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In this study, an experiment based on the Dynamical-Statistical-Analog

Ensemble Forecast model for Landfalling Typhoon Gale (DSAEF_LTG model)

was conducted to predict tropical cyclone (TC)-induced potential maximum

gales in South China for the first time. A total of 21 TCs with maximum gales

greater than or equal to 17.2 m/s (at least one station) during 2011–2018 were

selected for this experiment. Among them, 16 TCs in 2011–2015 were selected

as the training samples aimed at identifying the best forecast scheme, while

5 TCs in 2016–2018 were selected as the independent samples to verify the

best forecast scheme. Finally, the forecast results were compared with four

numerical weather prediction (NWP) models (i.e., CMA, ECMWF, JMA and

NCEP) based on four forecasting skill scores (Threat Score, False Alarm

Ratio, Missing Ratio and Bias Score) at thresholds above Beaufort Scale

7 and 10, and two more indicators (Mean Absolute Error and pearson

correlation coefficient). The results revealed encouraging forecasting ability

in South China for the DSAEF_LTG model. In general, the DSAEF_LTG model

showed higher forecasting skill than the NWP models above the critical

thresholds. While the DSAEF_LTG model was prone to false alarms, the NWP

models were prone to missing alarms, especially for an intense scale (≥Beaufort
Scale 10). In addition, the DSAEF_LTG model also performed best with the

smallest forecasting error. Furthermore, the DSAEF_LTG model had distinct

advantages in predicting target TCs with typical tracks and widespread gales,

both in terms of the wind field pattern and the magnitude of central wind

speeds. However, for sideswiping TCs with small-scale gales, the DSAEF_LTG

model tended to over-predict and held no advantage over the NWP models,

which could perhaps be improved by introducing more reasonable ensemble

forecast schemes in further research.
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1 Introduction

A tropical cyclone (TC, also known as a typhoon in the western

North Pacific) refers to a low-pressure system with a warm core that

forms over tropical and subtropical warm oceans (Roy and Rita,

2012). China is one of the countries frequently affected by TC-related

disasters in the world, with about 15 TCs affecting it each year and

about 7 making landfall in coastal areas (Chen and Meng, 2001).

Landfalling TCs are associated with heavy rainfall, strong winds and

damaging storm surges (Peduzzi et al., 2012), of which strong winds

is a non-negligible disaster-causing factor that triggers storm surges

and further aggravates heavy-rain disasters (Powell and Reinhold,

2011). For example, the strong winds generated by super typhoon

Rammasun in 2014 caused a huge number of casualties and the direct

economic losses reached approximately CNY 26.55 billion

(equivalent to approximately USD 4.2 billion) in South China

(Wan et al., 2016). Therefore, accurate and timely forecasting of

TC gales is of great significance in the prevention and mitigation of

TC-related disasters.

At present, themain approaches to the prediction of TC-induced

gales include empirical forecasts, statistical forecasts, numerical

weather prediction (NWP) and their interpretations (Dong, 2014).

Empirical forecasting is based on synoptic principles and the

experience of forecasters, and an example would be the empirical

model developed by Kaplan and DeMaria (1995) for predicting the

decay of TC gales after landfall. More recently, the application of

satellite cloud imagery (Chen and Zhang, 2008) and radar images

(Zhi and Huang, 2020) have enhanced the reliability of empirical

forecasts in short-impending predictions. Statistical forecasting

utilizes large amounts of historical TC data as well as effective

statistical methods to obtain objective and quantitative predictions.

For instance, Li et al. (2016) proposed a quantitative forecast model

for predicting the potential TC maximum gust in South China by

exploring the relationship between observations and the main

characteristics of TCs. In addition, Knaff et al. (2007) established

a statistical-parametric model that adopted climatology and

persistence to predict TC wind radii. Relying on the integration of

atmospheric dynamic equations under certain initial conditions,

NWP plays a key role in the forecasting of TC gales, and many

forecasting institutions around the world have developed relevant

products (e.g., high-resolution gridded forecasts of wind speed and

TC wind speed probability) (Demaria et al., 2013; Lin et al., 2015).

The interpretations of NWP indicate further analysis and

modification on NWP outputs by statistical, dynamic or artificial

intelligence methods are needed; for example, He et al. (2018)

provided a model for predicting TC gust by introducing

improved fruit fly optimization algorithm into fuzzy support

vector machine to raise the applicability of WRF outputs.

