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Exploring the regional differences of transport carbon emission efficiency

(TCEE) and accurately identifying its influencing factors are crucial for

achieving carbon neutrality in transport industry as soon as possible. The

TCEE of 30 provinces in China from 2003 to 2018 was measured, and its

spatial imbalance and influencing factors were determined. The following

conclusions are drawn. First, previous studies have shown that the TCEE is

increasing at an overall low level with significant regional differences. Second,

the total regional differences of China’s TCEE presents a trend of rising first and

then falling, and the intra-regional differences are the main source of total

differences. Third, this study shows that certain factors, such as the economic

level, transport structure, energy structure, and technical level, significantly

influenced the TCEE, but there were notable spatial-temporal differences in

each factor. Finally, targeted and differentiated carbon emissions reduction

policies were proposed for transport departments to realize carbon neutrality as

rapidly as possible.
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1 Introduction

Global warming has become an important obstacle to sustainable economic and social

development. Effectively controlling and reducing greenhouse gas emissions, mainly

carbon dioxide (CO2), has become an important issue facing mankind (Duan et al., 2019;

Jiang et al., 2021; Zandalinas et al., 2021). According to official data, carbon emissions in

China accounted for 31% of the total global carbon emissions in 2020, ranking first in the

world in emissions (International Energy Agency, 2020). However, transport is the

foundation and leading industry supporting social and economic development; it is also

an important part of energy consumption and CO2 emissions (Bai et al., 2020; Ma et al.,

2021). Data show that CO2 emissions from the transport industry account for

approximately 10% of the total carbon emissions in China. They have thus become

the third-largest source of CO2 emissions after industry and construction (Wang et al.,

2020a; Jiang et al., 2020).
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In response to global climate change, China declared its

intention to achieve peak carbon emissions by 2030 and

carbon neutrality by 2060 (Lin and Wang, 2020; Zheng et al.,

2021). In February 2021, the Chinese government issued the

Guidelines on Developing Comprehensive Transport Network,

emphasising the need to accelerate the development of green and

low-carbon transport and achieve peak carbon emissions in the

transport sector as soon as possible (Xu et al., 2021). The carbon

emissions efficiency is an important indicator of the development

level of a low-carbon economy. Improving the transport carbon

emission efficiency (TCEE) is the most effective means of

achieving emissions reduction targets.

To date, many studies have discussed various aspects of

transport carbon emissions, including their calculation (Wang

et al., 2018; Yuan et al., 2019), spatial evolution characteristics

(Requia et al., 2015; Solaymani, 2019), peak predictions (Li and

Yu, 2019; Lu et al., 2020), and influencing factors (Grubb et al.,

2015; Guo and Meng, 2019), thus contributing to a better

understanding of these aspects. However, few studies have

investigated TCEE. Related research mainly focuses on energy

or environmental efficiency evaluation in the transport field

(Cheng et al., 2019; Omrani et al., 2019; Palander et al., 2020).

The methods used to measure the TCEE first included single-

factor evaluation methods, such as those involving the

determination of carbon emissions per unit freight turnover,

per unit energy and per unit GDP (Greening et al., 1999; Jobert

et al., 2012). With the wide application of production boundary

theory and the complexity of traffic carbon emissions, the single-

factor evaluation method has gradually been replaced by the

total-factor evaluation method (Hampf and Kruger, 2014; Wang

et al., 2020b; Wang et al., 2021). The total factor evaluation

method can measure the allocation efficiency of traffic factors,

especially the data envelopment analysis method, which is

favored by researchers in the field of efficiency evaluation

because it does not need any weight assumption, does not

need to determine the input-output function relationship in

advance, does not need dimensionless data processing, and

can quickly deal with the evaluation problem of complex

multi-input and multi-output systems (Cucchiella et al., 2018;

Xie et al., 2018; Zhou et al., 2018; Ma et al., 2022). For example,

Yang et al. (2021) established a life cycle DEA model, and

measured the management performance of CO2 and PM

2.5 in China. Chen et al. (2021) combined with four-stage

DEA and non-radical direction distance function (NDDF)

model, considering the bad output and environmental factors,

the energy efficiency of China’s transport sector is calculated.

The exponential decomposition, input-output methods and

econometric regression model can identify the influencing

factors of the TCEE. The exponential decomposition method

usually uses the IPAT, STIRPAT, and Kaya equations to

decompose the influencing factors of the carbon emissions

efficiency into population scale, wealth, and technology effects

(De Oliveira-De Jesus, 2019; Liu et al., 2020). The input-output

method mainly relies on the Malmquist index to separate carbon

emissions efficiency into pure technical efficiency, scale

efficiency, and technological changes (Zhang et al., 2015; Jiang

et al., 2020; Ma et al., 2021). The econometric regression model

generally adopts the vector autoregression (VAR) (Zhou and

Hong, 2018), Tobit (Cui and Li, 2015), wavelet analysis (Raza

et al., 2019), and spatial econometric models (Yu et al., 2020;

Zhao et al., 2022) to test the relationship between the influencing

factors and carbon emissions efficiency. Among these models,

the spatial econometric models can consider spatial effects and

thus have gradually become the mainstream method to explore

the factors affecting carbon emissions efficiency.

However, existing studies still have the following

shortcomings. First, the spatial effect of TCEE in the

existing literature is limited to the analysis of spatial-

temporal pattern evolution and spatial correlation, which

ignores the regional differences. According to previous

studies, there are obvious differences in the development

of regional transport industry in China (Xu and Lin, 2016;

Xia, et al., 2018). First, previous studies mostly used

qualitative methods to describe the difference distribution

of regional TCEE, but did not conduct in-depth research on

the source, degree and dynamic evolution law of the

difference (Peng et al., 2020). Second, the TCEE is

influenced by various factors, such as economic level,

population density, transport mode, and energy structure

(Shao and Wang, 2021; Zhao et al., 2022). However, due to

the differences in transport infrastructure, economic levels,

population distributions and technical competence among

provinces, the leading factors affecting the TCEE in different

provinces are unclear, which leads to different effects from

the carbon reduction policies. The spatial econometric model

can only measure the overall effect of the influencing factors

on the TCEE, but it cannot identify the temporary and spatial

differences. This leads to a lack of pertinence in the

evaluation results, thus affecting the implementation of

carbon emissions reduction policies.

