, 2018;

Nayak and Ajo-Franklin, 2021; van den Ende and Ampuero,

2021). Among the beams, the maximum value of the

beampower corresponds to the apparent velocity and event

detection time. The beamforming approach has been applied

in the vehicle traffic monitoring fields (Chambers, 2020; van

den Ende and Ampuero, 2021).

The waveforms are relatively not coherent in the DAS

recordings (Figure 4A). Researchers would like to do some

pre-processing on the raw data, such as median filter

(Chambers, 2021; Nayak and Ajo-Franklin, 2021), or some

kind of normalization and smoothing like what Chambers

(2020) did by measuring the signal envelopes. Instead of that,

we use STA/LTA traces to squeeze signal phases and enhance/

equalize the amplitude. The time-domain beamforming

technique stacks all the channel data, because the

amplitude of the train-induced signals is so high that even

the recordings with large noise levels still can help. We didn’t

find the data suffer from non-linear behaviors or spiking.

Furthermore, we have tested a 7-channel time-domain median

filter on our data (Nayak and Ajo-Franklin, 2021), and we

didn’t find differences on the results. Compared to signals

generated by vehicle, train-induced signals are relatively more

complex, which is mainly due to longer periods (vehicle

signals with 1 period, trains at least more than 8 periods)

and duration of the signal (vehicle less than 1 s, trains longer

than 10 s in our study). We use the whole array data to

beamform the signals generated from the EMU, having a

speed ranging from 10 to 150 km/h, with speed interval of

1 km/h. Typical vespagrams generated from a set of raw and

processed signals are shown in Figures 4C,D. A long duration

FIGURE 4
Comparison of beamforming results derived from raw signals and STA/LTA traces. (A) Signals extracted from the entire array every 50 channels;
(B) STA/LTA traces of the signals shown in (A); (C) Vespagram calculated with the whole-array raw data; (D) Same as (C) but derived from STA/LTA
traces; (E,F) Time-beampower curves of (C,D).
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of the train-induced signals could lead to low resolution on the

vespagram. While after exploiting the STA/LTA algorithm on

the raw data, the resolution on the vespagram is improved. To

increase the sensitivity of arrivals, the STA is set as 0.1 s, while

the LTA is set as 50 s, longer than the duration of the slowest

train. After the processing, the signals are better enhanced and

centered at arrivals, while the phases are squeezed. Next, we

beamform the STA/LTA traces and the vespagram results

show a better temporal resolution. The detection time is

around the estimated maximum beampower at the centre

of the array. We further extract the maximum value along

the time axis and build the time-beampower curve (Figures

4E,F). We could observe that the curve becomes smoother and

the peak becomes more prominent after the STA/LTA

calculation. We select two threshold parameters namely,

prominence and distance, to constrain the find-peak

algorithm to estimate the maximum beampower (Virtanen

et al., 2020). The prominence is used to constrain the

maximum difference between the peaks and saddles, and

the distance is the time difference to constrain the

corresponding time of the peaks and saddles within the

time distance (van den Ende and Ampuero, 2021; Virtanen

FIGURE 5
Beamforming results for a 1-h data (shown in Figure 2.). (A,B) Vespagrams for S-N and N-S trains and local power maximums detected from (C);
(C) Time-beampower curve derived from (A,B), detected peaks denoted as circles.
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et al., 2020). When we select a small time-distance parameter,

three detection results appear in the time-beampower curve of

computed from the raw data (Figure 4E). Meanwhile, after

calculating the STA/LTA, the signals are squeezed as sharp

impulses like generated by point sources, we then obtain a

more stable detection performance result from the time-

beampower curve (Figure 4F).

To avoid missed detection while processing long

continuous data, we choose to select a small prominence

parameter (usually could be 3 times the average of the

noise amplitude). Similarly, to avoid false detection, we

select a time-distance parameter that is larger than the

signal duration of a slow train (set as 40 s). Figure 5 shows

the detection and speed estimation results of the 1-h data

earlier shown in Figure 2. From the observations, the train

events are localized on the vespagrams and are successfully

detected from the time-beampower curve. Also, we extract the

speed after obtaining the corresponding local maximum

beampower. In general, the higher the speed, the higher

the beampower is and the better the automatic detection

process performs. For the crossing and superimposed

signals, our method also retrieves reliable results which

demonstrates that our method can suitably be applied to

heavy railway traffic monitoring.