Although the approaches mentioned above have shown

encouraging results in research and operations, they still face

complex challenges and need to overcome certain shortcomings

for further improvements. For example, empirical forecasting is not

objective enough, while statistical forecasting lacks consideration of

TC physical mechanisms, and NWP as well as its interpretation are

limited by the descriptions of physical processes (Li et al., 2021).

Considerable attention has been paid in recent decades to improving

the performance of TC forecasts, significantly, based on statistical

methods and dynamical models (Zhang et al., 2016). The

statistical–dynamical approach combines forecast information

from dynamical model within a statistical framework to make the

forecast (Charney et al., 1969; Carter et al., 1989). Knaff et al. (2017)

developed a statistical–dynamicalmodel to predict TCwind structure

in terms of wind radii, which not only compared well with NWP, but

its inclusion boosted the skill of consensus forecast. At the same time,

there is a notable absence in existing models of applying the

statistical–dynamical approach to provide forecast guidance on

TC-induced potential maximum gales, which contributes to

estimating the intensity and affected area of TC-related disasters

about strong winds (Wang et al., 2017).With this deficiency inmind,

Chen (2021) developed the Dynamical–Statistical–Analog Ensemble

Forecast model for Landfalling Typhoon Gales (i.e., TC-induced

potential maximum gale) (hereafter abbreviated to the DSAEF_LTG

model), based on the DSAEF theory proposed by Ren et al. (2020).

Preliminary application in a simulation experiment on Mangkhut in

2018 demonstrated that the DSAEF_LTG model was able to

accurately simulate the pattern and central wind speeds of the

potential maximum gale, performing better than NWP models.

Completed simulation experiments with single sample and

large number of samples have both confirmed that the

DSAEF_LTG model did well in simulating the intensity and

spatial distributions of the potential maximum gale.

Nevertheless, more attention needs to be paid to whether the

model can show high forecast skill in operational application.

Hence, it is necessary to carry out multi-sample forecast

experiments to examine the forecasting ability of the

DSAEF_LTG model, which is the motivation behind our

study. Accordingly, 21 TCs that severely affected South China

during the period 2011–2018 were selected to conduct forecast

experiment in this paper.

Following this introduction, Section 2 presents the data and

methods, including the forecasting procedures of the

DSAEF_LTG model. Section 3 introduces the experimental

design and how the best forecasting scheme was obtained and

its performance verified. Section 4 compares the forecasting

results of the DSAEF_LTG model to those from four select

dynamic models. The summaries and discussions are given in

Section 5.

2 Data and methods

2.1 Data

Based on revised NWP model outputs, the observed and

predicted information of the target TCs in our experiment,

including their tracks and intensity, were obtained from the
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National Meteorological Information Center (NMIC) of China

Meteorological Administration (CMA). Historical TC best-track

data, comprising the TC position and intensity at 6-h intervals

since the 1960s (Ying et al., 2014), and Beaufort scale of wind

speeds were both obtained from Shanghai Typhoon Institute of

CMA (available from https://tcdata.typhoon.org.cn/).

Historical observed maximum 2-min average wind speeds

of 10-m above the surface at 1-h intervals were provided by the

NMIC of CMA from 1980 to 2018. For consistency, the

stations with a cumulative absence time of more than

24 months were discarded, as were the stations above the

mean station height of 894.7-m, in order to reduce the

interference of alpine stations in separating TC-induced

gales. Ultimately, the original data with 140 stations in

South China (Guangdong, Guangxi and Hainan provinces)

were retained in this study, and their geographical distribution

is shown in Figure 1. Furthermore, the TC-induced potential

maximum gale refers to the peak value of hourly maximum 2-

min-averaged wind speed within a certain TC’s life for each

station.

The gridded forecast datasets of 10-m zonal (u) and

meridional (v) winds from The Observing System Research

and Predictability Experiment (THORPEX) Interactive Grand

Global Ensemble (TIGGE) control forecasts (available from

https://apps.ecmwf.int/datasets/data/tigge/) were used to

evaluate the forecasting performance of the DSAEF_LTG

model. Specifically, the datasets were derived from following

forecast centers: CMA, European Centre for Medium-Range

Weather Forecasts (ECMWF), Japan Meteorological Agency

(JMA) and National Centers for Environmental Prediction

(NCEP), available on 1 × 1 grids with lead times of about

1–10 days at 6-h intervals and an initial time of 1200 UTC.

For comparison, the resultant u and v wind speeds at each grid

point were firstly calculated and then interpolated to the

140 stations mentioned above. Correspondingly, the TC-

induced potential maximum gales of the NWP models refer to

the maximum value of resultant wind speed at 6-h intervals

within a certain TC’s life for each station.

