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At present, the Carboniferous-Permian shale gas in the South North China Basin

is still in the exploration stage, and the understanding of the microscopic pore

structures, mineral composition and hydrocarbon enrichment law of the

marine-continental transitional shale gas reservoirs in this area is extremely

limited. In this paper, taking the Carboniferous-Permian shale gas reservoir in

the South North China Basin as an example, the geological conditions of shale

gas accumulation have been systematically studied using a large amount of

sedimentary, logging, seismic, core, geochemical, physical property, and

scanning electron microscope data. The study shows that the transitional

dark shale is stable and widely distributed in the South North China Basin.

Among them, the average thickness of the high-quality shale in the Taiyuan

Formation is 67 m, while that of the Shanxi Formation is 56 m. Carboniferous

and Permian are the main strata for the distribution of shale gas resources.

Among them, the dark shale developed in the Taiyuan and Shanxi Formations

has the largest thickness and the highest organicmatter abundance. In addition,

the organic matter types of the Upper Paleozoic coal-measure source rocks in

the South North China aremainly II2-III types, and a small part of thembelong to

II1 types. The brittle minerals in the target shale are mainly quartz, and the

content of illite is the highest among the clay minerals. Porosity is negatively

correlated with clay mineral content, and positively correlated with quartz and

TOC content. In addition, the permeability is negatively correlated with the

organic matter content. Finally, the criteria for key indicators of the transitional

shale gas reservoirs in the South North China Basin were developed.
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Introduction

There are three types of sedimentary facies for organic-rich

shales: marine, continental and marine-continental transitional

facies (Bernard et al., 2012; Clarkson et al., 2013; Jiang et al.,

2015; Li., 2022). Coal-measure shale is a typical marine-

continental transitional facies deposit. At present, coal-

measure shale gas in China is still in the exploratory stage

(He et al., 2012; Zou et al., 2019). Compared with marine shale,

it is generally believed that coal-measure shale gas reservoirs

have the characteristics of rapid lithofacies change, thin single-

layer thickness and high content of clay minerals (Chalmers

and Bustin, 2007; Curtis et al., 2012; Wang et al., 2015; Kong

et al., 2016). With the improvement of oil and gas development

technology in tight reservoirs, the commercial development of

coal-measure shale gas has gradually become possible. Shale gas

will become one of the clean energy sources with the most

development potential and prospects in China due to its huge

resources, extensive gas-bearing areas and strong sustainable

production (Yan et al., 2015; He et al., 2020; Li et al., 2020;

Zheng et al., 2020).

The Carboniferous-Permian was a critical period for the

transition of sedimentary systems from marine to continental

in China. Transitional organic-rich shale is widely developed in

China, for example, it is widely developed in the Tarim Basin,

Ordos Basin, Qinshui Basin in the central and western China,

and the Lower Yangtze and Yunnan-Guizhou areas in the

southern China (Lu et al., 2015; Xi et al., 2017; Zou et al.,

2019; Nie et al., 2020). Generally, the accumulation scale of

transitional shale gas is limited, so its own shale gas reserves do

not have high development and economic value. However, it is

usually interbed with gas-bearing coal seams and tight sandstone

layers, so the “multi-type-gas co-production” can be developed

(Kruk and Jaroniec., 2001; Loucks et al., 2009; Fu et al., 2013; Fu

et al., 2015). From this point of view, transitional shale gas still

has good resource potential and economic benefits.

The main part of the South North China Basin is located in

the central and eastern part of the Henan Province, and the

Carboniferous-Permian is the main stratum for the distribution

of shale gas resources (He et al., 2012). Shale gas in the Taiyuan

and Shanxi Formations in the South North China Basin has great

exploration potential. For example, the fracturing production of

the Well MY1 is 1 200 m3/d, and the production of the Well

ZD2 after fracturing is 3 000 m3/d. In addition, the current

drilling in the Taikang Uplift, Luyi Depression and Zhoukou

Depression have obtained good shale gas shows.