Result

In Figure 6, we show the data detection result over a 6-day

period, where it is observed that each detection time corresponds

to the time the train passes the array center at Ch500. We

qualitatively verify the detection results by visually inspecting

the “footprints”, and categorize the types of trains by counting

the number of peaks of the lowpass filtered waveforms (typical

examples are shown in Figure 3). Due to the proprietary and

sensitive nature of train itinerary records, we could not determine

the exact train registration number of each passing/transiting

train but constrained the type of trains by observing each passing

train using their scheduled departure or arrival time (https://

kyfw.12306.cn/otn/queryTrainInfo/init). From these records, we

observe that the activity of railway traffic is somewhat irregular

throughout the 6 days. Considering that the observation site is

5 km north of the railway station, the traffic pattern may not be

an exact reflection of the exact time the train departed or arrived

FIGURE 6
Detections, train speeds, and train types extracted from 6-days data. Negative and positive speed values correspond to N-S and S-N,
respectively. Orange, blue vertical lines mark the time on the train timetable (the arrival time for N-S cases, and departure time for S-N). Orange and
blue circles represent detected conventional trains and EMU trains, respectively; the hollow squares denote non-scheduled trains.
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at the station. We also find out that some detected trains do not

match the schedule, which could be either temporary or

emergency scheduled trains or the trains that transits through

the station without stopping. These scenarios are especially

observed during between 23:00 to 7:00 (UTC+8), typical of

the duration when non-scheduled trains operate. More so, we

observe some signals with only one period which are believed to

be generated by a single locomotive.

We count the detections based on the direction, speed, and

type of trains (Figures 7A,B). Generally, we observe that the

average speed of the trains from the north to the south is higher

than those from the south to the north. This implies that at a

distance of ~5 km to the station, the deceleration time from the

North to the South is shorter than the acceleration time from the

South to the North. The speed is limited from block to block by

the train control system (Ouyang et al., 2010; Zhang, 2008),

which in practice, the train drivers adjust the speed while

approaching or moving out of the train stations according to

actual situations (CRC, 2004). Hence, there is no statistically

significant difference in the speed of different types of trains in

this case. The hourly detection histograms (Figures 7C,D) show

similar railway traffic patterns on the both directions. The

railway traffic becomes heavy during the morning and

evening as similarly suggested in Figure 6, while turns out to

be silent during the midnight.

Discussion

The cable is 2 km in length, as the cable cannot be perfectly

straightened up, the real spatial distribution is theoretically

shorter than the length of the cable. The estimated speed of

our beamforming method is the apparent velocity along the

cable, so we wish we could have the exact locations of each

channel or some of them to correct this effect, however, we were

not allowed to do it in the field work due to safety regulations of

railways. Nevertheless, we observe that the trains pass our

experimental site as constant speeds, which could be inferred

from that the slope of the “footprints” is relatively constant. If the

spatial distribution of the cable is complex, we could have seen

twisted footprints and the beamforming results could be biased.

From this point of view, we accept the shape of the cable causes

FIGURE 7
Histograms of speed distribution and hourly detections from N-S and S-N. (A,B) Speed distribution of all detected trains; (C,D) Hourly
detections derived from the results shown in Figure 6.
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minor effect in our study. In fact, the estimated speeds depend on

the tolerance towards requirements if in real use, and we could

correct the location of every channel by multiplying coefficients

for the cable, thus we could exact more accurate speed of the

trains passing our experimental site.

For an event generated by an individual train, an efficient way

to evaluate its speed is to calculate the slope of the “footprint”,

which implies, fitting linear regression on the arrival time of all

the traces to verify the accuracy of the estimated speed retrieved

through the beamforming method. Influenced by uneven

coupling and possible orientation variations of the cable,

simply utilizing STA/LTA algorithm across a dataset with

equal threshold may not efficiently pick the arrival time.