2.2 DSAEF_LTG model

Figure 2 is a flowchart of how to apply the DSAEF_LTG

model, which is composed of following four forecasting steps: 1)

obtain the forecast track of the target TC; 2) construct generalized

initial values (GIVs), including TC track, landfall date and

current TC intensity; 3) identify the similarity of the GIVs

constructed in the previous step between target and historical

TCs; and 4) make an ensemble prediction about the potential

maximum gale of target TCs. Table 1 lists the eight parameters

and their physical significances involved in the DSAEF_LTG

model (referring to the DSAEF_LTP model improved by Jia et al.

(2020). For better understanding, values 16–20 of the similarity

region (P2) in the parameters are shown in Figure 3. According

to Table 1, each parameter has multiple values and they can

combine randomly between different parameters. One

combination is referred to as a forecast scheme and, as a

result, 2,880,000 forecast schemes can be generated from eight

parameters under idealized conditions.

The forecasting procedures of the DSAEF_LTG model

can be summarized in more detail as follows: 1) first, the

observed track before the initial time (P1) and the forecast

track after the initial time, both obtained from NMIC of

CMA, were merged into a complete track as the target TC

track. 2) Next, the objective TC Track Similarity Area Index

(TSAI) was calculated between the target TC track and all the

historical TC tracks (before the target TC since 1980) in an

established similarity region (P2), and then sorted in

ascending order. A smaller TSAI implies a higher track

similarity. In other words, P2, P3 and P4 codetermined the

TC track similarity in this part. 3) based on the TC track

similarity, the TC landfall season (P5) and TC intensity (P6)

similarities were identified to eliminate the historical TCs

that differed greatly from the target TC in landfall time and

intensity. 4) Finally, an optimized ensemble forecast scheme

(P8) was adopted to assemble the TC wind fields of the

remaining top N historical TCs (where N was determined

by P7), and the predicted potential maximum gale of the

target TC was obtained.

2.3 Other methods

2.3.1 Track similarity area index
The TSAI is an objective technique to select analogous tracks

from historical TC data (Ren et al., 2018). The principle of TSAI

is to calculate the area enclosed by any 2 TC tracks—namely, the

target TC and the historical TC in this study. The smaller the area

value, the higher the similarity.

FIGURE 1
Spatial distribution of 140 stations in South China
(Guangdong, Guangxi and Hainan provinces).
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2.3.2 The improved objective synoptic analysis
technique for landfalling TC-induced gale
(OSAT_LTG)

The OSAT_LTG is used to separate and obtain TC-induced

gales (i.e., wind speeds reaching 10.8 m/s and above) (Lu et al.,

2016) and includes four steps as follows: 1) divide the gales into

independent natural wind fields; 2) identify the potential TC

wind field; 3) separate the gales for each station; and 4) combine

the complete TC wind field. In this study, OSAT_LTG was also

employed to obtain the list of historical TCs (i.e., experimental

samples) with TC-induced gales in South China.

2.3.3 Forecast evaluations and skill scores
In this paper, four skill scores including Threat Score

(TS), False Alarm Ratio (FAR), Missing Ratio (MR) and Bias

Score (BS) are applied to compare the forecasting skill of the

models above two critical thresholds. Meanwhile, two more

indicators including Mean Absolute Error (MAE) and

pearson correlation coefficient (R) are used to get a more

complete evaluation of the forecast performances. Their

calculation formulae are as follows:

TS � hits

hits +misses + false alarms

FAR � false alarms

hits + false alarms

MR � misses

hits +misses

BS � hits + false alarms

hits +misses

MAE � ∑N
i�1
∣∣∣∣xi − yi

∣∣∣∣
N

R �
∑N

i�1(xi − xi)(yi − yi)��������������������∑N
i�1(xi − xi)2(yi − yi)2

√
The value of “hits” indicates the number of stations at which

the prediction and observation both reach a certain magnitude;

and“false alarms” is the number of stations where the prediction

reaches a certain magnitude but the observation does not; while

“misses” is the number of stations where the observation reaches

a certain magnitude but the prediction does not. The TS, FAR

and MR vary from 0 to 1. The closer the TS is to 1, the higher the

forecast skill. However, for FAR and MR, higher values denote

more serious false alarms and missing alarms, respectively. For

better comparisons, all the BS values in this study were reduced

by 1, and they further indicate whether the forecast results have

tendencies to over-predictions (BS>0) or under-predictions

(BS<0) (Wang et al., 2020).

