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Pressure in the deep-water pipeline is an important parameter that should be

carefully predicted to control the natural gas transport in petroleum industry.

However the present methods to predict pressure along the deep-water

pipeline are complex and time-consuming. Some methods even ignore the

formation of natural gas hydrate leading to the inaccurate pressure prediction.

In this work, we proposed amodel to predict the pressure along the deep-water

pipeline considering the reduction of pipeline radius induced by the formation

of natural gas hydrate. The model was validated by experimental data and was

applied to the real deep-water pipeline in China. Results indicate that the

decline of pressure in the pipeline is mainly caused by the reduction of

pipeline radius due to the formation of natural gas hydrate compared with

the flow resistance caused by viscous flow. The decline of pressure becomes

faster against time with the 40% pressure loss at the fifth year of natural gas

transport. This model enables to obtain the pressure values in the deep-water

pipeline with high accuracy and good convenience.
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Introduction

Development and transport of oil and gas are significant in petroleum industry (Xu

et al., 2018, Xu et al., 2019; Mo et al., 2020; Xu et al., 2020; Wang C. et al., 2021; Wang C.

et al., 2022; Mo et al., 2022). The formation of natural gas hydrate is a great threat to the

transport of natural gas in the deep-water pipeline (depth of water >1000 m) (Li et al.,

2016; Ren, 2018). Natural gas transport in the deep-water pipeline is under complex

conditions: 1) the complicated pipeline system affected by the pipeline design, pipeline

laying, pipeline management, pipeline maintenance, etc.; 2) the extreme environment,

especially the low temperature and high pressure; 3) the components of gas mixture,

i.e., liquid or gaseous hydrocarbons, water, etc. Natural gas hydrate is likely to form at the

low temperature (lower than around 11°C) and high pressure (higher than about 2.5 MPa)

(Zhang et al., 2010), which is in accordance with the temperature and pressure conditions

in the deep-water environment. As a result, the natural gas hydrate can easily form and

grow inside the submarine pipeline during the transport of natural gas.
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The formation of natural gas hydrate causes severe

problems. Natural gas hydrate adheres to the inner pipeline

surface, which reduces the pipeline radius and causes the loss

of pipeline pressure. And the layer of natural gas hydrate at the

pipeline surface can become thicker against time. If effective

treatments are not carried out promptly, the pipeline can be

blocked. The blockage caused by the natural gas hydrate, on

the one hand, significantly reduces gas flow rate and severely

affects gas transport. On the other hand, it damages the

pipelines, valves and other transportation equipment (Gao,

2018). As the formation of natural gas hydrate causes various

problems during natural gas transport in deep-water pipeline,

the pressure inside pipeline is worth great attention. Because

the pressure affects both the formation of natural gas hydrate

and the gas transport efficiency (Li et al., 2013). An accurate

prediction of pressure inside deep-water pipeline is of great

significance.

The pressure along the deep-water pipeline can usually be

obtained by two methods: experiment and numerical simulation.

Li and Dong (2019) investigated 12 experimental pipelines

worldwide and found that the pressure design inside the

experimental pipelines was lower than the pressure in the real

deep-water pipeline systems. Among the 12 pipeline systems, the

high-pressure Petreco A/S pipeline system in Norway could

reach the highest pressure of about 25 MPa (Li and Dong,

2019). However, the pipeline system in laboratory is still very

different from the true deep-water environment. As a result, the

pressure obtained from experiments is not able to reflect the

accurate pressure in the real pipeline. Numerical simulation is an

effective way to predict the pressure in the submarine pipeline. In

2003, the CSMHyK model was firstly built by the Center for

Hydrate Research of Colorado University of Mines (Boxall, 2009;

Davies, 2009; Zerpa et al., 2012). The model is utilized to describe

the formation of natural gas hydrate and is widely used in

commercial software like OLGA to calculate the pressure in

the real pipeline systems (Boxall et al., 2009; Davies et al., 2010;

Zerpa et al., 2012). The CSMHyK model and the software OLGA

are one of the most widely used methods to calculate pipeline

pressure in natural gas industry (Ding et al., 2019; Wang et al.,

2022). Moreover, Sonne and Pedersen (2009) used a

compositional hydrate kinetics model to simulate the hydrate

growth rate. Sonne and Pedersen’s model was utilized to develop

the software Flowasta and predict pressure in pipeline (Creek

et al., 2011). There are other methods to acquire the pressure in

pipeline system, i.e., neural network (Ke et al., 2021), inward and

outward natural gas hydrates growth shell model (Shi et al.,

2011), etc. However, Ke et al. (2021)’s method is not able to

describe the formation of hydrate. Shi et al. (2011)’s model needs

complex calculation, because it requires the computation of

hydrate growth before obtaining the pressure values. Overall,

although there are many ways to calculate the pressure inside the

deep-water pipeline, the experiments differ from the real deep

water environment, while the establishment and calibration of

numerical model are time-consuming. A convenient method

with relatively high accuracy is needed to predict the pressure

along the deep-water pipeline considering the formation of

natural gas hydrate.