Considering the consistent duration of train-induced signals,

we construct signal envelopes to reduce the complexity of

waveforms (i.e., high-frequency noise, polarity reversals etc.),

and calculate relative arrivals by conducting cross-correlation on

Ch1 and the rest of the 1000 channels signal envelopes. We then

apply the bootstrapping method (10,000 times) to quantify the

variability of the linearly regressed velocities from the arrival

times (Tichelaar and Ruff, 1989). To reduce the impact of the

outliers on the regression calculation, we use the random

sampling consensus algorithm (RANSAC; Fischler and Bolles,

1981; Yoo et al., 2020) to automatically exclude the outliers

during each regression. Figure 8 shows the results from the linear

regression of an EMU and a conventional train, respectively, as

well as their bootstrapping histograms. The arrival times derived

from the former have better convergence along with the signals

than in the latter, thus indicating that the signals due to the EMU

train are relatively more coherent. The outliers are identified and

isolated by the RANSAC regressor (Figures 8B,E). The mean

speed of the EMU and the conventional train are

96.18 and −25.69 km/h, respectively, whereas the standard

deviations (STD) are 1.52 and 0.43 km/h, showing that the

robust regression results are close to the beamforming

estimations (96 and −26 km/h). Based on the STD of the

speeds, the uncertainty of the EMU scenario is larger than

that of the conventional train, which implies that the former

has a larger speed variance. In general, themean speeds of the two

regression estimates are both within 1 km/h of the beamforming

results, demonstrating that our method could achieve stable and

accurate speed estimations with the DAS data.

In actual situations, the length and coupling of the cable make

the recorded DAS data impacted by different level of noise (Song

et al., 2021). Therefore, we test the performance of our method on

two typical train-event signals (Figure 8) with different noise levels.

Before the start time of the signal window (40 and 50 s shown in

Figures 8A,D; as zoomed in section in Figure9A,C), we slice the

noise window into equal size with the signal window, and multiply

the noise with factors ranging from 0 to 30. Thereafter, we impose

FIGURE 8
Examples of RANSAC linear regression on the relative travel times for EMU train and conventional train cases. (A) EMU train case and relative
travel times (blue dots) picked by cross-correlation of signal envelopes; (B) RASAC regressor fitting the inliers, outliers excluded automatically; (C)
Histogram of bootstrapped speeds, the red and blue dotted lines denote the beamformed speed obtained by our method and mean speed,
respectively; (D–F) Same as (A–C), but for a conventional train case.
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the noise windows on the signal windows to obtain synthetic

datasets with different noise levels and define the average signal-

to-noise ratio (SNR) as the array energy (sum of the squared

amplitude of all samples) ratio of the signal and noise windows

(Lv et al., 2022). The initial SNR of the EMU and conventional train

are 34.90 and 6.94 dB, respectively. As the SNRs decrease, the

beampower values also decrease, and the false detections are not

triggered until the SNRs fall as low as 0.81 dB for the EMU and

0.43 dB for the conventional train, corresponding to false peaks or

multiple same-level peaks in the time-beampower curve (Figures

9B,D). In addition, we note that the least SNR required by the

conventional train is less than that of the EMU, which could be due

to its speed distribution that is assumed to be relatively more stable

(Figures 8C,F).

For trains running at constant speed, the larger the array, the

higher the beampower is and the more prominent the peak

stands in the time-beampower curve. To ensure the reliability of

results for actual railway traffic monitoring, using a smaller

aperture will better enhance real-time monitoring. Moving

small-aperture subarrays contribute to effectively monitor the

change in speed of trains and update the track as the trains pass.

However, smaller aperture will reduce the speed resolution on the

vespagram (Nayak and Ajo-Franklin, 2021; Schweitzer et al.,

2012). Moreover, the amplitude and duration of train-induced

signals distinctively vary according to the type and speed of

trains. Meanwhile, telecommunication cables suffer from

coupling issues and varying noise levels or distributions (Song

et al., 2021), so it is necessary to make adjustments on array

aperture in compliance with real-time requirements and speed

resolution. Figure 10 shows the beamforming results of an EMU

train and a conventional train (same cases as shown in Figure 9)

at different array apertures for the fiber-optic cable used in our

FIGURE 9
Examples of the beamforming performance influenced by different SNR levels. (A) Collection of time-beampower curves with different SNRs
for an EMU train (sliced from the segment shown in Figure 8A), the red contour linemarks the lowest beampower value leading to false detection. (B)
Time-beampower curves under high SNR (blue line) and low SNR (red line), the latter leads to false detection. (C) Same as (A), but sliced from the
segment shown in Figure 8D; (D) Same as (B), but extracted from (C).
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FIGURE 10
Array aperture test for an EMU train and conventional train. (A) EMU train case with different apertures/channels sliced as denoted by black
squares; (B) Detection results with different apertures as shown in (A); (C) Detection results of moving arrays with 60 and 100-channel aperture;
(D–F) Same as (A–C), but for a conventional train case.