At present, there is insufficient understanding of the

microscopic pore structures, mineral composition and

hydrocarbon enrichment law of the Carboniferous-Permian

shale gas reservoirs in the South China Basin. In this paper,

taking the Carboniferous-Permian shale gas reservoir in the

South North China Basin as an example, the geological

conditions of the shale gas accumulation in the basin have

been systematically studied using a large amount of

sedimentary, logging, seismic, core, geochemical, physical

property, and scanning electron microscope data. This study

can provide scientific guidance for promoting the development of

transitional shale gas in the South North China Basin and similar

areas.

Geological background and methods

Structural and sedimentary background

The South North China Basin is located in the central and

southern parts of the Henan Province, China, with a total area

of about 150,000 km2 (Figure 1). From north to south, the

basin is divided into five sub-structural units: Kaifeng

Depression, Taikang Uplift, Zhoukou Depression,

Changshan Uplift and Xinyang-Hefei Depression. The ZM

Block in the study area is located near the Kaifeng Depression,

and the target layers are the Late Paleozoic Carboniferous and

Permian strata.

The South North China Basin was part of the North China

Craton Basin in the Late Paleozoic (He et al., 2012; Zou et al.,

2019). Affected by the global sea level rise in the Late

Carboniferous, extensive transgression gradually began to

occur in the study area. During the depositional period of

the Benxi Formation in the Late Carboniferous, the North

China Plate was a gentle monoclinic paleotopography with

high in the northwest and low in the southeast. At this time,

seawater intruded from the northeast, and a set of marine-

continental alternating strata was formed. In the early

Permian, affected by the uplift of the Yinshan Ancient

Land, the surface sea water of the North China continent

retreated from the northwest to the southeast (He et al., 2012).

Furthermore, a set of sedimentary strata dominated by marine

and transitional facies developed in the Shanxi Formation of

the South North China Basin. In the early stage, the tidal flat

and peat swamp facies deposits formed on the basis of the

gradual withdrawal of the surface sea water; in the late stage,

the delta facies deposits under the action of rivers were formed

(Wang et al., 2015; Yan et al., 2015). By the late Permian, the

South North China Basin was uplifted as a whole, the

paleotopography was higher in the north and lower in the

south, the seawater completely retreated, and the basin

entered the stage of continental sedimentary development.

At this time, a set of red clastic deposits dominated by fluvial

facies were deposited. The Carboniferous-Permian coal

measure strata in the South North China Basin have

experienced a complex evolution process of

deposition→deep burial→uplifting and denudation

transformation→second deep burial. It has the basic

geological conditions for secondary hydrocarbon generation

in the process of secondary deep burial.
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Distribution characteristics of shale series
in the taiyuan and shanxi formations

The Carboniferous and Permian in the southern part of

the North China are widely distributed with diverse

sedimentary types and rich biological fossils. Therefore, this

area is one of the best areas to study the Carboniferous and

Permian marine-continental transitional shale in China.

Shales of the Taiyuan Formation is mainly distributed in

the Taikang Uplift, Luyi Depression and Shenqiu

Depression. Among them, the cumulative thickness of dark

shales in the Taiyuan Formation in the Wells MY1 and

ZX1 are 82 and 50 m, respectively. The burial depth of

shale is mainly concentrated above 2000 m, and the

maximum depth can reach 6,000 m. The shale with the

maximum depth is mainly distributed in the Kaifeng and

Zhoukou Depressions.

The thickness of the shale in the Shanxi Formation ranges

from 5 to 100 m, and the deposition centers are concentrated in

the northern part of the basin, such as the Taikang Uplift, Luyi

Depression, Luoyang Basin and Xiangcheng Depression. In other

areas, the average thickness of the shale is 30 m. Among them, the

thickness of dark shale in the Wells MY1 and ZX1 are 91 and

70 m, respectively.

Experimental methods

The samples collected in this study were all from the lower

Permian Taiyuan and Shanxi Formations of the Well MY1 in the

Zhongmu Shale Gas Exploration Area, Henan Province. Organic

carbon content testing and field emission scanning electron

microscopy observations were carried out on all samples.

