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Remote sensing image classification is of great importance for urban

development and planning. The need for higher classification accuracy has

led to improvements in classification technology. In this research, Landsat

8 images are used as experimental data, and Wuhan, Chengde and

Tongchuan are selected as research areas. The best neighborhood window

size of the image patch and band combination method are selected based on

two sets of comparison experiments. Then, an object-oriented convolutional

neural network (OCNN) is used as a classifier. The experimental results show

that the classification accuracy of the OCNN classifier is 6% higher than that of

an SVM classifier and 5% higher than that of a convolutional neural network

classifier. The graph of the classification results of the OCNN is more

continuous than the plots obtained with the other two classifiers, and there

are few fragmentations observed for most of the category. The OCNN

successfully solves the salt and pepper problem and improves the

classification accuracy to some extent, which verifies the effectiveness of

the proposed object-oriented model.
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1 Introduction

Global change has always been an important area of remote sensing research in terms

of socioeconomic and ecological environments (Linda et al., 2015; L Turner et al., 2008).

To monitor global change, we must obtain a large amount of data, and land cover data are

among themost important. Land cover data are the basis of many studies on land resource

management, ecological health and sustainable development (Foley et al., 2005; Lu and

Weng, 2007; Sterling et al., 2012). Remote sensing images with high temporal resolution,

high spatial resolution and high spectral resolution over large geographical areas provide a

sufficient basis for the acquisition of land cover data (Li et al., 2014). With the evolution of

classification methods, remote sensing technology has become a powerful way to obtain

land use data (Rogan and Chen, 2004; Huang and Jia, 2012). As more land cover data have
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been produced, it has become necessary to ensure the accuracy

and availability of land classification products.

At present, the methods of classifying remote sensing images

can be divided into three types: visual interpretation (Yang et al.,

2011), traditional pattern classification (Zhihong and Xingwan,

2014) and neural network classification (Huang et al., 2018). The

accuracy of visual interpretation is generally higher than that of

computer classification, but the labor cost is high, thus limiting

this approach in large-scale remote sensing research. Methods of

traditional pattern classification use classifier algorithms to

perform automatic category interpretation with remote

sensing images. A classification method with pixels as the

basic classification unit assumes that each pixel represents

only one type of land cover. In general, pixel classification

algorithms can be divided into unsupervised classification and

supervised classification methods. Unsupervised classification

does not require prior knowledge (Puletti et al., 2014), and

corresponding methods include the k-means (Blanzieri and

Melgani, 2008) algorithm and ISODATA clustering algorithm

(Hong et al., 2016). However, unsupervised classification requires

the postprocessing and analysis of the classified results. In

comparison, supervised classification requires prior

knowledge, and there are two types of classifiers used for

classification: parametric classifiers and nonparametric

classifiers. Parametric classifiers require the data to be

normally distributed, and they include the maximum

likelihood classifier (Mather, 1985) and the minimum

distance-to-means classifier (Sekovski et al., 2014). However,

traditional parameter classifiers do not provide high

classification accuracy in complex surface environments. In

contrast, nonparametric classifiers not only do not require the

data to conform to a normal distribution but also effectively use

nonspectral data. Studies have shown that nonparametric

classifiers can achieve higher classification accuracy than

parametric classifiers in complex surface environments

(Foody, 2002; Murthy et al., 2003). The most commonly used

nonparametric classifiers include support vector machine

classifiers (Camps-Valls et al., 2003) and decision tree

classifiers (Belward and Hoyos, 1987; Zhao et al., 2014).

However, pixel-based classification methods may neglect the

associations among objects and not utilize the spatial features

of objects; thus, objects with the same spectral characteristics

cannot be effectively classified (Lee et al., 2003). In comparison,

the object-oriented classification method overcomes the

limitation of pixel-based classification and divides images into

homogeneous objects through multiscale segmentation and

other image segmentation methods; in this case, object pixels

are regarded as belonging to the same category (Blaschke et al.,

2000; Yang et al., 2008). Using an object as a basic classification

unit can not only enhance the use of the spectral features of the

image but also fully consider shape features, geometric structures,

texture features and context information (Yu et al., 2006; Su et al.,

2008). However, both pixel-based and object-oriented

classification methods cannot accurately represent the

distribution of complex geographical objects due to the

limitations of computing units, experimental samples and

algorithm parameters. Determining how to use certain

features to classify an image is currently a key problem in

remote sensing image classification. Deep learning is a

method that can effectively combine low-level features to form

abstract high-level features and achieve learning goals (Dang

et al., 2017). Convolutional neural networks (CNNs) are the most

commonly used models for deep learning in image processing,

and they provide more powerful feature learning and feature

expression capabilities than do traditional machine learning

methods (Hinton and Salakhutdinov, 2006).