The MAE and R are defined as where xi and yi denote the
predicted and observed wind speeds, at the i th station,

FIGURE 2
Flowchart of the DSAEF_LTG model.
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respectively. N is the station size, xi and yi represent the

corresponding mean values. The lower the MAE is, the

smaller the gaps between prediction and observation are,

namely the forecasting performance is better. While for R,

higher values represent closer relationships between prediction

and observation and better performance (Wilks, 2006).

3 Experimental design

3.1 The target TCs

Considering that the “landfalling typhoon” in the

DSAEF_LTG model refers to the TC that had serious

impacts caused by TC-induced gales on China, we set a

primary inclusion criterion for a target TC—namely, a TC

having maximum gale ≥17.2 m/s for at least one station in

South China.

To keep a moderate sample size for the first forecasting

application of the DSAEF_LTG model, together

considering that 2018 is the last year for available

historical observed wind speeds, 2011–2018 was selected

as the analysis period of the target TCs. Specifically, the

target TCs consist of training samples and independent

samples, for the simulation and forecast experiments,

respectively. For the forecast experiment, archived

TIGGE data of NWP models is required for

comparison. Then, considering that none of the target

TCs in 2015 has archived TIGGE data, 16 TCs in

2011–2015 and 5 TCs in 2016–2018 were selected as

training samples (Figure 4A) and independent samples

(Figure 4B), respectively.

TABLE 1 Parameters of the DSAEF_LTG model.

Parameters (1–8) Description Number of
values

Initial time (P1) 1: 1200 UTC on Day1, 2: 0000 UTC on Day1, 3: 1200 UTC on Day2, 4: 0000 UTC on Day2.
(Day1: the day of TC gales occurring on land; Day2: the day before Day1)

4

Similarity region (P2) A parameter of TSAI with rectangular shape. Its southeastern vertex (C) can be the TC
position at 0, 12, 24, 36 or 48 h prior to the initial time, and the northwestern vertex (A) can be
the TC position at 0, 6 or 12 h prior to the maximum lead time, the values of 1st–15th are
combined by C and A. The 16th–20th values are based on the first value; namely, C represents
the TC position at the initial time and A represents the TC position at the maximum lead time.
More details about the 16th–20th values are given in Figure

20

Threshold of the segmentation ratio of a latitude
extreme point (P3)

A parameter of TSAI. 3

1: 0.1, 2: 0.2, 3: 0.3

The overlapping percentage threshold of 2 TC
tracks (P4)

A parameter of TSAI. 6

1: 0.9, 2: 0.8, 3: 0.7

4: 0.6, 5: 0.5, 6: 0.4

Seasonal similarity (P5) A parameter indicating the TC landfall date 5

1: whole year; 2: May–Nov; 3: Jul–Sep

4: same landfall month as the target TC

5: within 15 days of the target TC landfall time

Intensity similarity (P6) Four categories 4×5

1: average intensity on the first windy day

2: maximum intensity on the first windy day

3: average intensity on all windy days

4: maximum intensity on all windy days

Five levels

1: all grades; 2: the target TC intensity is the same grade or above the historical TC

3: the same grade or below; 4: only the same grade

5: the same grade or one grade difference

Number (N) of analogue TCs screened for the
ensemble forecast (P7)

1–10 for 1, 2, . . . , 10, respectively 10

Ensemble forecast scheme (P8) 1: mean 2

2: maximum

Total number of schemes 4 × 20 × 3 × 6 × 5 × 20 × 10 × 2 = 2,880,000

Frontiers in Earth Science frontiersin.org05

Li et al. 10.3389/feart.2022.987001

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.987001


3.2 Experimental design of the
DSAEF_LTG model

We conducted both simulation and forecast experiment to

explore the forecasting ability of the DSAEF_LTG model in

predicting the TC-induced potential maximum gale in South

China. The simulation experiment based on the training samples

was aimed at identifying the best forecast scheme suitable for

South China—in other words, the optimal value of each

parameter in Table 2 with the best forecast performance. The

purpose of the forecast experiment based on the independent

samples was to verify the best forecast scheme. Meanwhile, we

also compared the forecast results with those of the NWPmodels

(CMA, ECMWF, JMA and NCEP) to gain a comprehensive and

objective understanding of the DSAEF_LTG model.