Mineral composition analysis was carried out by X-ray

diffraction (XRD) with the instrumental parameter of Cu Kα
radiation (λ = 1.540 6 for CuKα1) in a stepwise scan at a rate of 4°/
min in the range of 3°–85° (2θ). The total organic carbon content

(TOC) was measured using a LECO carbon-sulfur analyzer.

Before the test, the samples were treated with hydrochloric

acid to remove carbonate minerals. Vitrinite reflectance (Ro)

testing was performed with a DM LPWITH MSP20 Vitrinite

Reflectometer. In addition, the morphological features of the

FIGURE 1
Structural unit division of the South-North China Basin and location of the study area.

Frontiers in Earth Science frontiersin.org03

Peng et al. 10.3389/feart.2022.985302

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.985302


pores of the samples were observed using a Quanta 250FEG SEM

field emission scanning electron microscope. Before the

experiment, an argon ion spectrometer was used to profile the

sample surface to ensure smooth sample surface and improve

imaging quality.

Results

Organic abundance of source rocks

The dark shale of the Upper Paleozoic is mainly

distributed in the Taiyuan and Shanxi Formations of the

Permian, with an average organic carbon content of 0.52%–

3.21%. The abundance of organic matter gradually increased

from top to bottom perpendicular to the bedding plane

(Figure 2). The limestone and marl of the Upper Paleozoic

are distributed in the Taiyuan Formation, with an average

thickness of 30 m. Its organic carbon content is distributed

between 0.07% and 4.54%, with an average value of 0.74%. The

TOC content of 1.5%–3% represents medium source rocks,

while that of 3%–6% represents good source rocks. Therefore,

the target layer develop medium-good source rocks (Wang

and Yin., 2019). On the whole, the organic matter abundance

of the Upper Paleozoic coal-measure dark shale from bottom

to top increases from high to low, and the source rock grade

changes from good to poor. The dark shale of the Taiyuan

Formation belongs to medium source rocks, while limestone

and marl belong to the medium to good source rocks; in

addition, the shale of the Shanxi Formation belongs to the

poor to medium source rocks (Figure 3).

Types of organic matter in source rocks

For the organic matter types of the Upper Paleozoic coal-

measure source rocks in the South North China Basin, dark shale

is generally better than coal and carbonaceous shale. The

microscopic composition of coal is mainly vitrinite, and the

content is usually more than 60%; the second is inertite, its

content is less than 30%; and the content of chitinite + sapropel

group is generally less than 20%, and most of which are only 2%–

15%. The organic matter component of coal is Type III kerogen.

Statistics show that the content of crustal group + sapropel

group in the micro-component of dark shale is higher than that

of coal and carbonaceous shale (generally more than 40%). It

reflects that the organic matter type of dark shale is good. It is

mainly Type II2, and a small part is Type III. In addition, the H/C

atomic ratios of the organic elements are between 0.51 and 0.91,

and the O/C atomic ratios are between 0.06 and 0.14. It also

reflects that the types of organic matter are mainly Type II2-III.

On the whole, the organic matter types of the Upper

Paleozoic coal measure source rocks in the South North

China Basin are mainly Type II2-III, and a small part is Type

II1. Moreover, the organic matter type of the black shale is better

than that of the arbonaceous shale and coal.

Evolution of organic matter in source
rocks

The thermal evolution of the Upper Paleozoic coal measure

source rocks in the South North China Basin is uneven in

different regions, which is caused by the superposition of the

FIGURE 2
Total organic carbon content (TOC) distribution histograms for samples in well MY1.
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normal pleogenesis and various abnormal thermal evolutions.

The Ro value in the Zhongmu-Taikang-Luyi areas is above 2%,

and the source rocks are in the high-mature- overmature stage

(Figure 4). It is mainly caused by the superposition of normal

pleogenesis, mantle thermal uplift, and abnormal thermal

evolution of igneous rock thermal contact metamorphism.