The first CNN was LeNet-5 (LeCun et al., 1989), and the

CNN architecture consists of convolutional layers, pooled layers,

and fully connected layers. However, the activation function used

by the traditional CNNs is generally a sigmoid or tanh function.

If the network depth increases, the vanishing gradient problem

occurs, which causes the classification accuracy of the CNN to be

low. The AlexNet model proposed by the Hinton team overcame

this issue, and its accuracy was 10% higher than that of the

second-place support vector machine classification algorithm

(Krizhevsky et al., 2012). The AlexNet model uses a ReLU

function as the activation function to solve the vanishing

gradient problem and uses a dropout algorithm to solve the

overfitting problem to enhance model depth (Krizhevsky et al.,

2012). Since AlexNet was first developed, VGG-16 (Simonyan

and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015) and

ResNet (He et al., 2016) have been proposed, and the

classification accuracy has continuously improved; these

results suggest that CNNs have good application prospects in

the field of image analysis. Consequently, researchers have

applied CNNs in the field of remote sensing image

classification. CNN classifiers generally perform better than

SVM classifiers and KNN classifiers in the classification of

hyperspectral images (Wei et al., 2015; Yu et al., 2017).

Moreover, CNNs can extract features better than can PCA,

factor analysis (FA), and local linear embedding (LLE)

methods (Chen et al., 2016). CNNs can also be combined

with other classifier methods to achieve high classification

accuracy (Zhang et al., 2018a). The abovementioned

experiments verified the feasibility of using CNNs in the

classification of high-resolution remote sensing images. CNNs

are used not only for the detection of objects such as airplanes

(Mash et al., 2016), oil tanks (Wang et al., 2017), and airports

(Peng et al., 2016) but also for the extraction of roads (Xu et al.,

2018), buildings (Yang et al., 2018), and water bodies (Wei et al.,

2018). However, for moderate-resolution images, the boundary

of an image is difficult to distinguish with the naked eye, which

causes the boundary to be blurred; as a result, the classification

result is influenced by salt and pepper noise issues.

The object-oriented approach can solve this salt and pepper

problem to a certain extent (Sun et al., 2010). It divides images
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into homogeneous objects through multiscale segmentation and

other image segmentation methods (Blaschke et al., 2000; Yang

et al., 2008). This type of method can not only enhance the use of

the spectral features of the image but also fully consider shape

features, geometric structures, texture features and context

information (Yu et al., 2006; Su et al., 2008). However, it is

difficult to decide how to use certain features. Convolutional

neural networks (CNNs) are the most commonly usedmodels for

deep learning in image processing, and they provide more

powerful feature learning and feature expression capabilities

(Hinton and Salakhutdinov, 2006). So, if we combine object-

oriented classification methods and CNNs for image

classification, it will give full play to the advantages of CNNs

method, overcome the defects of object-oriented classification

method, and obtain better segmentation results.

Based on the above analysis, we propose to combine object-

oriented classification methods and CNNs for moderate-

resolution image classification. Wuhan, Tongchuan and

Chengde are selected as the research areas. We seek to verify

that the object-oriented CNN classification method has

advantages in mitigating boundary blur and salt and pepper

problems in Landsat 8 image classification. Therefore,

experiments are designed to address the following three

factors: 1) the influence of different input channels on the

accuracy of model classification; 2) the influence of different

neighborhood windows on the accuracy of model classification;

and 3) whether the proposed object-oriented CNN can improve

the accuracy of classification.

2 Methodology

2.1 Convolutional neural network

2.1.1 Convolution and pooling
The neural network described in Section 2.1 is a fully

connected network in which neurons are densely connected.

In the deep neural network model, if the parameters of the

network structure grow exponentially, the GPU and memory

may become overloaded, and even the computer running the

model may crash. In contrast, CNNs greatly reduce the size of

parameters and are widely used in the field of image processing.