Specifically, there are two steps to determine the best forecast

scheme: firstly, screen the forecast schemes, applicable to all the

training samples, from the forecast schemes generated by the

simulation experiment; then, set an appropriate criterion to pick

out the best forecast scheme. Significantly, some training samples

aren’t able to be fully valued on certain parameters, such as the

initial time (P1) and the similarity region (P2), so the number of

forecast schemes will be equal to or less than 2,880,000.

The Beaufort Wind Scale is commonly used in research and

operations. In this study, we concentrated on TC-induced gales

greater than Beaufort Scale 6 (the wind speeds of Beaufort Scale

from 6 to 13 are listed in Table 3). As shown in Figure 5, the TC-

induced gales in the training samples mainly ranged within

Beaufort Scale 6–8, the proportion being more than 80%.

Thus, in order to pick out the best forecast scheme with high

efficiency, we calculated the TS values above the thresholds of

Beaufort Scale 6 and 8 (hereafter TS6 and TS8, respectively), and

the forecast scheme with maximal TSsum (i.e., TSsum = TS6 +

TS8) was selected as the best forecast scheme. However, the TC

warnings issued by operational centers pay more attention to

Beaufort Scale 7 and 10, due to the fact that Beaufort Scale 7 is

related to TC scale and Beaufort Scale 10 is a critical reference for

TC defense (Sampson and Knaff, 2015; Xiang et al., 2016). Hence

FIGURE 3
Schematic diagram of the 16th–20th similarity region (P2). C
is the TC position at the initial time and A is the TC position at the
maximum lead time, with ABCD denoting the first value of P2. The
16th value is a square (A1B1C1D1) with C as the southeastern
vertex and a side length of 2000 km. B2 is themidpoint of B and B1,
while D2 is the midpoint of D and D1, and A2B2C2D2 is amedium-
sized rectangle as the 17th value of P2. Shifting A1B1C1D1 to the
right by the distance of D1D2, down by the distance of B1B2, right
by the distance of D1D2, and down by the distance of B1B2,
simultaneously, produces A3B3C3D3, A4B4C4D4, and
A5B5C5D5 as the 18th–20th values of P2, respectively.

FIGURE 4
Tracks of the target TCs, including (A) 16 training samples in 2011–2015 and (B) five independent samples in 2016–2018. The names of the
independent samples are also shown in (B).
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the TS, FAR, MR and BS were calculated above the thresholds of

Beaufort Scale 7 and 10 to evaluate the forecasting performances

in the forecast experiment.

4 Results

4.1 Simulation experiment of training
samples

The results of the simulation experiment indicated that

there were 241,186 forecast schemes for the 16 training

samples, which are shown in Figure 6 by the black scatter

points. Taking TS6 as the x-axis and TS8 as the y-axis, each

TABLE 2 List of training samples and independent samples for TCs.

Sample classification Names of TCs
from 2011 to 2018

Training samples (16 TCs from 2011 to 2015) 2011: Haima, Nock-ten, Nesat, Nalgae

2012: Kai-tak, Son-tinh

2013: Rumbia, Jebi, Utor, Usagi, Wutip, Haiyan

2014: Rammasun, Kalmaegi

2015: Kujira, Mujigae

Independent samples (5 TCs from 2016 to 2018) 2016: Nida

2017: Hato, Doksuri, Khanun

2018: Mangkhut

TABLE 3 Beaufort scale of wind speeds.

Beaufort number Wind speed (m/s)

6 10.8–13.8

7 13.9–17.1

8 17.2–20.7

9 20.8–24.4

10 24.5–28.4

11 28.5–32.6

12 32.7–36.9

13 37.0–41.4

FIGURE 5
Proportions of different wind speed magnitudes of the TC-
induced gales in 16 training samples.

FIGURE 6
Scatter plots of the threat scores (TS6–TS8) from
241,186 forecast schemes generated by the simulation
experiment. TS6 and TS8 represent the threat scores for predicting
the potential maximum gale of ≥ Beaufort Scale 6 and ≥
Beaufort Scale 8, respectively. The red scatter point indicates the
best forecast scheme with maximal TSsum (TS6 + TS8).
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scatter point in Figure 6 represents a forecast scheme, and the

red scatter point denotes the best forecast scheme determined

by TSsum (i.e., TS6 = 0.4063 and TS8 = 0.4389). Furthermore,

the values of eight parameters in the best forecast scheme are

listed in Table 4.