In view of this, the SBM model was used to calculate the

TCEE in China. The Dagum Gini coefficient model were used

to study the spatial disequilibrium of TCEE. Subsequently,

the GTWR model were used to measure the spatial-temporal

differences in the influencing factors on the TCEE. We

propose two major innovations in this study. First, this

paper presents an in-depth analysis of TCEE’s spatial

disequilibrium, identifies the source of regional differences.

Second, we use the GTWR model to determine the

influencing factors of the TCEE, and verify the spatial and

temporal differences of each influencing factor on the TCEE

in China. The overall purpose of this study is to determine the

impact mechanism of the TCEE, provide decision support for

transport departments to formulate targeted emission

reduction measures and aid the transport industry in

rapidly achieving carbon neutrality.
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2 Materials and methods

2.1 Data

We use input-output data of transport industry from 2003 to

2018 for 30 mainland provinces in China (excluding Tibet). The

data are obtained from the China Statistical Yearbook

(2004–2019) and the China Energy Statistics Yearbook

(2004–2019). Infrastructure, labor, capital, and energy

consumption are selected as input indicators, the traffic added

value are regarded as expected outputs, and carbon emissions of

transport industry are regarded as unexpected outputs. Among

them, the infrastructure is expressed in terms of total mileage of

road, railway, waterway and pipeline transport network. The

labor force is represented by employees in the transport industry.

The capital stock of the transport industry is calculated using the

perpetual inventory method (Li and Zhang, 2016). The data are

converted to 2003 base period prices; the added value of the

transport industry is also treated. Additionally, according to the

conversion coefficient of standard coal, as published in the China

Energy Statistics Yearbook, all types of energy are standardized

and converted to calculate the energy consumption of the

transport industry. Transport carbon emission data is

calculated according to Liu et al. (2021).

For the influencing factors, We refer to the previous research

(Heinold and Meisel, 2018; Kimbrough et al., 2018; Shao and

Wang, 2021; Zhao et al., 2022), and finally selected 8 indicators

such as economic level (GDP), population size (POP), industrial

structure (IS), energy structure (ES), transport structure (TS),

transport intensity (TI), transport price (TP), and technical level

(TL) to explore the impact mechanism of transport carbon

emission efficiency (Table 1). Before regression, we calculated

the variance inflation factor (VIF) of each variable to prevent

multicollinearity between the explanatory variables (Table 2).

The results showed that the VIF values were all <5, indicating
that no multicollinearity was present among the variables.

The following describes all of the variables used in this study.

Economic level. An improvement in the economic level leads

to an increase in the transport demand and changes in residential

travel modes. Economically developed provinces often havemore

advanced technologies, which can reduce CO2 emissions and

affect changes in the TCEE. In this study, the per capita GDP was

selected as the index of regional economic development, with

2003 as the base period, to reduce the influence of price changes.

Population size. The impact of the population size on the

TCEE is bidirectional (Zhao et al., 2022). The expansion of the

population scale accelerates the spatial flow of people and goods

between provinces, resulting in an increase in the transport

demand, which in turn leads to an increase in energy

consumption and CO2 emissions and a decrease in the TCEE.

Furthermore, an increase in the transport demand due to

population expansion increases the economic output of the

transport industry and improves the TCEE. We used the total

population of a province to determine its population size.

Industrial structure. The optimisation of and upgrades to the

industrial structure can promote regional economic growth,

increase transport demand, and change transport intensity.

Furthermore, the evolution of the industrial structure can

change the energy consumption structure and transition

economic development from relying on fossil fuels, such as

coal and petroleum, to clean energy, which effectively reduces

carbon emissions and improves the TCEE (Shao and Wang,

2021). In this study, the proportion of the tertiary industry was

used to represent the industrial structure.

Energy structure. The impact of the energy structure on the

TCEE mainly depends on the consumption ratio of diesel oil and

gasoline. Owing to its high carbon emissions coefficient and

maximum consumption, the higher the ratio of the energy

structure, the lower the TCEE (Yuan et al., 2017). Therefore,

the energy structure was expressed as the ratio of diesel and

gasoline consumption to the total energy consumption of the

transport industry.

Transport structure. Energy consumption mainly reflects the

impact of the transport structure on the TCEE. As a “green”

mode of transport, an increased proportion of railway and

waterway transport use yields reduced energy consumption,

which is conducive to improving the TCEE. Conversely, the

higher the proportion of road transport, the lower the TCEE

(Zhao et al., 2022). Based on the large proportion of current road

TABLE 1 Descriptive statistics of the variables.

Variables Obs Mean Std. Dev Min Max

Y 480 0.475 0.264 0.091 1

GDP 480 31,054.54 25,704.47 3,701 149,573.4

POP 480 4,442.248 2,670.915 534 11,346

IS 480 0.431 0.090 0.283 0.831

ES 480 0.709 0.189 0.159 1.028

TS 480 0.327 0186 0.006 0.716

TI 480 0.455 0.401 0.068 3.961

TP 480 0.128 0.024 0.011 0.210

TL 480 0.898 0.408 0.229 2.825

TABLE 2 Results of the multicollinearity test.

Variables GDP POP IS ES TS TI TP TL Mean

VIF 2.61 1.43 2.89 2.25 1.26 1.21 1.23 1.25 1.77
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transport in China, we used the ratio of road turnover and

comprehensive turnover to measure the transport structure.