The Ro value in the Xiangcheng-Tanzhuang-Shenqiu areas is

0.7%–1.5%, and the source rocks are mainly in the mature stage,

which belongs to normal pleogenesis.

On the whole, the Upper Paleozoic coal measure source rocks in

the South North China Basin are generally in the low-mature-over-

mature stage. The general trend of maturity shows a ring-shaped

FIGURE 3
Development characteristics of different types of shale in Well MY1. (A) 2,895.25–2,895.91 m; (B) 2,916.6–2,917.4 m; (C) 2,959.24–2,969.13 m.
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distribution along the Jiyuan-Jiaozuo-Taikang high evolution belt. It

has the characteristics of high in the north and low in the south, and

high in the west and low in the east. Among them, the high thermal

evolution of the Zhongmu-Taikang-Luyi northern region is related

to the thermal uplift caused by the thinning of the lithosphere and

the upwelling of the asthenosphere. However, the high thermal

evolution in the Tanzhuang-Shenqiu area is mainly related to the

normal pleogenesis of the huge thick sediments in the Yanshanian-

Himalayan period.

Physical properties

The porosity distribution of the Taiyuan Formation gas-

bearing shale in Well MY1 ranges from 0.4% to 4.5%, with an

average value of 2.1% (Figure 5); the permeability distribution

ranges from 1.21 × 10–6 to 0.11 mD, with an average value of

7.48 × 10–3 mD (Figure 6). The porosity distribution of the gas-

bearing shale intervals in the Shanxi Formation ranges from 0.3%

to 8.8%, with an average value of 2.3% (Figure 5); the

FIGURE 4
Histogram of vitrinite reflectance (Ro) distribution of rock samples from Well MY1.

FIGURE 5
Histogram of effective porosity distribution of rock samples from Well MY1.
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permeability distribution ranges from 23×10–6 to 0.92 mD, with

an average value of 0.045 mD (Figure 6). The permeability of

shale reservoirs in the area is usually less than 0.1 mD, which

belongs to the ultra-low permeability type. On the whole, the

porosity and permeability of the reservoirs in the area are low,

and the shale reservoirs are low-porosity and low-permeability

reservoirs.

Total desorption gas volume on site

Core observations in the Well MY1 revealed that the thickness

of high-quality shale in the Taiyuan Formation is 77 m, and the

thickness of high-quality shale gas in the Shanxi Formation is

67.5 m. The total gas content of high-quality shale ranges from

0.42 to 4.44 m3/t, with an average of 1.93 m3/t (Figure 7).

FIGURE 6
Histogram of permeability distribution of rock samples from Well MY1.

FIGURE 7
Histogram of field analytical total gas content distribution in Well MY1.
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Discussion

Classification of pore types

The brittle minerals in the transitional shale of the target layer

are mainly quartz, and the content of shale in the Taiyuan

Formation in Well MY1 of the Zhongmu Block is 6%–55%; the

content of clay minerals is 32%–64%. The content of clay minerals

and quartz in the shale of the Shanxi Formation ranges from 35% to

89% and 3%–52%, respectively. The clay minerals in the Taiyuan

Formation are dominated by illite, kaolinite, imonite mixed layers,

and a small amount of chlorite. Among them, the average contents

(volume fraction) of illite, kaolinite and imonite mixed layer are

28%, 22.17%, and 20.17%, respectively. For the Shanxi Formation,

the clay minerals in the shale are mainly illite and kaolinite, and a

small amount of chlorite and imonite mixed layers. Among them,

the average volume fractions of illite, kaolinite and imonite mixed

layer are 67.36%, 28.18%, and 25.09%, respectively.

FIGURE 8
Microscopic images of pore characteristics of the Taiyuan and Shanxi Formation shales from Well MY1. (A) Pyrite intergranular pores, 2,934 m;
(B) Intergranular pores, 2,937 m; (C) Calcite edge mold pores, 2,874 m; (D) Organic hydrocarbon generation pores, 2,944 m; (E) Organic
hydrocarbon generation pores, 2,945 m; (F) Organic matter shrinkage crack, 2,948 m.
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Inorganic pores, organic pores and micro-fractures are the

main storage spaces in the transitional shale gas reservoirs in the

study area (Figure 8) (Zhang et al., 2021).