The core of a CNN is the convolutional layer. The feature value at

location (i, j) in the k-th feature map zi,j,k is calculated by (Gu

et al., 2015):

Zi,j,k � WT
kX

L
i,j + bk (1)

However, not all features extracted by the convolutional layer

are useful features, and there may be a large amount of noise in

the output. Therefore, the pooling layer is used to filter noise and

useless features. Two types of pooling are commonly used:

maximum pooling and average pooling. Average pooling is

used to calculate the average in a feature map area, and the

maximum pooling operation finds the maximum value in an of a

feature map (Zeiler and Fergus, 2013). The pooling approach

used in this paper is maximum pooling with a stride size of

2 pixels.

Zi,j � 1
C2

⎛⎝∑c
i�0
∑c
j�0
Xi,j

⎞⎠ + b (2)

Zi,j � max
c

i�0,j�0
(Xi,j) + b (3)

2.1.2 ReLU function
The basis of network stacking is matrix multiplication, which

involves the linear transformation of a matrix. A model that

includes a stackedmultilayer network is essentially a linear model

and cannot solve nonlinear problems. To solve complex practical

problems, after each convolution layer, an activation function is

added to ensure the nonlinearity of the model. However, the tanh

function and the sigmoid function are prone to vanishing

gradient issues (Glorot et al., 2010). To solve this problem, the

ReLU function was proposed (Nair and Hinton, 2010). The

definition of this function is given in Figure 1. Notably, when

the input is greater than 0, the output value is unchanged, and the

derivative is constant. The ReLU function can effectively alleviate

the vanishing gradient problem. The ReLU function is easy to use

in derivative calculations, can reduce the number of calculations,

and has a much faster convergence speed than the two functions

noted above. Therefore, this paper uses a ReLU activation

function.

2.1.3 GoogLeNet
In 2014, GoogLeNet won the ILSVRC competition with a

6.5% TOP5 error rate, which was 1.3% higher than that of the

second-place algorithm. The most prominent feature of

GoogLeNet is a new Inception architecture. The structure

shown in Figure 2 is GoogLeNet’s first Inception architecture

(Szegedy et al., 2015). The core objectives are to extract image

information at different scales by using multidimensional

convolution kernels and then perform convolutional layer

fusion to effectively extract features. The GoogLeNet model

is five layers deeper than VGG-16, but fewer parameters are

required. Notably, with the improved Inception architecture,

GoogLeNet uses a 1×1 convolution kernel for dimensionality

reduction. In each Inception structure, a maximum pooling

layer is added to filter the upper layer features. The reason why

the Inception architecture is successful is that a 1 ×

1 convolution kernel can remove most of the sparse

neurons, making the network structure more compact for

extracting and filtering the features in different ranges of

receptive fields. These neurons undergo amplification and

recombination in the next layer without affecting the

expression of the main features.
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2.1.4 Modified GoogLeNet
The modified GoogLeNet in this paper, as shown in

Table 1, directly uses a 3×3 convolution kernel in the first

two layers of the network for feature extraction. Then, we

design three inception modules, each of which includes three

convolution layers. Each convolution layer uses 1 × 1, 3 × 3,

and 5 × 5 convolution kernels. At the end of each Inception

structure, the features extracted by the three convolution

kernels are fused, and the fused features are activated. After
the fully connected layer, a dropout method is used. The whole
model consists of 12 layers of convolution and 1 fully
connected layer. The differences between the proposed
model and the original model are that there is no pooling

layer in the Inception module in this case and the network
depth is reduced.

To analyze the effects of different input channels and

different sizes of neighborhood windows on the classification

results, the following comparative experiments are designed. In

the input channel experiment, channel 1 includes the true-color

3-band image, channel 2 is the true-color three-feature-band

result obtained by PCA (Yang and Du, 2017), channel 3 is a true

color band for the normalized difference vegetation index

(NDVI), normalized difference build-up index (NDBI) and

normalized difference water index (NDWI) (McFEETERS,

1996; Jakubauskas et al., 2002; Zha et al., 2003), and channel

4 consists of three feature bands obtained by PCA and three

FIGURE 1
ReLU function.