4.2 Forecast experiment of independent
samples

Based on the average forecast skill scores (i.e., TS, FAR, MR

and BS) of five independent samples under two critical

thresholds—Beaufort Scale 7 and 10, Figure 7 further

compares the best forecast scheme of the DSAEF_LTG model

to the four NWP models (i.e., CMA, ECMWF, JMA and NCEP).

For brevity, TS7 (FAR7, MR7 and BS7) and TS10 (FAR10,

MR10 and BS10) denote the TS (FAR, MR and BS) at two

thresholds above Beaufort Scale 7 and 10, respectively. Note that

the average TS, FAR and MR were calculated only when the

scores were greater than or equal to 0. In addition, the sum of

average BS was defined as ± (|BS7|+|BS10|), where the symbol

depended on the BS7+BS10.

According to Figure 7A, NCEP ranked first in the average

TS7, followed by the DSAEF_LTG model; while in the average

TS10, the DSAEF_LTG model was still in the second place, and

CMA ranked first. Consequently, the DSAEF_LTG model

outperformed the four NWP models in terms of the sum

(i.e., TS7 + TS10), with a total score of 0.4273. As shown in

Figures 7B,C, the DSAEF_LTG model ranked fourth in FAR7,

first in FAR10, and its sum of average FARwas only slightly lower

than CMA, which indicated the FAR of the DSAEF_LTG model

was on the high side; but for the average MR, the minimums were

calculated by the DSAEF_LTG model both in the average

MR7 and MR10, confirming it has a distinct advantages over

the NWPmodels in terms of missing alarms. Figure 7D compares

the average BS of different models. The DSAEF_LTG model

tends to over-predictions in BS7 and BS10, with scores of

0.6232 and 0.75, respectively; while the NWP models tend to

under-predictions, especially for an intense scale (≥Beaufort
Scale 10).

TABLE 4 Optimized values for the best forecast scheme in the simulation experiment.

Parameters (1–8) Optimized value and
its description

Initial time (P1) 3: 1200 UTC on the day before the day of TC gales occurring on land

Similarity region (P2) 20

Threshold of the segmentation ratio of a latitude extreme point (P3) 2: 0.2

Overlapping percentage threshold of 2 TC tracks (P4) 5: 0.5

Seasonal similarity (P5) 1: Whole year

Intensity similarity (P6) (2, 5): maximum intensity on the first windy day with the same grade or one grade difference

Number (N) of analogue TCs screened for the ensemble forecast (P7) 2

Ensemble forecast scheme (P8) 2: maximum

FIGURE 7
Comparison of the average forecast skill scores (i.e., (A) TS, (B)
FAR, (C) MR and (D) BS) of different models (CMA, ECMWF, JMA,
NCEP, and the best forecast scheme of the DSAEF_LTG model) at
thresholds above Beaufort Scale 7 and 10. Note that all the BS
values were reduced by 1 for better comparisons, and the sum of
average BS was defined as ± (|BS7|+|BS10|), where the symbol
depended on BS7+BS10.
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In conclusion, on the whole, the DSAEF_LTGmodel showed

higher forecasting skill than the NWP models at two critical

thresholds (i.e., Beaufort Scale 7 and 10). Moreover, according to

the results of the average FAR, MR and BS, the DSAEF_LTG

model was prone to false alarms, while the NWP models were

prone to missing alarms, especially for an intense scale.

According to the scatter distribution between predicted and

observed wind speeds of five independent samples and relevant

statistical indicators (i.e., MAE and R), the forecasting deviation

of eachmodel can be compared directly. As all above presented in

Figure 8, the forecasting deviations of all models were increased

(i.e., the scatters were further away from the reference line) in the

case of stronger wind speeds. Among the 5 models, the minimum

of MAE and the maximum of R (passing the 0.01 significance

test) were both derived from the best forecast scheme of the

DSAEF_LTG model with the values of 2.8486 and 0.499,

respectively. Thus in general, the DSAEF_LTG model

performed best with smallest forecasting error.

Figure 9 further show the TS7 and TS10 associated with

individual independent samples forecasted by the different

models mentioned above. As indicated by the black dotted

line, the stronger the maximum gale (the largest value selected

from the potential maximum gale of all stations for each TC), the

better the forecasting performance at Beaufort Scale 7 for each

model. However, this feature was not obvious at Beaufort

Scale 10.