1) Inorganic pores: The minerals in the shale of the Taiyuan

and Shanxi Formations are mainly composed of clay and quartz,

which form a large number of micro-sedimentary structures. The

incomplete cementation between various grains or the later

diagenetic transformation will generate a large number of

intergranular pores. Ductile minerals such as clay minerals,

organic matter, and brittle minerals such as quartz, feldspar,

and pyrite constitute the inorganic pores (Figures 8A–C).

2) Organic pores and micro-fractures: The shale samples of

the Taiyuan and Shanxi Formations develope organic

hydrocarbon-generating pores and a large number of organic

shrinkage micro-fractures (Figure 8D–F). Organic micro-

fractures are fractures formed by the shrinkage of organic

matter in the process of hydrocarbon generation. It can not

only provide space for the storage of shale gas, but also provide

main channels for the seepage of gas (Tissot., 1978; Chalmers

et al., 2009; Qi et al., 2019; Li., 2021).

Analysis of controlling factors of physical
properties

Statistics show that the average volume fraction of quartz

in the Shanxi Formation shale reservoirs in Well MY1 is 30%,

while that in the Taiyuan Formation shale reservoirs is 37%.

The clay minerals in the Shanxi Formation are dominated by

illite and kaolinite, and the clay minerals in the Taiyuan

Formation are dominated by illite, kaolinite and imon

mixed layer. It fully shows that the shale reservoir in the

area has strong brittleness and fracture-making ability, and is

suitable for hydraulic fracturing.

Generally, clay minerals are favorable for the adsorption of

shale gas (Yang et al., 2010; Yu et al., 2019). Montmorillonite has

the strongest adsorption capacity, followed by illite, then chlorite

and kaolinite. The composition of clay minerals in shale is

relatively complex, with high content of quartz, which are

mostly clay grade and often appear in the form of laminar

structures (Yang et al., 2016; Xiong et al., 2017; Wang et al.,

2018). However, shale with high organic matter and quartz

content is highly brittle, and it is easy to form natural and

induced fractures under the action of external force. In turn,

it facilitates the percolation of natural gas.

There are many factors affecting the porosity of tight

reservoirs, including framework particle size, organic matter

content, clay mineral content, and dissolution diagenesis. The

study found that the porosity of shale was negatively correlated

with clay mineral content (Figure 9A), positively correlated

with quartz content (Figure 9A) and TOC content (Figure 9B).

During the original deposition of shale, the original porosity

was very large, and during the later burial compaction and

diagenesis, the porosity will continue to decrease. Quartz is a

brittle mineral with strong compressive ability. Therefore, as

the quartz content in the shale increases, the preservation of the

original porosity is better.

Similarly, for permeability, interlayer pores with abundant

clay minerals will greatly enhance the permeability of the

reservoir. Therefore, the permeability increases continuously

with the increase of authigenic clay content, and it tends to

stabilize after reaching 50% (Figure 9C). There is a negative

correlation between permeability and quartz content. The

main reason is still the lack of connectivity between the

intergranular pores. Therefore, in the process of deep

burial, the intergranular pores are basically exhausted by

compaction. In addition, the study also found that the

permeability was negatively correlated with the organic

matter content (Figure 9D). This is because the

intercrystalline pores of clay minerals are mainly developed

in the transitional shale, and the organic pores are not the

main type of pores. When the degree of development of

organic pores is high, it represents a strong reducing

environment, and the degree of development of

intercrystalline pores in clay minerals will decrease.

Accumulation conditions and indexes of
shale gas

There is a good positive correlation between the

maximum adsorbed gas volume and the desorption gas

volume of the Taiyuan and Shanxi Formation shales in

Well MY1 and the organic carbon content (Figure 10).