FIGURE 11
Speed and motion track estimation for a variable-speed train case. (A) Train-induced signals; (B) Detection results and speed distribution. Red
circles denote the speed results estimated by moving subarrays with 149-channel overlapping, while green triangles denote the results with 100-
channel overlapping. The black curve is the smoothed result of the green triangles.

Frontiers in Earth Science frontiersin.org11

Zhang et al. 10.3389/feart.2022.990837

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.990837


experiment. We estimate the uncertainty by measuring 70% of

the width of the detected peak amplitude in the time-beampower

curve. With the increase of the array aperture, the results become

more stable with less uncertainty (Figures 10B,E). To test the

suitability of a certain aperture for the entire cable, we modify the

aperture, move the array sequences every 50 channels, and

beamform the data. Thus, we obtain detection results and

velocity distributions as a function of array position along the

cable (Figures 10C,F). For the EMU train, the speeds estimated

from moving subarrays with a 60-channel aperture are sparser

distribution than that of a 100-channel aperture. In the case of

the conventional train, arrays with 150-channel aperture still lead

to discrete speed estimations, while the 175-channel aperture

produces more stable results. It is interesting to note that the

edges of the train heads shown in Figure 10D are more identical

than the rest wagons, which is often the case of low-speed

conventional trains. We believe this is caused by the

locomotive pulling the rest wagons. In practical or field

situations, depending on the coupling and noise level, varying

apertures can be used for different segments depending on the

increase in the overlap of subarrays to obtain a denser velocity

curve. Also, for seismological studies that utilize train-induced

signals as noise sources, the real-time requirement is not urgent,

in which case we could select a large array aperture.

Though most of the trains pass our experiment site at constant

speeds, there are still individual cases where the speed changes

significantly. Figure 11 shows the detection results of such a case

with 150-channel moving subarrays from which the acceleration

process of the train can be identified. From ~ Ch1—Ch200, the time

duration of signals covers ~70 s. From–Ch200—Ch600, the duration

decreases gradually to ~20 s and thereafter remain constant till the

end. We obtain the speed curve/motion track by smoothening the

speed values, and the change in speed shown in the curve is consistent

with the observation-based analysis shown above. Both 149 and 100-

channel overlapping subarrays detect results with smooth and

consistent velocity curves, which show that our methods also have

good applicability in detecting trains moving at varying speed. In an

extreme case, a high-speed trainmoving at a design speed of 350 km/

h would take 3.09 s to cover a 150-channel array with 2 m channel

spacing. In terms of computational efficiency, a NumPy 2D array

npz file with a size of 1001 × 150000 (2 km and 300 s) can be

loaded on an 8 G ram M1 chip MacBook Air within 0.2 s, and

computation can be completed for a 150-channel aperture

subarray matrix within 0.88 s. Such computational performance

implies that our method is suitable for near real-time railway

traffic monitoring. In addition, the Kalman filter is another

approach to smooth the train trajectories (Ferguson et al., 2020;

Wiesmeyr et al., 2020), and it would be interesting to test extended

and adaptive Kalman filters (Terejanu, 2008; Vullings et al., 2010)

on arrival picks and the detection results beamformed by

subarrays. We could delve deeper into this in the future work.

Conclusion

In this study, we conduct an investigation on railway

traffic monitoring using DAS data acquired by a 2-km

trackside telecommunication fiber-optic cable. We utilize

the beamforming technique on STA/LTA traces to

automatically detect the train induced events, to extract

their speed and direction. From the results, we identify the

type of trains by counting the number of peaks from the

lowpass filtered signal. Using beamforming technique, we

process the 6-days continuous data to quantify and

characterize the results using the speed, direction, and

types of trains. By reducing the aperture of the array and

moving subsequent subarrays, we obtain the train speed

curve/motion track. The method we propose can provide a

supplementary approach and play a synergetic role with other

existing railway traffic monitoring systems. Moreover, our

method can be used to conduct seismic interferometry

investigation along the railroad using train-induced ground

motions, whereby the noise windows containing or excluding

train-induced signals can be automatically determined.
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