Transport intensity. Transport intensity can reflect the

relationship between transport and economic development,

which is usually expressed as the ratio of the transport

turnover to the regional GDP. A lower transport intensity

usually indicates a higher technical level of transport

organisation and management (Shao and Wang, 2021); thus,

the TCEE is higher. When calculating this index, passenger and

freight volumes were converted into a comprehensive conversion

turnover according to the conversion coefficient specified by the

Chinese statistical system.

Transport price. The transport price significantly affects the

transport demand and supply, which in turn affects the economic

output of the transport system, leading to changes in the TCEE

(Ma et al., 2021). The transport price variable was expressed as

the per capita annual traffic and communication expenditure/per

capita annual consumption expenditure of urban households.

Technical level. Advanced energy-saving technologies can

effectively reduce CO2 emissions. At the same time, an

improvement in the technology level can reduce the

production costs of an industry, promote economic growth,

and form a cycle of economic growth and environmental

improvement, thus improving the TCEE (Ma et al., 2021;

Zhao et al., 2022). In this study, the reciprocal of the energy

intensity was used to express the level of energy-saving

technologies.

2.2 Methods

2.1.1 DEA model for TCEE calculation
The DEA model is the most popular method for measuring

the carbon emissions efficiency (He et al., 2013; Park et al., 2016;

Chu et al., 2021). Among the various DEAmodels (e.g., the CCR,

BCC, and SBM, among others), the SBM model proposed by

Tone (2001) considers unexpected output and reveals the

influence of slack variables on the measured value. Therefore,

we selected the SBM model to measure the TCEE with MaxDEA

software. According to Tone (2001), the SBM formula is as

follows:

θ � min
1 − 1

N∑N
n�1s

x
n/xtkn

1 + 1
M+I (∑M

m�1
sym
ytkm

+∑I
i�1

sbi
ytki
)

(1)

where θ represents the value of TCEE, N, M, and I represent the

number of inputs, expected outputs and unexpected output

indicators, respectively. sxn and sbi denote the redundancy of

inputs and unexpected outputs, respectively. sym represents the

insufficient expected output. xt
kn, y

t
km, b

t
ki is the input-output

value of the t period for the k DMU. Objective function θ on

sxn , s
y
m, sbi is strictly monotone decreasing and 0< θ ≤ 1. When θ =

1, sxn � sym � sbi � 0, the DMU is indicated effective and there is no

redundancy and deficiency of input-output. When θ < 1, there is

a loss of efficiency in the DMU; that is, the DEA is invalid and the

comprehensive transportation efficiency needs to be improved by

optimizing the input-output quantity (Ma et al., 2021).

2.1.2 Dagum Gini coefficient
The Dagum Gini coefficient is widely used by researchers

because it decomposes the Gini coefficient into three parts, intra-

regional difference contribution (Gw), inter-regional difference

contribution (Gnb), and super-variable density contribution (Gt).

It effectively compensates for the fact that the traditional Gini

coefficient and Theil index cannot solve the overlap between

samples and cannot reveal the source of the overall difference

(Dagum, 1998; Sun and Zhu, 2020). The formula is as follows:

G � ∑k

j�1 ∑
k

h�1 ∑
nj

i�1 ∑
nh

r�1
∣∣∣∣∣yji − yhr

∣∣∣∣∣/2n2μ (2)

Gjj � ∑nj

i�1 ∑
nh

r�1
∣∣∣∣∣yji − yjr

∣∣∣∣∣/2 �Yjn
2
j (3)

Gjh � ∑nj

i�1 ∑
nk

r�1
∣∣∣∣∣yji − yjr

∣∣∣∣∣/njnh( �Yj + �Yh) (4)
Gw � ∑k

j�1 Gjjpjsj (5)

Gnb � ∑k

j�2 ∑
j−1
h�1 Gjh(pjsh + phsj)Djh (6)

Gt � ∑k

j�2 ∑
j−1
h�1 Gjh(pjsh + phsj)(1 − Djh) (7)

pj �
nj

n
, sj � nj

�Yj

n �Yj
, j � 1, 2, 3,/, k (8)

Djh �
djh − pjh
djh + pjh

(9)

djh � ∫∞

0
dFj(y) ∫

y

0
(y − x)dFh(x) (10)

pjh � ∫∞

0
dFh(y) ∫

y

0
(y − x)dFj(x) (11)

where G represents the total Gini coefficient, n represents the

number of provinces, μ is the average value of TCEE in China,

and k represents the number of regions divided. In this study,

China was divided into three regions, east, central, and west,

with k = 3. yji refers to the TCEE value of any province in

region j, nj refers to the number of provinces in region j, and

yhr and nh have the same meanings as indicated previously

herein. Gjj stands for the Gini coefficient in region j, and Gjh is

the Gini coefficient between regions j and h. The Gw, Gnb, and

Gt satisfy the following relationship: Gw + Gnb + Gt = 1.

Among them, Gt represents the influence of the interaction

item between intra-regional differences and inter-regional

differences of TCEE in the three regions on the overall

regional differences. Djh indicates the degree of influence

of the relative TCEE contribution rate between j and h

regions, djh indicates the difference in TCEE contribution

rates between regions, and pjh is the first moment of over-

variation. We use MATLAB software to realize the above

calculation.
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2.1.3 Geographically and temporally weighted
regression model

Huang et al. (2010) added time information to the

geographically weighted regression (GWR) model and

proposed a GTWR model, which aims to solve the inability of

the GWR model to process time data and analyse the time

heterogeneity of the influencing factors. GWR model can both

describe the relationship between the dependent and explanatory

variables, and reflect spatial heterogeneity. By introducing the

spatial position of the data into the regression coefficients, based

on the estimated values of the regression coefficients at each

geographical location, regional heterogeneity and spatial non-

stationarity of the parameters can be explored (Guo et al., 2020;

Liu et al., 2021). However, GWRmodel only considers the spatial

position of the influencing variables and ignores the time

parameters, and can not accurately explore the “spatio-

temporal” nonstationarity. The GTWR model just makes up

for this shortcoming (Rong et al., 2020). We using the spatial

analysis tool in ArcGIS 10.2 software, the GTWRmodel is used to

discuss the influencing factors of TCEE. The formula is as

follows:

Yi � β0(μi, νi, ti) +∑m

j�1 βk(μi, νi, ti)Xij + εi (12)

where Yi represents the TCEE in province i, Xij represents the jth

explanatory variable in province i, (μi,vi,ti) indicates the Mercator

projection coordinates of province i in year t, β0 is the intercept

term coefficient, βk (μi,vi,ti) is the estimated coefficient of the kth

explanatory variable, and εi is a residual item.