This is caused by the presence of a large number of

micropores and cracks in the organic matter. Moreover,

with the increase of organic carbon content, the type of

microscopic pores and fractures and the porosity will also

increase, the specific surface area for natural gas adsorption

increases sharply, and the maximum adsorbed gas content

and desorption gas content of shale increase accordingly.

Since the desorption gas volume includes adsorbed gas and

free gas, the storage of free gas in pores is greatly affected by

formation pressure (Guo et al., 2015; Gai et al., 2016; Ma

et al., 2019; Xu et al., 2019). Therefore, the correlation

between the desorption gas volume and the organic carbon

content is weaker than that of the maximum adsorption gas

volume.

The geological conditions required for the accumulation

of shale gas include: large-scale development of dark shale,

favorable structural and depositional background, good

reservoir continuity, large thickness, and wide distribution

areas. These geological conditions are the material basis for

the large-scale accumulation of shale gas. At the same time,

the good organic geochemistry, porosity and permeability

properties, fracture development, and mineral composition

Frontiers in Earth Science frontiersin.org09

Peng et al. 10.3389/feart.2022.985302

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.985302


are the key factors for the shale gas accumulation. They

comprehensively control the hydrocarbon generation

capacity, storage performance, oil and gas potential and

production rate of shale, and determine the enrichment

degree and exploration prospect of shale oil and gas. In

addition, the burial depth, formation temperature, and

pressure conditions of shale are also important factors that

affect the accumulation of shale gas and determine whether it

has industrial exploration and development value.

This study proposes that the key indicators of transitional

shale gas include: 1) Organic matter abundance: organic carbon

(TOC) content >1.0%, organic matter types are Type II2 and

Type III (these two types are the main types in the South North

China Basin); 2) Organic matter maturity: vitrinite reflectance

FIGURE 9
Characteristics of physical parameters, TOC content and mineral composition content of shale samples in the target layer. (A) Relationship
between mineral composition content and porosity; (B) Relationship between TOC content and porosity; (C) Relationship between mineral
composition content and permeability; (D) Relationship between TOC content and permeability.

FIGURE 10
Effect of TOC content on the adsorption and desorption gas content of shale samples. (A) TOC content has a positive correlation with the
maximum total adsorbed gas; (B) There is also a good positive correlation between TOC content and desorption gas volume.
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Ro>0.9%, which is to ensure the quality of the gas source; 3)

Brittle mineral content>40%, clay mineral content <40%, this is

to ensure the quality of the reservoir; 4) Porosity>2%,

permeability>100 nd, gas content>1.0 m3/t, water

saturation <45%, oil saturation <10%; in addition, shale gas

resource abundance>2.0×108 m3/km2, which is to ensure the

potential and prospects of shale gas resources; 5) Formation

pressure: normal pressure to overpressure, continuous effective

shale thickness >15 m, interlayer thickness <3.0 m; 6) Lithology

and thickness of roof and floor: the thickness of impermeable

rock layer is >10 m; 7) Preservation conditions: stable structure,

low degree of transformation.

Conclusion

1) The transitional dark shale is stable and widely distributed in

the South North China Basin. Among them, the average

thickness of the high-quality shale of the Taiyuan

Formation is 67 m, while that of the Shanxi Formation is

56 m. Carboniferous and Permian are the main strata for the

distribution of shale gas resources. Among them, the dark

shale developed in the Taiyuan and the Shanxi Formations

has the largest thickness and the highest organic matter

abundance.

2) The organic matter types of the Upper Paleozoic coal-

measure source rocks in the South North China are mainly

the II2-III Types, and a small part of them belong to the

II1 Type.

3) The brittle minerals in the target shale are mainly quartz, and

the content of illite is the highest among the clay minerals.

Porosity is negatively correlated with clay mineral content,

and positively correlated with the quartz content and TOC

content. In addition, the permeability is negatively correlated

with the organic matter content.

4) The criteria for key indicators of transitional shale gas

reservoirs in the South North China Basin were developed.

This study can provide scientific guidance for efficient

exploration and development of transitional shales.
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