FIGURE 2
Inception structure.
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feature index bands. The size of the neighborhood window is 11 ×

11. In the neighborhood window experiment, four windows of

21 × 21, 15 × 15, 11 × 11, and 7 × 7 were selected, and the channel

for input data was selected as channel 4.

2.2 Object-Oriented Convolutional Neural
Network

The traditional convolutional neural network model is

influenced by salt and pepper problems and boundary

ambiguity problems. Object-oriented classification can

combine similar pixels, distinguish objects based on different

features, and solve problems associated with mixed pixels and

different objects with the same spectral characteristics to a certain

extent. Therefore, this paper uses a combination of an object-

oriented method and a CNN model to mitigate salt and pepper

effects and boundary blurring.

In the traditional neural network method, the input

image is a fixed-dimension image, but the object of

segmentation has an indefinite dimension, and the

indefinite-shape image cannot be directly used as the

original input of the neural network. There are two

different input windows that are used to solve the input

problem. As shown in Figure 3, the green window is the

original CNN input window, and the size is 11 × 11;

additionally, the red window is the object window, and the

blue window is the minimum outer rectangle of the object.

In this paper, the original CNNmodel is used to calculate the

category of each pixel for an object, and an inverse distance

weighting method is proposed. As shown in formula 2.14, the

corresponding weight is determined according to the distance

between each pixel and the center pixel. If the selected pixel is the

central pixel itself, the weight is 1, and the farther away from the

center pixel a pixel is, the smaller the weight. After calculating the

weight of each pixel class for a given object, weighted statistics are

used as the weight values of the green window for each category.

q(x, y) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1������������������
(x − x0)2 + (y − y0)2√ (x ≠ x0, y ≠ y0)
1 (x � x0, y � y0)

(4)

To fully use the internal features of objects, this paper uses

the red window to select internal features. First, all the pixels in

the object are combined into a one-dimensional vector, and then

the one-dimensional vector is equally divided. Finally, the equal-

length sets are used as the inputs of the network. The specific

steps are as follows.

1) First, the number of pixels associated with each object in

the training dataset is determined, and the object

TABLE 1 GoogLeNet-12.

Input image

Convolution×1 Conve1_1 (3×3×32)

Convolution×1 Conve1_1 (3×3×64)

Inception1 Conve1_1 (1×1×64)

Conve1_2 (3×3×64)

Conve1_3 (5×5×32)

Map concat Depth (160)

ReLU and Max pooling (2×2)

Inception2 Conve2_1 (1×1×128)

Conve2_2 (3×3×128)

Conve2_3 (5×5×64)

Map concat Depth (320)

ReLU and Max pooling (2×2)

Inception3 Conve3_1 (1×1×256)

Conve3_2 (3×3×128)

Conve3_3 (5×5×64)

Map concat Depth (448)

Avg pooling+dropout

FC-5

Softmax

FIGURE 3
Object-oriented convolutional neural network.
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containing the fewest pixels is identified. The minimum

number of object pixels in 40 training images is 5 based on

80 segmentation scales. Therefore, the number of pixels

input is set to five.

2) Channel experiments show that the three characteristic

bands of PCA and the three normalized exponential

bands yield the highest classification accuracy for input

images. Therefore, these six channels are used to obtain

image inputs for the red window approach. Then, the

mean and variance of the five pixels are calculated to

obtain the mean and variance of the six channels. The five

pixel values and two statistical values are combined into

a 7-dimensional vector, and a 42-dimensional

vector is obtained by splicing with six-channel image

metadata.

3) This paper designs a 9-layer fully connected networkmodel to

process each object, and the network structure is shown in

Table 2. There are 100 neurons in the first layer. The number

of neurons increases in proportion to the number of layers,

and the fifth layer has 500 neurons. Additionally, a

symmetrical structure is established, with 100 neurons in

the ninth layer. Finally, the Softmax function is used to obtain

5 categories.

4) The first three steps are repeated until all the pixels associated

with an object are classified. Redundant pixels are directly

discarded, and the classification result is obtained for whole

objects and input it into the fully connected model to obtain

the classification result. Then, a statistical analysis of the

classification result is performed to obtain the weight value

for the red window.

Finally, the category of the object is determined based on the

maximum value of the weights obtained by the superposition of

red window and green window weights.