The estimated coefficient of βk(μi,vi,ti) can be expressed as

follows:

β̂(μi, νi, ti) � [XTW(μi, νi, ti)X]−1XTW(μi, νi, ti)Y (13)

where β̂(μi, ]i, ti) is the estimated coefficient, W is the weight

matrix, X is the independent variable matrix, XT is the transpose

operation of matrix X, and Y is the dependent variable matrix.

3 Results

3.1 TCEE spatial and temporal evolution

Figure 1 shows the time-varying trends in carbon emissions

and TCEE of China. The transport carbon emissions in all

China’s provinces have steadily increased, but the rate of

increase has gradually decreased, among which the CO2

emissions level are as follows: eastern > central > western. For

the TCEE, the eastern, central, and western regions are all

transitioned from high to low values; the efficiency value in

the eastern region was always higher than the national average.

For changes in the trend, the TCEE showed the same

characteristics; before 2009, it fluctuated and declined,

whereas after 2009, it increased, but the ranges were different.

The central region had the largest decline in the TCEE, with a

slow recovery. The eastern region ranked second but recovered

the fastest. The western region had the smallest decline and a

relatively stable recovery rate.

This is because there is a large gap between the development

level of the economy and the transport network in various

regions. Before 2009, eastern and central regions experienced

rapid economic growth with a limited focus on environmental

restoration, which led to a substantial increase in carbon

emissions. In particular, when affected by emergency

problems (such as the economic crisis in 2008), the

prosperous eastern and central regions bear the brunt,

resulting in a sharp decline in TCEE. However, compared to

the central region, the eastern region has a large amount of

financial support and technical support, and its resistance and

recovery ability are stronger, which makes TCEE recover quickly

after implementing environmental protection policies. As the

western region is located in inland China, the level of economic

development and completeness of the transport network is

significantly less than those in the eastern and central regions.

Emergencies have less of an effect on carbon emissions, thus

showing the weakest fluctuations in the TCEE.

Figure 2 describes the spatial distribution patterns of the

CO2 emissions and TCEE in China. We divide the carbon

emissions into 4 intervals with natural breakpoints, and they

are represented by different colors. The darker the color, the

more carbon emissions. Similarly, the TCEE is expressed by a

histogram, and the larger the TCEE is, the higher the

histogram is. The transport CO2 emissions decreased from

the east coast to the western interior. For the TCEE, the high-

value provinces were mainly distributed in the Bohai Rim and

Yangtze River Delta, whereas the efficiency values in the

central and western regions and northeast China were

lower. Specifically, only Tianjin, Shanghai, and Hebei had

a TCEE of 1 from 2003 to 2018, indicating that the allocation

of transport resources in these provinces had reached the

optimal level. The other provinces must change the input-

output ratio to improve their TCEE values. Among the non-

effective provinces, those with an increasing TCEE were

mainly distributed in the eastern regions, such as Beijing,

Shandong, Jiangsu, and Guangdong, whereas the TCEE in the

West, especially in Yunnan, Qinghai, Gansu, and Xinjiang,

was always at its lowest level, indicating a significant spatial

imbalance in the TCEE and large regional differences in the

improvement potential across China.

3.2 Spatial imbalance of TCEE

To further reveal the TCEE regional difference level in China,

we calculated the total, intra-regional, inter-regional, and source

of difference in China from 2003 to 2018 using the Dagum Gini

coefficient decomposition method. The results are listed in
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FIGURE 1
Trends in the carbon emissions and carbon emissions efficiency in the transport industry.

FIGURE 2
Distribution pattern of the carbon emissions and carbon emissions efficiency in the transport industry.
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Table 3. In order to make the results more intuitive, we visualized

the results (Figures. 3–6).

3.2.1 The total regional differences and evolution
trends

As shown in Figure 3, the total regional differences of TCEE

in China showed a rising trend first and then declined in

fluctuation, and the Gini coefficient was between 0.288 and

0.340, with a large overall difference. From the evolution

process, the total Gini coefficient in 2003–2004, 2005–2006,

2011–2013, and 2014–2018 showed a downward trend, and

the total regional disparities in TCEE narrowed. In

2004–2005, 2006–2011, and 2013–2014, the total Gini

coefficient showed an upward trend, and the total regional

disparities in TCEE widened. Specifically, from 2003 to 2004,

the total regional disparities of TCEE in China showed a

downward trend, with the Gini coefficient dropping to the

lowest level (0.288) in 2004, and then rising to the highest

level (0.340) after a short decline in 2004–2011. After that,

except for an increase in 2014, the total Gini coefficient

showed a downward trend year-by-year. Since the 21st

century, with the acceleration of China’s market economy and

the rapid growth of transport demand, China’s transport

industry has entered a booming period. However, due to the

huge differences in geographical location, capital supply, and

technical level, the gap in TCEE is widening. After 2011, China

attached great importance to the green development of transport,

accelerated the structural reform of the transport supply side, and

optimized resource allocation. The TCEE of various regions

increased significantly, and the regional differences gradually

narrowed.

3.2.2 Intra-regional differences and evolutionary
trends

According to Figure 4, the evolution trend of the intra-

regional Gini coefficient in China’s TCEE, shows the

following. First, on the whole, the regional differences in the

three regions (eastern, central, and western) had the same trend

before 2011, and the intra-regional Gini coefficient gradually

increased in fluctuation. After 2011, the trends were different.

TABLE 3 Gini coefficient and decomposition of TCEE in China.