In this work, a mathematical model to predict the pressure in

the deep-water pipeline was derived considering the reduction of

pipeline radius caused by the formation of natural gas hydrate.

This model is able to obtain the pressure values in the deep-sea

pipeline transporting the gaseous natural gas with high accuracy

and good convenience.

Mathematical model

The mathematical model was established based on the

following assumptions.

(1) The deep-water pipeline is horizontally laid (Figure 1). Fluid

flowing through the pipeline is the gaseous mixture

consisting of methane and water vapor.

(2) The flow of methane and water vapor mixture conforms the

laminar flow.

(3) The natural gas hydrate deposits uniformly on the pipeline

inner surface and causes the reduction of pipeline radius. The

hydrate grows against time. Therefore, the pipeline radius is

a function of time.

The Poiseuille’s law was used to describe the laminar flow of

gas mixture in the horizontal pipeline:

Q � πr(t)4(p0 − pi)
8μLi

(1)

where Q is the gas mixture flow rate in the pipeline, m3/s; r(t) is

the pipeline inner radius, m, which is a function of time t; p0 is the

pressure at the inlet of pipeline, Pa; pi is the pressure at the

location i, Pa; μ is the viscosity of gas mixture, Pa·s; Li is the

distance between the inlet and the location i, m. Therefore, pi can

be expressed as:

pi � p0 − 8μLiQ

πr(t)4 (2)

FIGURE 1
Illustration of the geometry of the pipeline and the hydrate
layer.
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Because the formation of natural gas hydrate reduces the

pipeline inner radius, the pipeline inner radius r(t) is given by:

r(t) � r0 − Δr(t) (3)

Where r0 is the initial pipeline inner radius, m; Δr(t) is the

thickness of hydrate layer, m, which is also a function of time.

The thickness of hydrate layer (also the reduction of pipeline

inner radius) Δr(t) needs to be determined to accurately predict

the pressure in the pipeline. Based on Cai (2018)’s work, the

model of natural gas hydrate formation is given by:

ΔVh

Δt � Fk exp(C1) exp(−C2

T
) 1

Mgρhg
(Teq − T)A (4)

Where Vh is the volume of natural gas hydrate, m3; Fk is the

heat transfer coefficient; C1 is the kinetic constant, exp(C1) =

37.8; C2 is the activation temperature coefficient of natural gas

hydrate, K; T is the temperature, K; Mg is the molar mass of

natural gas hydrate, kg/mol; ρgh is the molar density of natural

gas hydrate, mol/m3. Teq is the equilibrium temperature of

natural gas hydrate, K; A is the area of hydrate-gaseous

mixture interface, m3. Using Cai (2018)’s model, the

thickness of natural gas hydrate layer Δr during Δt can be

written as:

Δr
Δt � Fk exp(C1) exp(−C2

T
) 1

Mgρhg
(Teq − T) (5)

Hence, the pipeline inner radius considering the formation of

natural gas hydrate is given by:

r(t) � r0 − Fk exp(C1) exp(−C2

T
) 1

Mgρhg
(Teq − T)t (6)

The pressure along the deep-water horizontal pipeline at the

presence of natural gas hydrate is derived as:

pi � p0 − 8μLiQ

π[r0 − Fk exp(C1) exp(−C2
T ) 1

Mgρhg
(Teq − T)t]

4 (7)

Eq. 7 is the model to predict the pressure in the deep-water

pipeline considering formation of natural gas hydrate. This

model can be used to compute the pressure along the

horizontal pipeline when natural gas hydrate forms at the

inner surface of pipeline during deep-water natural gas

transport.

Model verification

The model was validated using the experimental data

obtained by Lorenzo et al. (2014) and the computation from

Cai (2018)’s model.

Lorenzo et al. (2014)’s carried out experiments on natural

gas hydrate formation in pipeline transporting gas-dominant

fluids, and they measured the pressure drop inside the

pipeline. The information of their experiments is exhibited

in Table 1. The experimental results are plotted in Figure 2.

Cai (2018) used Lorenzo et al. (2014)’s experimental data to

validate her model for the formation of natural gas hydrate.

The calculation of Cai (2018)’s model is also shown in

Figure 2. In our work, we compared our model with the

experimental data in Lorenzo et al. (2014)’s work and Cai

(2018)’s computations to verify our model (Figure 2). The

TABLE 1 Data of the parameters for model verification.