3 Experiment analysis

3.1 Dataset and preprocessing

The research data used in this paper include images collected

with the moderate-resolution satellite Landsat8 and provided

through a geospatial data cloud platform. The research areas

include Wuhan City, Hubei Province, on 9 November 2017;

Tongchuan City, Shaanxi Province, on 17 April 2017; and

Chengde City, Hebei Province, on 1 June 2017. To satisfy the

data input format requirements for the CNN, the images of the

study area are preprocessed. First, the image of each region is cut

into 100 *100 pixel-size image blocks. Fifty images were selected

from the clipped images, including 30 images of Wuhan,

10 images of Chengde and 10 images of Tongchuan. Forty of

the 50 images were selected as training data, and 10 were selected

as test data. Then, Ecognition software was used to label the types

of objects in the experimental area, and 80% of the objects were

manually selected. On this basis, the K-NN algorithm was used to

classify the objects and use them as training labels. The

experimental area was divided into five categories: impervious

surface, woodland, cultivated land, water area and others. The

number of pixels in each category is shown in Table 3. Because

the size of the resulting images was several pixels smaller than

that of the images used for labeling, a layer of padding was added

to the original convolution result. The padding amount was the

convolution window size minus one, and the pixel value was

equal to the nearest cell size.

As shown in Figure 4, to explore the classification effects of

different input bands, the four channel combinations discussed

in are used to obtain four TIFF file datasets as the inputs of the

model. Then, the experimental samples are transformed into

TFrecord format and used as the original training data, and the

results of visual interpretation are used as the training labels.

The experimental environment used in this paper is as

follows: Core i7-8700 (3.7 GHz) processor, 16G memory,

Nvidia GeForce GTX 1070 Ti (8G) memory, Windows

10 operating system, Python 3.6, the in-depth learning

framework TensorFlow 1.7, and the Python numpy scientific

computing library.

TABLE 2 Fully connected neural network.

Fully connected network

Input vector (42)

Model Layer Neuron parameters

FC-1+RELU 100

FC-2+RELU 200

FC-3+RELU 300

FC-4+RELU 400

FC-5+RELU 500

FC-6+RELU 400

FC-7+RELU 300

FC-8+RELU 200

FC-9+RELU 100

Softmax-5

TABLE 3 Pixel statistics for the sample set.

Training data Test data Statistics

Impervious surface 99,693 31,312 131,005

Cultivated land 110,923 16,886 127,809

Woodland 128,658 28,633 157,291

Water area 34,529 14,540 49,069

Other classes 26,197 8629 34,826

Total 400,000 100,000 500,000
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3.2 Channel and window comparison
experiment

As noted in Section 2.1.3 four different input channels are

selected for image classification and assessed. Figure 6 is the true

color image and the classification result obtained with channels 1,

2, 3, and 4 (from left to right). As shown in Figure 5, the

classification results of the four input channels all exhibit fine-

scale fragments. The classification results for the terrain

aggregation area are obviously better than those for the area

with scattered objects. The classification results for the water area

class in the figure are better than those for other classes, although

the ships in the water areas are misclassified as impervious

surfaces. The results of the four channel experiments suggest

that the classification effect is not ideal at the edges of objects in

the same category. In some cases, there are several land types at

the boundary of the same category, which leads to abundant

information features in the neighborhood window; however, the

pixel category may not be correctly determined. Since the

number of input bands is small, the true color image obtained

FIGURE 4
Map of the experimental area. (A) True color. (B) PCA. (C) NDVI. (D) NDWI. (E) NDBI.

FIGURE 5
Results of the channel experiment. (A) The true color image. (B) Channel 1. (C) Channel 2. (D) Channel 3. (E) Channel 4.
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with channel 1 has only limited feature information. Therefore,

there are some omissions and misclassifications in the

classification result of channel 1, and the classification results

at boundaries are not as good as those obtained with other

channels. In the other six-band experiments, the classification

effects of channel 2 and channel 3 are slightly worse than the

effect of channel 4. Notably, channel 2 and channel 3 fail to

achieve good classification results for the impervious surface and

“others” categories. The impervious surface in the upper right

part of Figure 6C is includes mixed forestland, and the

classification of the water areas, impervious surfaces and

cultivated land in the lower right part of Figure 6D is poor.

The classification results for channel 4 also display fragmentation

phenomena, but the classification effect at the boundaries is

better than the effects observed for the other 3 channels.