Year G Intra-regional gap Inter-regional gap Contribution rate

East Central West East-Central East-West Central-West Gw Gnb Gt

2003 0.296 0.273 0.291 0.319 0.301 0.308 0.285 0.334 0.172 0.494

2004 0.288 0.267 0.286 0.307 0.293 0.304 0.273 0.336 0.137 0.527

2005 0.303 0.281 0.293 0.326 0.315 0.321 0.290 0.335 0.214 0.451

2006 0.298 0.274 0.292 0.315 0.306 0.313 0.290 0.334 0.210 0.456

2007 0.300 0.276 0.295 0.315 0.307 0.314 0.294 0.334 0.208 0.458

2008 0.319 0.294 0.313 0.335 0.326 0.332 0.313 0.333 0.195 0.472

2009 0.325 0.294 0.322 0.342 0.333 0.339 0.324 0.332 0.205 0.463

2010 0.335 0.299 0.332 0.352 0.343 0.351 0.337 0.330 0.226 0.444

2011 0.340 0.298 0.344 0.356 0.352 0.355 0.344 0.328 0.220 0.452

2012 0.327 0.282 0.344 0.334 0.344 0.349 0.338 0.327 0.209 0.464

2013 0.321 0.301 0.330 0.319 0.334 0.345 0.327 0.336 0.156 0.508

2014 0.326 0.303 0.324 0.345 0.331 0.343 0.323 0.336 0.136 0.528

2015 0.315 0.284 0.321 0.341 0.324 0.343 0.306 0.336 0.164 0.500

2016 0.311 0.275 0.320 0.338 0.320 0.339 0.303 0.335 0.175 0.490

2017 0.304 0.257 0.316 0.338 0.321 0.336 0.296 0.330 0.170 0.500

2018 0.292 0.252 0.318 0.345 0.318 0.334 0.293 0.334 0.137 0.529

Mean 0.313 0.282 0.315 0.335 0.333 0.323 0.308 0.333 0.183 0.484

FIGURE 3
Total regional differences of TCEE in China.
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After a short increase, the eastern region declined year-by-year,

whereas the intra-regional Gini coefficient in the western region

increased slowly in fluctuation, and in the central region was

relatively stable. Second, the intra-regional differences of TCEE

were the largest in the west and smallest in the east, which is the

same as the research results of Zhang and Chen (2019). Owing to

the advantages of location, capital, and technology, TCEE is

generally higher in the eastern region, and it is closest to the

frontier of technological production, resulting in the smallest

intra-regional difference. Because the western region is an inland

region, the passenger flow, logistics and capital flow are far lower

than those in the eastern region, and the resource allocation level

of each province is quite different, leading to the largest intra-

regional difference in TCEE. Specifically, the Gini coefficient in

western China ranged from 0.307 to 0.356, with an average of

0.335, which is always higher than that in eastern and central

regions. The Gini coefficient in the central region ranges from

0.286 to 0.344, with an average value of 0.315, which is between

the eastern and western regions. The Gini coefficient in the

eastern region ranged from 0.267 to 0.303, with an average value

of 0.282. The level of intra-regional differences was always lower

than that in the central and western regions.

3.2.3 Inter-regional differences and evolutionary
trends

Figure 5 shows the trend in inter-regional differences of

TCEE from 2003 to 2018. First, the inter-regional Gini coefficient

of TCEE fluctuations increased before 2011 but declined after

2011, which indicated that the inter-regional differences in the

three regions showed a trend of expanding at first and then

decreasing. Second, the inter-regional differences in east–central,

east–west, and central–west regions fluctuated greatly from

2003 to 2005, dropping from 0.301, 0.308, and 0.285 in

2003 to 0.293, 0.304, and 0.273, in 2004, respectively, and

then increased rapidly to 0.315, 0.321, and 0.290 in 2005.

From 2005 to 2011, the inter-regional differences in the

East–central, East–west, and central–west regions gradually

increased to the highest point, which were 0.352, 0.355, and

0.344, respectively, and the relative fluctuation degree among

them decreased. Third, from 2011 to 2018, the inter-regional

differences in the east–central, east–west, and central–west

regions all showed a downward trend. However, the speed of

decline is different. The descending speed is the fastest in the

central-west region, the second in the east-central region, and the

lowest in the east-west region. Fourthly, the inter-regional

differences in the central-west region have been at the lowest

level throughout the study period, and the convergence rate is the

fastest. The inter-regional differences between the east-west

region are always at the highest level, and the convergence

rate is the slowest, indicating that the regional differences in

China’s transport carbon emission efficiency have not been

effectively changed.

3.2.4 Source and contribution rate of differences
Figure 6 shows the evolution trend of the regional difference

contribution rate of the TCEE. Overall, the Gt was largest, the Gw

was second, and the Gnb was smallest. Moreover, the distribution

of the three were roughly symmetrical. With regard to the

evolution trend, the Gnb and Gt have changed greatly, and the

changing trend was opposite. The Gt increased in fluctuation,

whereas the Gnb decreased slowly, and the changing trend of Gw

was stable. Specifically, the evolution trend of Gt was

approximately “W”, rising from 49.4% in 2003 to 52.7% in

2004 and then decreasing to 45.1% in 2005 and remaining

relatively stable, slowly rising to 52.8% in 2014, and then

rising to the highest point of 52.9% in 2018 after a short

decline. This was the main source of the total regional

disparities in the TCEE. The evolution trend of Gnb was

roughly “M,” which was opposite to Gt. It decreased from

17.2% in 2003 to 13.7% in 2004 and then increased to 21.4%

in 2005 and remained relatively stable, slowly decreasing to

13.6% in 2014. After a short increase, it fell to the lowest

point of 13.2% in 2018. The Gnb contribution rate to the total

regional differences in TCEE was always the lowest. The trend in

FIGURE 4
Intra-regional differences of TCEE in China.