In terms of TS7 (Figure 9A), among all the independent

samples, Mangkhut had the best forecast performance with

scores above 0.25 for all models, while Nida performed the

worst with scores below 0.15 for all models. From the

perspective of comparing between different models, the

DSAEF_LTG model had a prominent advantage over the four

NWP models in its performance for Hato, with a score of 0.375,

and was tied for first place with ECMWF for Nida. For the

remaining 3 TCs (Doksuri, Khanun and Mangkhut), the

DSAEF_LTG model ranked third or fourth, the biggest

difference with the first-place model was for Doksuri, at

0.3334, and the smallest difference was for Mangkhut, at 0.0302.

From the black dotted line in Figure 9B, we can see that only

the potential maximum gales of Hato, Doksuri and Mangkhut

exceeded Beaufort Scale 10. The remaining 2 TCs (Nida and

Khanun), without TS10 values, indicate that neither observations

FIGURE 8
Scatter distributions of the predicted and observed wind speeds from five independent samples according to (A) CMA, (B) ECMWF, (C) JMA, (D)
NCEP and (E) the DSAEF_LTG model. The MAE and R (passing the 0.01 significance test) of each model are also provided in the upper left. The red
dotted line is a reference line where the prediction is equal to observation.
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nor predictions have reached the threshold of Beaufort Scale 10.

In addition, the TS10 values of Doksuri were unable to present

positive forecast skills, with scores of 0 for all models. For the

TS10 of Hato, none of the NWP models could provide

satisfactory forecast results, whereas the DSAEF_LTG model

still kept a high forecast level, with score as high as 0.5. With

regard to the TS10 of Mangkhut, CMA had the highest score of

0.5; the DSAEF_LTG model tied with ECMWF for second place

with a score of 0.25; while NCEP and JMA showed no forecasting

capability.

4.3 Analysis of representative cases

To obtain a better insight into the forecasting capacity of the

DSAEF_LTG model, two typical cases, Hato and Doksuri, were

selected for further analysis (Figures 10, 11). They shared the

common attribute that the largest value selected from the

potential maximum gales of all stations was greater than

Beaufort Scale 10, which was apt to trigger gale-related

disasters and raise operational concerns. Their difference came

in the forecasting performances of the DSAEF_LTG model

compared with the NWP models: for Hato, the DSAEF_LTG

model was in a superior position; but for Doksuri, it was at a

disadvantage. Hence, it is worth trying to unpack the reasons

behind this distinction.

For Hato, its gales were observed to be mainly concentrated

on the right side of the TC track, including the Pearl River Delta

region and south Guangxi, with the center located on the west

bank of the Pearl River Estuary (Figure 10A). From the spatial

distributions of the gales predicted by different models, the

pattern of the DSAEF_LTG model (Figure 10B) was closest to

observation among all models, but it missed the gales in Guangxi.

Meanwhile, ECWMF (Figure 10D) and NCEP (Figure 10F)

produced significant over-prediction with an overly large

region, while the windy areas predicted by CMA (Figure 10C)

and JMA (Figure 10E) were underestimated. In terms of the

magnitude of the central wind speeds, the four NWP models

were weaker than observed, but the deviation of the DSAEF_LTG

model was negligible. Previous research (Zhang et al., 2018; Qin

et al., 2019) suggested that Hato underwent rapid intensification

twice in the offshore area after the initial time mentioned in

Section 4.1 (i.e., 1200 UTC 22 August 2017), and its convection

was asymmetric, both of which made it a harder task for the

NWP models to make accurate prediction. Meanwhile, the track

of Hato belonged to typical TC category in South China

(i.e., westbound after making landfall) with observed gales

nearby, contributing to the prediction of the DSAEF_LTG

model whose merit is taking full advantage of TC track.

For Doksuri, the number of windy stations was less than for

Hato: one station with wind speed exceeding Beaufort Scale

10 and four stations below Beaufort Scale 8, scattered over

south Hainan, south Guangdong and south Guangxi

(Figure 11A). All the models performed well in their

predicted spatial distributions of gales, with their prominent

differences manifesting in the predicted magnitude of wind

speeds. Specifically, NCEP performed the best (Figure 11F);

the DSAEF_LTG model (Figure 11B) and CMA (Figure 11C)

were over-prediction; and ECWMF (Figure 11D) as well as JMA

(Figure 11E) were underestimated. On the one hand, Doksuri did

not make direct landfall in China [i.e., sideswiping TC (Feng

et al., 2020)] and was accompanied by weak gales and small

numbers of windy stations, thus partly accounting for the limited

forecasting ability of the DSAEF_LTGmodel. On the other hand,

according to the best forecast scheme mentioned in Section 4.1,

the maximum was adopted to assemble the TC-induced wind

fields of two analogous historical TCs, which may have resulted

in the over-prediction of the DSAEF_LTG model. These two

reasons may have led to the big gap in TS between the

DSAEF_LTG model and NCEP, whose TS was ranked first.