The confusion matrix is mainly used to describe the case in

which features are incorrectly classified. The calculation of kappa

coefficients is based on the confusion matrix, and the results are

used for consistency checks. This paper calculates the kappa

coefficient and confusion matrix based on 10 test datasets to

assess the quality of the model. The confusion matrix of channel

4 is shown in Table 4. The confusion matrix indicates that the

classification accuracy for the categories other than water areas is

not very high. Notably, in some areas in Wuhan, such as the East

Lake Moshan Scenic Area of Wuhan University, which has

impervious surfaces, woodland and water, there are several

mixed features; additionally, in the suburbs of Wuhan, there

are impervious surfaces, cultivated land areas and water areas.

The highest classification accuracy is obtained for water, and the

correct classification rate is as high as 91.2%. In the confusion

matrix, the classification accuracy of other types of land use is

comparatively low, mainly because there are many mixed pixels

in woodland and town areas, and it is difficult to eliminate this

noise when channel 4 extracts features.

Figure 6 shows the overall classification accuracy for the four

channels. Notably, the classification accuracy of the four channels

is approximately 75%. Channel 4 displays the highest

classification accuracy, and channel 2 and channel 3 exhibit

similar classification accuracies. Additionally, using a

multichannel input enhances feature extraction with the CNN,

and the classification accuracy of the CNN is improved when the

image is enhanced. Moreover, the kappa coefficient is stable at

approximately 0.7, and accuracy is generally proportional to the

kappa coefficient.

To explore the influence of neighborhood windows of

different sizes on the classification accuracy, this paper

selects four neighborhoods with sizes of 21 × 21, 15 × 15,

11 × 11, and 7 × 7 to conduct experiments; in these cases, the

input data channel is channel 4. Figure 8 is a true-color image,

and the resulting images with neighborhood windows of 21 ×

21, 15 × 15, 11 × 11, and 7 × 7 are shown from left to right. As

shown in Figure 7, the salt and pepper effect is most obvious

for the 21 × 21 neighborhood window. There are small

fragments in each category, such as in the red area in the

middle of the image and in the green area in the upper right,

and there are many category mixing problems at land type

edges. The 11 × 11 neighborhood window and 7 ×

7 neighborhood window yield similar classification effects.

Additionally, the salt and pepper effect is alleviated to some

extent. With these windows, the whole image is smoother than

the images obtained with the 21 × 21 neighborhood window

and 15 × 15 neighborhood window, but there are still small

FIGURE 6
Kappa coefficient and overall accuracy.
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fragments present. From the perspective of model training, the

21 × 21 neighborhood window produces rich features, but

redundant information is obtained, and there is considerable

noise in the image, which affects the final classification results.

Although the information obtained with the 7 ×

7 neighborhood window is useful for assessing the pixel

types, it is not conducive for constructing a deep model

and cannot be applied to train complex datasets. The

information obtained with the 11 × 11 neighborhood

window can be passed to two pooling layers, and the

classification effect is obviously better than that for the

15 × 15 and 21 × 21 neighborhood windows.

The confusion matrix for the 21 × 21 neighborhood

window is shown in Table 5. In the four neighborhood

window experiments, the classification of water areas is the

best, but in some areas, such as farmland areas, water and

cultivated land are easily confused. For water areas,

woodlands and arable land, the surrounding pixels are

generally associated with the same land use type, so small

neighborhood windows can most accurately describe the

category at the central point of the window. If the

neighborhood window is too large, the classification

accuracy will be low for these land types.

Figure 8 shows the kappa coefficients, classification

accuracy and model training times for the four

neighborhood windows. Appropriate neighborhood

windows can effectively improve the classification accuracy.

However, when the neighborhood window is reduced to 7 × 7,

the classification accuracy does not increase significantly, and

it is difficult to build a deep neural network model. In terms of

TABLE 4 Channel 4 confusion matrix.

Impervious surface Cultivated land Woodland Water Other classes Overall accuracy

Impervious surface 24,016 2,342 2,493 114 2,347 0.767

Cultivated land 1,184 13,238 843 519 1,102 0.784

Woodland 2,214 1,674 21,503 330 2,912 0.751

Water areas 89 768 96 13,434 153 0.912

Other classes 1,039 412 647 180 6,351 0.736

Kappa 0.723

FIGURE 7
The comparison of different size of neighborhood window of image patch. (A) The true color image. (B) 21*21. (C) 15*15. (D) 11*11. (E) 7*7.