FIGURE 5
Inter-regional differences of TCEE in China.
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Gwwas relatively stable, accounting for approximately 33% of the

total study period, which was the second largest source of

regional differences in TCEE. Although Gt had the highest

contribution rate to the total Gini coefficient, Gt and G

showed the opposite trend, indicating that it play inhibitory

role in the growth of total regional differences. Combining

Figures 3, 6, it can be seen that the total Gini coefficient

showed a “W” growth trend from 2003 to 2011 and then fell

to the lowest point in fluctuation, whereas the Gt fluctuated to its

highest point in 2018 after experiencing an “M” changing trend

from 2003 to 2010, which indicates that the Gt hindered the

growth of the total Gini coefficient. As mentioned earlier, the Gt

represents the influence of interaction between intra-regional

and inter-regional differences in TCEE among the three regions

on the total regional differences. The Gt was large, indicating that

the cross-overlapping problem of transport industry in the

eastern, central, and western regions of China is prominent,

and thus, the main reason for the regional difference in TCEE is

intra-regional differences.

3.3 Analysis of TCEE influencing factors

3.3.1 The temporal evolution characteristics of
influencing factors

We used the GTWR model to discuss the spatial and

temporal differences in the TCEE influencing factors. The

results showed that the R2 and adjusted R2 values were

0.9264 and 0.9252, respectively, indicating that this model had

a good fitting effect and strong interpretability.

Figure 7 shows the time variation in the regression

coefficients of the various influencing factors. Figures 7A–H

show the impact of economic level (GDP), population size

(POP), industrial structure (IS), energy structure (ES),

transport structure (TS),transport intensity (TI), transport

price (TP), and technical level (TL) on transport carbon

emission efficiency in year 2003 to 2018, respectively. From

2003 to 2018, the regression coefficient of the economic level

was always positive (Figure 7A), indicating that the economic

growth was beneficial to the TCEE. There was a downward trend

and large range from 2003 to 2009, followed by a slow upward

trend from 2009 to 2018, which conformed to the typical

environmental Kuznets curve; its discrete state also changed

with time. China’s economy grew rapidly in the initial stages

of this study, but the carbon emissions increased significantly at

the expense of the environment, which led to a significant decline

in the promotion of economic growth with respect to the TCEE.

In the later stage of the study period, the government focused on

improving the ecological environment, emphasised the

importance of civil ecological construction in the production

process, and achieved remarkable results, which led to a steady

increase in the positive role that economic development had on

the TCEE.

The regression coefficient for the population size showed a

steady upward trend (Figure 7B); the sign of the coefficient also

changed from negative to positive, showing that the increase in

the population had a positive effect on improving the TCEE. As

the world’s most populous country, the “demographic

dividend” has greatly promoted the growth of China’s

economy. With the advancement of urbanisation, the

population’s “quantitative dividend” has gradually changed

to a “structural dividend,” which has improved the resources

allocation efficiency and further promoted improvements to

the TCEE.

The impact of the industrial structure on the TCEE was

approximately identical to that of the population size

(Figure 7C). The regression coefficient increased yearly, and

the sign changed from negative to positive, indicating that the

development of the tertiary industry is conducive to

improvements to the TCEE. The influence mechanism of

the industrial structure on the TCEE mainly relied on

reducing the energy intensity, improving the energy

consumption structure, promoting economic growth, and

significantly reducing CO2 emissions. Therefore, optimising

upgrades to industrial structures is an important means to

improve the TCEE.

The regression coefficients of the energy and transport

structures showed a slow downward trend (Figures 7D,E); the

coefficients were negative throughout the entire study period,

indicating that the energy and transport structures negatively

impacted the TCEE with a gradually increasing degree of

influence. With the growth of the economy, acceleration of

urbanisation, and rapid increase in the number of motor

vehicles, there has been a rapid increase in transport demand.

The consumption of gasoline and diesel (primary fuels in the

transport industry) has increased annually, accounting for

approximately 70%, whereas electricity consumption in the

transport industry accounts for <5%. Additionally, according

to the Statistical Bulletin on the Development of the Transport

Industry in 2020, road transport accounted for 71.3% of national

FIGURE 6
Contribution rate of regional differences in TCEE.
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FIGURE 7
Time variation trends for the regression coefficients of the influencing factors.
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passenger traffic and 73.8% of total freight traffic. Road transport

mainly consumes fossil fuels, such as gasoline and diesel, while

railway transport mainly consumes electricity; however, railway

passenger traffic only accounts for 22.8% and a freight volume

of <10%. Research has shown that high-speed rail, as a brand-

new clean public transport mode, has changed people’s travel

mode and contributed to the development of low carbon

transport (Jin et al., 2020; Yang J. et al., 2021). Therefore,

these unreasonable energy and transport structures have led to

a rapid increase in CO2 emissions, which hinders improvements

to the TCEE.

The regression coefficient of the transport intensity changed

smoothly (Figure 7F), but the sign of the coefficient was negative,

indicating that the transport intensity is not conducive to TCEE

improvements. The transport intensity reflects the relationship

between transport and economic growth. A reduction in the

transport intensity indicates a reduction in turnover per unit

GDP. Therefore, the transport intensity has a negative impact on

the TCEE through economic growth; in other words, the

transport intensity decreases while simultaneously improving

the TCEE.

The regression coefficient of the transport price showed a

fluctuating upward trend (Figure 7G); the sign of the coefficient

also changed from negative to positive, indicating that the

transport price had a negative impact on the TCEE in the

early stages of the study period. In contrast, improvements to

the transport price positively impacted the TCEE in the later

stages of the study period. This is because China’s economy grew

rapidly during the initial stages of the study period; there was a

rapid increase in the spatial transfer frequency and transport

volume of people and goods. Price increases have partially

reduced the spatial flow of transport services, which is not

conducive to economic growth. With steady economic growth,

all levels of government have focused heavily on environmental

issues and implemented a series of transport carbon emissions

reduction policies, including measures to adjust energy

consumption and transport structures through price leverage,

which have achieved remarkable results. Therefore, in the later

stages of the study period, the transport price positively impacted

the TCEE.