From the above analysis of two representative TC cases, we

can conclude that the DSAEF_LTG model had advantages over

(for Hato) or was equivalent to (for Doksuri) dynamic models in

the prediction of gale spatial distributions, and it could

successfully capture the center with wind speeds above

FIGURE 9
Comparison of the TS from different models associated with
individual independent samples at the threshold above (A)
Beaufort Scale 7 and (B) Beaufort Scale 10. The wind speed (black
dotted line) is the largest value selected from the potential
maximum gales of all stations for each TC (unit: m/s).
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Beaufort Scale 10. Nevertheless, the overall wind speed scale of

Doksuri forecasted by the DSAEF_LTG model was greater than

observed. The status quo is likely to be improved by adding more

reasonable ensemble forecast schemes and including more

analogous historical TCs.

5 Summary and discussion

In this study, the DSAEF_LTGmodel was used to conduct an

experiment for forecasting the TC-induced potential maximum

gale in South China. Our major results can be summarized as

follows:

1) As the first forecasting application of the DSAEF_LTG

model, encouraging forecasting ability in South China was

demonstrated. In this experiment, the best forecast scheme

was crucial and can be described as follows: For TC track

similarity, the initial time of the target TC was set at

1200 UTC on the day before TC-induced gales occurred

on land and the historical TCs were screened in the 20th

similarity region. For landfall time similarity, the analogous

historical TCs could make landfall at any time of year

(i.e., the landfall time was not restricted). For intensity

similarity, the historical TCs with the same grade or one

grade difference as target TC would be reserved, using the

maximum intensity on the first windy day as a reference.

After the screening via the above three similarity conditions,

the maximum was adopted to assemble the analogous

historical TCs in the top two.

2) In general, the DSAEF_LTG model had higher forecasting

skills than the NWP models at the critical thresholds of

Beaufort Scale 7 and 10, with a total average TS of 0.4273.

The TS values also showed that, the stronger the maximum

gale (the largest value selected from the potential maximum

gales of all stations for each TC), the better the forecasting

performance of TS7 for eachmodel. However, this feature was

not obvious in TS10. On the basis of the average FAR,MR and

BS, the DSAEF_LTG model was prone to false alarms, while

the NWP models were prone to missing alarms, especially for

an intense scale (≥Beaufort Scale 10). Additionally, the

DSAEF_LTG model also had the smallest forecasting error

among five models, with the MAE of 2.8486 and the R

of 0.499.

FIGURE 10
Spatial distributions of the potential maximum gale (m/s) associated with Hato according to (A) observations, (B) the DSAEF_LTG model, (C)
CMA, (D) ECMWF, (E) JMA, and (F) NCEP. The observed and forecasted tracks are also plotted (black line and black dotted line, respectively). The
marker “×” represents the end of the TC track.
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3) The analysis of two typical cases (Hato and Doksuri) further

demonstrated that target TC with typical track and

widespread gale (e.g., Hato) makes it easier for the

DSAEF_LTG model to make accurate prediction which

was superior to those of NWP models, both in the wind

field pattern and magnitude of central wind speeds. However,

for sideswiping TC with small-scale gales (e.g., Doksuri), the

DSAEF_LTG model tends to over-predict and fails to achieve

satisfactory forecasting results.

The results mentioned above illustrate that the DSAEF_LTG

model is able to provide effective predictions of TC-induced

potential maximum gales in South China, one of the regions most

frequently affected by typhoons, and it is likely to offer a

promising tool for local forecasters and hazard mitigation

administrators to make decisions. Meanwhile, the weaknesses

of the DSAEF_LTG model were also highlighted in our results,

namely it was inclined to over-prediction and short in forecasting

the target TC with weak and small-scale gales.

Consequently, further work should concentrate on how to

further improve the forecasting performances of the

DSAEF_LTG model. Some possible solutions are: 1) more

reasonable ensemble forecast schemes to reduce the FAR; 2)

constructing the GIV is an important step in the DSAEF_LTG

model, so it is necessary to incorporate more physical variables

related to TC-induced gales, including TC characteristics (e.g.,

size, translation speed) and environmental conditions (e.g.,

subtropical high, vertical wind shear); and 3) historical TC

datasets with a longer period of time need to be adopted to

identify more analogous historical TCs for the target TC.
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