Parameter Value Parameter Value

Initial Pipeline radius r0, m 0.01 Average temperature in pipeline T, K 286.6

Pressure at the inlet of the pipeline p0, Pa 8.6×106 Viscosity of the gas mixture μ, Pa·s 6.8×10−4

Volume factor of gas mixture Bg 0.9 Flow rate of gas mixture on surface Qs, m
3/s 2.76×10−3

Heat transfer coefficient Fk 0.5 Kinetic constant C1 3.63

Activation temperature coefficient of natural gas hydrate C2 4,400 Molar mass of natural gas hydrate Mg, kg/mol 0.16

Molar density of natural gas hydrate ρg
h, mol/m3 44.6 Equilibrium temperature of natural gas hydrate Teq, K 292.54

Length of the pipeline L, m 39.6

FIGURE 2
Results of our model, Cai’s model and the experimental data.
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comparison demonstrates that the results of our model

approximate the experimental data much better than Cai

(2018)’s model with an average error less than 8%. Cai

(2018)’s model focuses on the formation and collapse of

natural gas hydrate in pipeline. In her model, the radius

reduction is only considered after the collapse of natural gas

hydrate. However, the loss of pipeline radius occurs at the

point that the hydrate starts to form not collapse. As a result,

Cai (2018)’s model overestimates the pressure along the

pipeline. Because the calculation in our model is relatively

simple, our model provides a more convenient and reliable

way to predict the pressure in deep-water pipeline

considering the pipeline radius reduction induced by

natural gas hydrate.

Model application

The model was used to predict the pressure along the real

deep-water pipeline of China at the presence of natural gas

hydrate. The data of the parameters in the model come from

the real pipeline systems (Liang et al., 2009; Cai, 2018; Ding et al.,

2019), which are exhibited in Table 2.

Influence of natural gas hydrate on
pipeline pressure

Pressure along the pipeline during 5 years of natural gas

transport was calculated using our model. Results are shown in

Figure 3.

Figure 3 illustrates that the pressure decreases almost linearly

along the pipeline. The decline of pressure is mainly caused by

two aspects: laminar flow resistance in viscous flow and the

reduction of pipeline radius due to the formation of natural gas

hydrate. In order to compare the effects of these two aspects, we

calculated the pressure along the pipelines with changeable

radius and constant radius at the fifth year of natural gas

transport in Figure 4. In the pipeline with changeable radius,

fluid flow encounters the resistances caused by both laminar flow

resistance and the reduction of pipeline radius. While in the

pipeline with constant radius, fluid flow only encounters the

laminar flow resistance. Results show that the reduction of

pipeline radius plays a dominant role in the pressure drop

inside the pipeline, because the pressure drop in the pipeline

with changeable radius (1.97 MPa) is much more significant than

the pipeline with constant radius (0.02 MPa). It also implies that

TABLE 2 Data of the parameters for model application.

Parameter Value Parameter Value

Initial Pipeline radius r0, m 0.1651 Average temperature in pipeline T, K 278.15

Pressure at the inlet of the pipeline p0, Pa 5×106 Viscosity of the gas mixture μ, Pa·s 7.6×10−4

Volume factor of gas mixture Bg 0.9 Flow rate of gas mixture on surface Qs, m
3/s 10.4

Heat transfer coefficient Fk 0.5 Kinetic constant C1 3.63

Activation temperature coefficient of natural gas hydrate C2 6,877 Molar mass of natural gas hydrate Mg, kg/mol 0.16

Molar density of natural gas hydrate ρg
h, mol/m3 44.6 Equilibrium temperature of natural gas hydrate Teq, K 292.54

Length of the pipeline L, m 1,000

FIGURE 3
Pressure along the pipeline during 5 years of natural gas
transport. FIGURE 4

Pressure along the pipelines with changeable radius and
constant radius at the fifth year of natural gas transport.
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taking into account the formation of natural gas hydrate is

important to predict the pressure in the pipeline which

transports natural gas in deep sea.

Characteristics of pipeline pressure
decline

The decline of pressure during the first 3 years is much

slower than the fifth year based on Figure 3. In order to

investigate the pressure drop against time, we plot the

pressure at 200, 400, 600, 800, and 1000 m of the pipeline

during 5 years of natural gas transportation in Figure 5. In the

first 3 years, the maximum pressure drop is only 0.19 MPa,

accounting for a 3.8% of pressure loss, which occurs at the

1000 m of the pipeline. However at the fifth year, the pressure

declines drastically to around 3 MPa at 1000 m with the

1.97 MPa of pressure drop. Nearly 40% of the pressure is

reduced.

The drastic pressure drop is caused by the reduction of

pipeline radius due to the formation of natural gas hydrate.

The average reduction of pipeline radius during 5 years is shown

in Figure 6. After 5 years of natural gas transport, 66.63% of

pipeline radius is occupied by natural gas hydrate. This means

that the formation and deposition of natural gas hydrate

significantly affect the natural gas transport by blocking the

pipeline. The growth of natural gas hydrate becomes faster as

time goes by. And the blockage of pipeline tends to be more

serious if the transportation continues without any treatments.

As a result, the natural gas hydrate inside the pipeline should be

cleared in time to maintain the good transport efficiency.

Conclusion

1. The model considers changeable pipeline radius induced by

the formation of natural gas hydrate. Therefore it provides a

convenient and reliable way to predict the pipeline pressure,

which is validated by the experimental data.

2. The decline of pressure inside the pipeline is mainly due to the

reduction of pipeline radius caused by natural gas hydrate

compared with the flow resistance induced by viscous flow.

3. The growth of natural gas hydrate becomes faster against time,

and the blockage of pipeline tends to be more serious. This

leads to the decline of pressure along the pipeline with a nearly

40% of pressure loss at the fifth year.
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