The regression coefficient of the technical level showed a

steady upward trend (Figure 7H), with a large value and

constantly positive sign throughout the study period,

indicating that improvements to the technical level

significantly promoted increases in the TCEE. Science and

technology were the primary productivities. Technological

progress can optimise the resources allocation efficiency at the

input side and reduce production costs. Furthermore,

technological progress can significantly promote economic

growth and reduce bad output by reducing energy

consumption. Therefore, improving the technology level can

promote steady improvements to the TCEE.

3.3.2 Spatial differences of influencing factors
To observe the difference of each driving factor in spatial

distribution more intuitively, this paper selects the average fitting

result of each driving factor in each region for visualization (see

Figure 8). Figure 8A shows that the economic level had a positive

impact on the TCEE in all provinces, with coefficients ranging

from 0.0394 to 1.2665, i.e., significant variations among all of the

provinces. The provinces with high coefficients were mainly

distributed in the northwest and southwest regions, such as

Xinjiang, Inner Mongolia, Gansu, Ningxia, Hainan, Guangxi,

and Yunnan, while the low coefficient regions were mainly in the

eastern coastal provinces. This may have been due to the low

TCEE in the western regions, which are far from the production

frontier. Less economic output can produce greater marginal

benefits, the TCEE in eastern developed regions located near the

production frontier was generally higher. Compared with

underdeveloped provinces, the same economic output had a

more negligible effect on improving the TCEE.

The distribution range of the population size regression

coefficient was −0.7419 to 0.9346. Figure 8B shows that

positive areas were mainly distributed in the low-population

density provinces in northeast, northwest, and southwest China,

while negative provinces were concentrated in high-population

density provinces in eastern and central China, such as Henan,

Shandong, Beijing, Tianjin, and Shanghai. Influenced by the

economic level, industrial agglomeration, policy support, and

other factors, China’s population and talent are concentrated in

the eastern regions, which leads to insufficient developmental

momentum in underdeveloped provinces, especially in northeast

China, which has shown negative population growth. Therefore,

increasing the population of these provinces can aid in

promoting production, accelerating economic growth, and

improving the TCEE. For central and eastern China,

population expansion aggravates the contradiction between

the transport supply and demand, resulting in serious

congestion and environmental pollution. Therefore,

population had a negative impact on the TCEE.

The coefficient of the tertiary industry ranged from

–0.7562 to 1.6264; its spatial distribution pattern was opposite

that of the population size (Figure 8C). Positive areas were

concentrated in the central and eastern regions of China. The

coefficients in north-eastern, north-western, and south-western

China were generally small and negative in most provinces,

especially in north-eastern and north-western China, where

primary and secondary industries dominate economic

development. In contrast, the tertiary industry accounted for a

relatively small proportion, resulting in a weak driving effect on

the economy. For the central and eastern regions, the proportion

of the tertiary industry was relatively high, especially in

Chongqing, Hainan, and other tourist cities. As the leading

industry in terms of economic development, the expansion of

the tertiary industry can attract more people, generate more
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FIGURE 8
Spatial distribution characteristics of the coefficients for the influencing factors.
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transport services, stimulate economic growth, and promote

improvements to the TCEE.

Figure 8D shows the spatial distribution characteristics of the

energy structure coefficient, it had a negative impact on the TCEE

in most provinces, indicating that increases in gasoline and diesel

consumption reduced the TCEE. In terms of the spatial

distribution, positive areas were mainly distributed in western

provinces, such as Xinjiang, Qinghai, Sichuan, and Guizhou,

while provinces with larger absolute negative coefficient values

mainly included Heilongjiang, Jilin, Inner Mongolia, and

Shaanxi. There are more heavy industries in these provinces

such that the fossil energy consumption is higher, resulting in

higher carbon emissions. Therefore, the unreasonable energy

structure has hindered improvements to the TCEE.

The impact of the transport structure on the TCEE in all

regions was negative (Figure 8E). The provinces with higher

absolute coefficient values were mainly distributed in the

western, while the absolute coefficient values were generally

smaller in the central and eastern provinces. This may be

related to the more reasonable transport structure in the

central and eastern provinces. Compared with the western

provinces, the railway and waterway transport systems in the

eastern and central provinces were more optimal. With capital

and technology support, the eastern and central provinces are

leaders in reforming the transport structure, such as expediting

“road-to-waterway” and “road-to-railway” processes, developing

smart cars, and promoting the use of clean energy. Owing to

limitations associated with topography, capital, and technology,

the transport services in the western provinces are still dominated

by road transport, which leads to more substantial TCEE

inhibition in the western provinces than that in the eastern

and central regions.

The effect of the transport intensity on the TCEE varied

significantly in different provinces (Figure 8F); the regression

coefficients ranged between –2.8008 and 1.0632. From a spatial

distribution perspective, the negative areas were concentrated

in the eastern and central regions, while the positive areas were

mainly confined to the western regions, showing notable

gradient characteristics. The transport intensity reflects the

degree of dependence that regional economic growth had on

the transport services. The increase in the transport turnover

not only yielded economic value but also increased carbon

emissions. For the western region, the level of economic

development was relatively low; economic growth depended

more on increases in the transport volume. Increasing the

transport turnover of the same unit can yield greater

economic benefits in the western regions than that in the

eastern and central regions. Therefore, the transport

intensity promoted the TCEE in the west but inhibited it in

the eastern and central regions.

The coefficients of the transport price variable ranged

between –1.1781 and 2.6440 (Figure 8G). The positive areas

were mostly distributed in the eastern coastal provinces; the

coefficients were smaller or even negative for the inland

provinces, showing notable ladder characteristics. The eastern

provinces have developed transport and large-scale flow

processes for people and goods, which has led to a series of

transport problems, such as congestion and pollution. Raising

transport prices could encourage people to favour public

transport and clean transport modes, thus reducing

congestion and pollution while promoting the TCEE. For the

central and western provinces, the economic development level

was lower than that of the eastern provinces; therefore, we must

increase the spatial transfer of people and goods by reducing

transport costs to drive economic development and promote

improvements to the TCEE.