Frontiers in Earth Science frontiersin.org09

Liu et al. 10.3389/feart.2022.988556

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.988556


training time, the 21 × 21 neighborhood window includes

many pixels, thus requiring a large amount of memory and a

long training time. The experimental results show that the

training time of the model increases and the training accuracy

decreases when the neighborhood window size is too large. Of

the four neighborhood windows, the 11 × 11 neighborhood

window yields the best classification effect and is most suitable

for the input window of the model.

3.3 The results of the object-oriented
convolutional neural network

To verify the effectiveness of the combination of the

object-oriented method and GoogLeNet, this paper used a

support vector machine (SVM), GoogLeNet and object-

oriented GoogLeNet to conduct comparative experiments.

The original true color image and classification results are

shown in Figure 9. In the SVM classification method, there

are many fragmentation problems for the categories other

than water, and the classification results are very poor at the

junctions of multiple objects. The classification results of

GoogLeNet are relatively good compared to those of the

SVM, but they are not optimal. The object-oriented CNN

(OCNN) eliminates salt and pepper effects to a certain extent

and can effectively distinguish the boundaries of objects. The

proposed method can notably increase the

classification accuracy for the water, woodland and arable

land classes.

Figure 10 shows the classification accuracy in the three

experiments. From the overall accuracy results, we can see that

the classification accuracy of GoogLeNet is similar to that of

the SVM. The accuracy of the OCNN is obviously higher than

that of the other two methods. The classification accuracy for

water areas is as high as 95%. The classification accuracy

values for cultivated land and woodland areas are 7 and 4%

higher, respectively, than those obtained with GoogLeNet.

The classification accuracy for other categories is slightly

TABLE 5 Confusion matrix for the 21 × 21 neighborhood window.

Impervious surface Cultivated land Woodland Water Other classes Overall accuracy

Impervious surface 22,044 2,419 3,318 128 3,403 0.704

Cultivated land 1,184 12,749 1,076 631 1,246 0.755

Woodland 2,139 2093 21,102 271 3,028 0.740

Water 73 792 148 13,159 368 0.905

Other classes 982 547 714 294 6,092 0.706

Kappa 0.680

FIGURE 8
Kappa coefficient, overall accuracy and training time.
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lower at only 76%, while the SVM achieves an accuracy of 78%

for these categories. This difference is mainly because 1/

3 fewer training samples are available for these categories

than for those above, and the updating of model parameters is

not sufficient. The classification accuracy of the proposed

method is 7 and 5% higher than the accuracy achieved with

FIGURE 9
Experimental results. (A) The true color image. (B) SVM. (C) GoogLeNet. (D) OCNN.

FIGURE 10
The overall accuracy and kappa coefficients of the three classifiers.
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the SVM and traditional GoogLeNet, respectively. This

finding indicates that the OCNN can effectively improve

the classification accuracy.

4 Discussion and conclusion

The classification accuracy of the OCNN is 5% higher than

that of the basic CNN.Moreover, the classification diagram of the

experimental results indicates that the OCNN method

successfully solves the salt and pepper problem and improves

the classification accuracy. Other studies have also shown that

object-oriented classification methods can solve salt and pepper

issues. In vegetation classification and detailed land cover

classification, researchers have noted that object-oriented

methods are able to overcome the salt and pepper problem

(Yu et al., 2006), (Pu et al., 2011).

Although our method has achieved good classification

results, there are still areas that need to be improved, mainly

reflected in the following aspects: 1) in object segmentation, only

the segmentation scale parameters are considered. In the future,

shape parameters and compactness parameters will be added to

explore whether objects can be more accurately segmented. 2) the

numbers of samples in the water, woodland and other categories

were insufficient and will to be increased in the future. 3) the

optimal window size needs to be obtained through a lot of

experiments, we will add more experiments or study new

methods to obtain the optimal value. 4) It is difficult to select

parameters or network structure in the proposed method,

especially the combination of different parameters and

combination of different network structures. The orthogonal

test methods used for parameter selection will be considered

in the future, and an integrated OCNN will be combined with

majority voting to improve the classification accuracy.
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