The coefficient of the technical level was between 0.8784 and

2.2709, showing that improvements to the technical level had a

positive impact on the TCEE in all provinces (Figure 8H). The

coefficient decreased from the south-eastern coast to the

northwest inland, indicating that the influence of the

technology level on the TCEE was the greatest in the east,

followed by the central and western regions. According to Ma

et al. (2021), improvements to transport efficiency in the central

and eastern provinces is mainly a result of technological progress

and improvements to the management level. In contrast, the

western provinces mainly rely on production scale expansion,

which supports the perspective of this study. Therefore, all

provinces should increase their investments in science and

technology, attach importance to the transformation of

scientific research achievements, especially in the western

provinces, and focus on undertaking technology spillovers in

the eastern provinces. Technological progress can become a new

driving force for TCEE growth by implementing these initiatives.

4 Discussion and conclusion

4.1 Discussion

Achieving the goal of “peak carbon emissions and carbon

neutrality” is an important political initiative that faces China in

the 21st century. As the third largest source of carbon emissions, the

transport industry must make substantial strides to reduce their

carbon emissions. Therefore, it is of great significance to measure the

TCEE, explore the regional differences of transport carbon emissions

in China, and identifying the influencing factors of carbon emission

efficiency, so as to formulate differentiated transport carbon emission

policies and promoting carbon emission reduction.

Our research shows that, although China’s transport carbon

emission efficiency has been improving in recent years, the overall

level is low (only 0.475), which is mainly due to the uncoordinated

development of various transportation modes and the lack of

horizontal connection between them. Moreover, the sharing rate

of road transport is much higher than that of railway and water

transport, which leads to unreasonable resource allocation, sharp
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increase in energy consumption and carbon emissions, and huge

waste of transportation system investment. In addition, there are

significant regional differences in carbon emission efficiency of

transport, and the root of this difference lies in intra-regional

differences. Many factors, such as economy, population

distribution, scientific and technological level, etc., lead to the

unbalanced development of the transportation in various

provinces. Reducing the carbon emission from transportation and

improving the efficiency of carbon emission are the hot spots of all

countries in the world. Future improvements to China’s TCEE

should focus on the following aspects:

Industrial structure optimisation and economic growth

promotion. First, we must construct an institutional system

conducive to upgrading the regional industrial structure. In

contrast, for provinces with a large proportion of secondary

industries, we must avoid the tendency of “de-industrialisation,”

optimise the industrial structure, and actively promote industrial

transformation and high-quality development. Furthermore,

creating differentiated population policies is necessary. For

provinces with a low population density and serious

population loss in north-eastern and western China, the

government should encourage childbearing, formulate

preferential settlement policies, and attract people and talent

to drive economic growth and improve the TCEE.

Changes in the energy and transport structures and

improvements to the energy efficiency. Highway transport

consumes a large amount of fossil energy and generates a lot of

carbon emissions, which seriously hinders the promotion of

TCEE. On the one hand, the government should vigorously

develop new energy vehicles, such as those using pure electric

power, hybrid power and hydrogen energy, to reduce the

consumption of fossil fuels such as gasoline and diesel. On the

other hand, vigorously promote the transformation from road to

water and rail transport, and adopt new transport organization

methods such as multimodal transport to promote container

transport and reduce transport intensity, in order to optimize

the energy and transport structure, and improve TCEE.

Establishment of a rational pricing system. In terms of freight

transport, the government should reduce the price of railway and

waterway transport and encourage a transition from roads to

railways and waterways for the long-distance transport of bulk

goods. In terms of passenger transport, the government should

reduce the cost of public transport, improve the service quality of

public transport, encourage citizens to choose public transport

and clean energy vehicles, and reduce energy consumption

through policy and price leverage.

Increased investment in science and technology and

technical upgrades. First, increase support for scientific and

technological research, and upgrade the regional scientific and

technological level. In contrast, strengthening the exchange and

cooperation of talent, capital, and technology between provinces;

giving full recognition to the leading roles of developed

provinces, such as the BR (Bohai Rim), YRD (Yangtze River

Delta), and PRD (Pearl River Delta) in western and north-eastern

China; promoting the overflow of new technologies, methods,

and knowledge; reducing regional differences; and realising

overall improvements to the TCEE are all necessary.

I have to say, there are still some shortcomings in this article.

Considering the availability and convenience of the data, all the data

in this paper come from the National Bureau of Statistics, and the

calculation results are rough. In the future, the completeness and

accuracy of the data need further refinement. In addition, this paper

takes the provincial units as the research object, and the research scale

is large, lacking the first-hand data verification support. In the future,

it is necessary to refine the grain size, take prefecture-level cities as

evaluation units, and conduct specific case analysis based on actual

investigation ormonitoring data to evaluate China’s transport carbon

emission efficiency, so as to improve the scientificity and credibility of

the research results.

4.2 Conclusion

The transport carbon emissions in China showed an upward

trend with a decreasing growth rate. The TCEE first showed a

decreasing and then increasing trend, but was characterised by an

overall low level. The spatial distribution characteristics of the

CO2 emissions and TCEE had the following distribution across

the provinces: eastern > central > western, with significant

regional differences.

The total regional differences of TCEE in China are quite

large. The intra-regional differences is greatest in the western,

then in the central, and next the eastern. The inter-regional

differences in the eastern–western regions were determined to be

the largest, followed by the eastern–central regions, and the

smallest in the central–western regions. Intra-regional

differences are the main source of regional differences in TCEE.

The estimated results for the GTWR model confirmed that

the influencing factors of the TCEE had notable spatial

differences and changed over time. Generally, the economic

level and technological progress played a significant role in

promoting the TCEE in all provinces while the energy and

transport structures played a significant role in its inhibition.
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